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Abstract: A microgrid (MG) is one of the most efficient ways to cope with the grid-connection of a
large number of small-sized distributed energy resources. This paper presents a consensus-based
fully distributed economic dispatch (ED) strategy for MGs, with the aim of tackling the difficulties of
existing algorithms in modeling network power loss and providing global information. The external
power grid to which the MG connects is treated as a special power source called a virtual generator,
and participates in the economic dispatch process. Taking the incremental cost of a power generator
as the consensus variable, a distributed ED model was formulated based on consensus protocol and a
sub-gradient-based optimization method for solving this model has been proposed. The convergence
of the distributed ED system was investigated by utilizing matrix spectrum radius analysis theory.
The effectiveness of the proposed strategy was verified by carrying out simulation under normal
operation of the MG, both with and without the consideration of network power loss. Moreover,
simulation results under several scenarios, including exchanged power order variation and distributed
generation plug and play, are provided to demonstrate the robustness of the distributed ED strategy.

Keywords: consensus protocol; distributed economic dispatch; virtual power generator; distributed
sub-gradient optimization; microgrid

1. Introduction

Climate change and environmental concerns stimulate the development of the concept of
distributed energy resources (DERs) and their subsequent widespread application in power systems
across the world [1]. DERs have the advantages of economy, efficiency and reliability; however,
the integration of a large number of small- and ultra-small-sized, geographically dispersed and
heterogeneous DERs has a greater impact on the power grid and presents austere challenges to the
network operator in controlling and managing the whole system [2]. One of the proposed solutions
is the concept of a microgrid (MG), driven by recent advances in both modern communication and
intelligent computation technologies [3,4].

Economic dispatching (ED) is also one of the most fundamental issues of an MG, where the total
required generation is distributed among the generators in operation by minimizing the selected cost
criterion, subject to load demand and generator capacity constraints [5]. Traditionally, solution algorithms
for the ED problem of MGs have been centralized in nature, wherein a powerful central computer is
employed to make a decision on the power commitment for each power generation unit by solving
a specific form of optimization problem, according to the information collected via communication
links deployed between the central computer and each generation unit [6]. As pointed out in [7],
the design of intelligent economic dispatching strategies for microgrids is drastically different to that of
conventional central grids due to two unique challenges. Firstly, the demand and renewable generation
uncertainty emphasizes the need for online algorithms. Secondly, the widely adopted peak-based pricing
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scheme results in the need for new peak-aware strategy design. Therefore, artificial-intelligence-based
approaches such as particle swarm and simulated annealing algorithms have also been applied in order
to optimally allocate the power of different types of generators and energy storage units [8,9]. These
approaches are still unable to tackle the difficulties inherent to the solving of the ED problem in a
centralized framework. These problems include the fact that the dispatching center is usually associated
with a heavy computation and communication burden, the overall dispatching system is very fragile
with one-point failure of the central computer, and more importantly, that the whole system needs to be
reconstructed for the adding and/or leaving of a power generator [10].

The transition of power generation and distribution in a power grid to become increasingly
decentralized stimulates the development of distributed control systems that are efficient in handling
dynamic loads, robust against transmission and generation failure and allow for plug-and-play of
DERs [11,12]. The majority of them rely on consistency or distributed optimization algorithms that
have been extensively studied and applied in various engineering fields, such as distributed sensor
networks [13], unmanned aerial vehicle formation [14] and robot cooperative control [15].

Consequently, there has been considerable interest in developing distributed strategies for the
solution to the ED problem of MGs [16,17]. The predominant approach is to consider quadratic cost
functions for generators and perform consensus over their incremental costs under local communication
topologies [18]. The basic idea and implementation method of a leader–follower type distributed
ED algorithm has been presented in [19,20]. The leader performed the so-called pinning control
according to the power mismatch of the system and the optimal power allocation was obtained when
the incremental costs of all the units were equal. However, the power mismatch between total load
and total power generation is global information that is very difficult to obtain by the leader locally
in a distributed framework. Although the knowledge of power mismatch was no longer needed,
the distributed ED algorithm proposed in [21] assumed that the leader had access to the information
on the total load demand, which is, however, also a type of global information. Alternatively, in a
leaderless version of the distributed ED strategy [22], each power generation unit adjusted its output
based on the feedback on the power mismatch estimated locally by the generation unit itself. This
algorithm should be initialized with a feasible power allocation. In [23], the authors proposed a
finite-time convergence distributed ED strategy with the aim to speed-up the iteration process, but its
implementation required placing an agent on each bus integrated with a load or a power generator.
Network transmission power loss is also an important factor affecting the ED solution. Transmission
power loss was handled in the strategy proposed in [24] on the premise that each generator can estimate
the power loss in the transmission lines adjacent to it. In a centralized framework, power loss can be
roughly estimated or accurately calculated based on power flow analysis by the dispatching center.
However, it is scarcely possible for a power generation unit itself to accurately estimate power loss that
is time-variant, network operation-dependent and distributed all over the network, even with the help
of a sophisticated distributed algorithm.

This paper presents a novel leader–follower type distributed ED planning for an MG, to tackle
the difficulties of existing distributed ED algorithms in modeling network power loss and providing
global information. The major innovations of this paper are as follows: (1) We developed a novel
leader–follower type distributed ED framework which treats the external power grid as a special
power unit called a ‘virtual power generator’, that is ‘dispatched’ by the MG operator. This particular
design greatly facilitates the synthesis of our distributed information exchange protocol in a unified
manner, and the local information of power mismatching and exchanged power instruction can be
shared with other power units in accordance with the rule of the consensus protocol. The participation
of the virtual power generator has no effect on the economic dispatching solution at all. (2) A fully
distributed leader–follower ED model has been established. It only requires the leader to access
the information of power mismatching and exchanged power instruction locally, thus avoiding the
complexity in obtaining global information. In addition, network power loss can also be treated
conveniently and modeled simply in the model formulation. To our best knowledge, this model is the



Energies 2019, 12, 4007 3 of 16

first full version of a quadratic cost function-type distributed ED model. (3) We developed a distributed
sub-gradient-based method in order to solve the built ED model, and to provide the strict proof to
investigate the convergence of this method for the first time.

The remainder of this paper is structured as follows: in Section 2, the framework of our distributed
economic dispatch system based on the concept of a virtual power generator is described. The real-time
distributed economic dispatch model and its subgradient-based optimal solution are presented
in Section 3. Section 4 investigates the convergence of the distributed economic dispatch system.
Simulation results under several scenarios are provided in Section 5 to show the effectiveness of the
proposed strategy. Finally, in Section 6, the main findings of the paper are summarized.

2. Distributed ED Framework of an MG

Figure 1 shows the general structure of an MG. It is normally integrated with several fossil
fuel-based generators, gas turbo-generators and heterogeneous distributed renewable resources, such
as photovoltaics (PV), wind-turbine (WT) power and small-scale hydro-turbine generators. The goal of
economic dispatch is to minimize the total power generation cost in scheduling all the power sources
to balance the load demand in the MG and to satisfy the requirements of the power exchange between
the MG and the external power grid. The instruction for the exchange of power may be issued directly
from a system operator in a higher level of the hierarchical control system or the commitment can be
made by the MG locally when participating in electricity market trading.

Figure 1. General structure of a microgrid (MG) with a virtual generator.

In a distributed economic dispatch scheme, the central scheduler is replaced by a collection of the
local controllers of each generation unit, and the communication network between local controllers can
be of arbitrary topology, as long as the topological graph is connected. The solution to a distributed ED
problem involves an iteration process. In an iteration circle, each generation unit makes a decision
regarding its power generation autonomously, by synthesizing the status of itself and the information
of its neighbors, which is received via two-way communication links (the red arrowhead lines shown
in Figure 1). The economic dispatch goal of the MG can be achieved once the iteration computation
process reaches convergence.
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To completely tackle the difficulty of existing distributed ED algorithms in collecting global
information and effectively consider the power exchanging requirement in the dispatch process, we
introduced a novel scheme wherein the external grid to which the MG connects is regarded as a
special power generation unit called a ‘virtual power generator’. Here, ‘virtual’ means that this
generator is in fact a non-schedulable unit and just participates in the iteration computation process.
This is in order to provide the real-time information on the mismatch between the exchanged power
PPCC and its instruction Pref, in a way conforming to the rule of the consensus-based protocol that
only consensus variables can be transmitted. In this sense, this virtual power generator is always
‘controlled and dispatched’ by the MG operator due to fact that the operator can measure the exchanged
power PPCC more conveniently and is the specific person to receive or generate the instruction of the
exchanged power.

3. Distributed ED Model and Optimization Solution

3.1. Distributed Economic Dispatch Model

A regular centralized ED model of an MG can be formulated as:

min F =
n∑

i=1
Fi(PG,i)

s.t.


n∑

i=1
PG,i + Pref = PD + PLOSS

Pmin
G,i ≤ PG,i ≤ Pmax

G,i , i = 1, 2, . . . , n

(1)

where n is the number of power source units participating in the economic dispatch; PG,i and Fi(PG,i) is
the power and cost function of unit i, respectively; Pmin

G,i and Pmax
G,i is, respectively, the power lower and

upper limit of unit i; PD is the total load demand of the MG, PLOSS is the network power loss and Pref

is the order of the power exchanged between the MG and the external grid.
The cost function Fi(PG,i) of the real power source unit i is usually expressed as a quadratic

function of its power PG,i, that is:

Fi(PG,i) = ci + biPG,i + aiP2
G,i (2)

where ai, bi and ci are the corresponding coefficients.
Using the classical Lagrange multiplier method, the optimal model (1) with an equality constraint

can be converted into:  min F =
n∑

i=1
Fi(PG,i) + λ∆P

s.t. Pmin
G,i ≤ PG,i ≤ Pmax

G,i

(3)

where λ is Lagrange multiplier and:

∆P = PD + PLOSS − Pref −

n∑
i=1

PG,i (4)

For constant network power loss and convex cost-power functions, the optimal solution P*G =

[PG,1, P G,2, . . . , PG,n] and λ* of Formula (3) is unique and can be characterized by:
dF1(PG,1)

dPG,1
= . . . =

dFn(PG,n)
dPG,n

= λ∗

n∑
i=1

PG,i = PD + PLOSS − Pref
(5)
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Derivation dFi(PG,i)/PG,i is also termed as the incremental cost of unit i. The ED model (3) can
be solved conveniently in a centralized mode, provided that all the cost functions Fi(PG,i), total load
demand PD, power loss PLOSS and power order Pref are foreknown by the central scheduler.

We introduced a virtual generator with the sequence number ‘1’ to decompose the centralized
ED mode (1). The local ED model of each real generator and the virtual generator can be uniformly
formulated as:

min Fi = Fi(PG,i) + di · δ · fp
s.t. Pmin

G,i ≤ PG,i ≤ Pmax
G,i

i = 1, 2, . . . , n (6)

where di is used to identify the virtual power generator, i.e., d1 = 1 and di = 0 for i = 2,3, . . . ,n in
this paper.

We simply set the cost function F1(PG,1) = 0 and the power limit Pmin
G,1 = −∞ and Pmax

G,1 = +∞ for the
virtual power generator. According to the introduction of the virtual generator in Section 2, we can know
that its power PG,1 equals the power exchanged between MG and the external grid, i.e., PG,1 = PPCC.

In accordance with the centralized ED model (1), function f p in (6) is defined as follows:

fp =
1
2
(PD + PLOSS −

n∑
i=1

PG,i−Pref)

2

(7)

In real operation, we can know that:

PD + PLOSS −

n∑
i=1

PG,i = PPCC (8)

Thus, Formula (7) can be reformed as the following:

fp =
1
2
(PPCC − Pref)

2 =
1
2
(PG,1 − Pref)

2 (9)

We can learn by investigating Formulas (6)–(9) that: (1) The sum of the local model (6) for n
power units (including the virtual power generator) collectively equals the central ED model (1);
(2) Since di = 0 when i = 2,3, . . . ,n, model (6) can be built by a real power source unit itself locally and
independently. As for the virtual generator, it only needs the information on the real-time exchanged
power PPCC and the power order Pref that can be provided by the MG operator conveniently to calculate
the function fp in its local model (6). Therefore, the ED model (6) for n power units is fully distributed
in nature. (3) Global information such as total load PD and the sum of the power of all the generators

n∑
i=1

PG,i or the power mismatch PD −
n∑

i=1
PG,i that are bottlenecks of current distributed ED strategies

are no longer needed in developing our ED model (6). Furthermore, global operation information
regarding power loss PLOSS that is very difficult to be calculated or estimated accurately can now be
handled simply and conveniently.

3.2. Sub-Gradient-Based Optimization Method

The n power source units and the communication links between them can be collectively regarded
as a multi-agent system. Their interaction topology is represented using an undirected weighting
graph G = (V , E, A) with the set of nodes V = {1, . . . ,n}, edges E ⊆ V × V and an adjacency matrix A.

We took the incremental cost of a power generator as the consensus variable in order to develop
the solution method for our distributed ED model (6). The discrete form of the protocol used by power
generator i to update its status in the k-th iteration can be formulated as the following:
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λi[k + 1] =
n∑

j=1

ai jλ j[k] + di · δ · ∆ fP[k] (10)

where k is the iteration number and λi is the incremental cost of unit i; δ is the step-size; coefficient aij,
which is the weighting assigned by unit i for the information received from unit j. In equal weighting
scheme, aij is chosen as follows:

ai, j =


1− ε · |Ni|, i = j
ε, i , j and j ∈ Ni
0, i , j and j < Ni

(11)

where Ni = {j ∈ V :(i,j) ∈ E} is the set of neighbors of agent i, and edge (i, j) ∈ E if agent i can communicate
with agent j; |Ni| denotes the number of neighbors of agent i; ε ∈ (0, dmax) and dmax is the maximum
degree of graph G.

Positive step-size δ plays an important role in determining the performance of a distributed
algorithm in terms of convergence speed and optimization accuracy. Although it is possible to drive
the errors between the decision variables and their optimal values to zero using, e.g., a diminishing
step size rule [25], we prefer a constant step-size rule in view of its simplicity and relatively fewer
number of iterations.

Based on the principle of sub-gradient distributed optimization method, if we tune ∆f P[k] as the
negative partial differential of f P at λ0[k] in the kth iteration cycle, and we can obtain the following:

∆ fp[k] = PPCC[k] − Pref (12)

The power order of the i-th (i = 1,2, . . . ,n) real power source unit after the k-th iteration is
determined as follows:

PG,i[k + 1] =
λi[k + 1] − bi

2ai
(13)

Considering the power limits, the final power order of unit i is the following:

PGi[k+1] =


Pmin

Gi
λi[k+1]−bi

2ai
< Pmin

Gi
λi[k+1]−bi

2ai
Pmin

Gi ≤
λi−bi

2ai
≤ Pmax

Gi

Pmax
Gi

λi[k+1]−bi
2ai

> Pmax
Gi

(14)

Figure 2 shows the flow chart of our distributed ED strategy.
We can learn from the definition of di that ∆f P is computed locally only by the virtual generator

according to the measured exchanged power PPCC and the instruction Pref. More importantly, the
introduction of the virtual generator is very helpful in formulating the distributed protocol (10) to share
the information of PPCC and Pref with all the other participants in accordance with the requirement of a
distributed system that only the consensus variable can be transmitted.
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Figure 2. Flow chat of the real-time distributed economic dispatch (ED) strategy.

4. Convergence Analysis of the Distributed ED System

From Formula (12), we can know that ∆f P[k] is indeed the negative sub-gradient of function f P

(9) at λ0[k]. Thus, our protocol (10) can be regarded as a special version of that proposed in [26] (see
Formula (3) therein). Reference [26] has proven that the distributed computing method can obtain the
same optimal solution as that derived by the centralized Lagrange multiplier method. The optimal
solution can be solved from Formula (5) as follows:

λ∗ =

PD + PLOSS − Pref +
n∑

i=1

bi
2ai

n∑
i=1

1
2ai

(15)

Let λ* to be the control target of the ED system, Formula (10) can be reformed as follows:

λi[k + 1] =
n∑

j=1

ai jλ j[k] + di · δ · (λ
∗
− λi[k]) (16)

The collective dynamics of a group of n agents can be synthesized as follows:

λ[k + 1] = Aλ[k] + diag(di · δ)(λ ∗ 1n − λ[k]) = A fλ[k] + A f lλ∗ (17)

where A ∈Rn×n is the system information weighting matrix and its elements are defined by Formula (11).
A f = A− diag(di · δ), and A f l = δ[d1, d2, · · · , dn]

T is called the virtual power generator identify vector.
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We define the system state error vector at the k-th iteration cycle as follows:

z[k] = λ[k] − λ ∗ 1n (18)

The evolution of the system state error can be derived according to Formula (17) as follows:

z[k + 1] = λ[k + 1] − λ ∗ 1n

= A fλ[k] + A f lλ ∗ −λ ∗ 1n

= A f (λ[k] − λ ∗ 1n) + A fλ ∗ 1n + A f lλ ∗ −λ ∗ 1n

= A f z[k]

(19)

The following lemma is needed [27] to analyze the convergence property of the system (17) [28]:

Lemma 1. If A ∈Mm×n, then ρ(A) is an eigenvalue of A and there is a nonnegative vector x ≥ 0, x , 0, such
that Ax = ρ(A)x.

Theorem 1. Consider a multi-agent system with the dynamic of (17) and with an undirected connected
communication topology. If δ ∈ (0, 1/(dmax + 1)), then the spectral radius of the matrix

A f =


a11 − δ a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


is less than 1.

Proof. Let v = [v1, . . . ,vn]T be the left eigenvector of Af corresponding to the spectral eigenvalue ρ(Af).
Lemma 1 shows that v ≥ 0, v , 0. Let vq = maxj = 1,2, . . . ,n(vj). Thus, vq > 0.

If q = 1, then

ρ(A f )v1 =
n∑

j=1
a f ,1 jv1 = −εv1 +

n∑
j=1

a1 jv j

≤ −εv1 +
n∑

j=1
a1 jv1 = −εv1 + v1 < v1

(20)

That is to say: ρ(Af) < 1 when q = 1.
If q , 1, then

ρ(A f )vq =
n∑

j=1

a f ,qjv j =
n∑

j=1

aqjv j ≤

n∑
j=1

aqjvq = vq (21)

Thus, ρ(Af) ≤ 1. However, if ρ(Af) = 1, then v = [vq,..,vq]T as matrix A of a connected graph is
irreducible. It is impossible since

− εvq + vq < vq (22)

Thus, ρ(Af) < 1. �

By Theorem 1, we know that the spectral radius of Af is less than 1. Thus, the system state error
z[k]→ 0 as k→∞, which means that all the agents’ state converge to the control target λ*.
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5. Simulation Verifications

5.1. Simulation Model

We considered an MG integrated with five distributed generators and formed a six-agent system
by counting the virtual generator. The parameter values of each distributed generator are referred to in
reference [29], which are listed in Table 1. Figure 3 illustrates the communication network topology.

Table 1. Parameter values of each distributed generator.

Generator ai ($/MW2) bi ($/MW) ci ($) Pmin
Gi (MW) Pmax

Gi (MW)

G1 0 0 0 −∞ +∞
G2 0.0070 7.0 240 100 500
G3 0.0095 10.0 200 50 200
G4 0.0090 8.5 220 80 300
G5 0.0080 11.0 200 50 150
G6 0.0075 10.5 220 50 200

Figure 3. Topology of the communication network.

Simulation results under three scenarios are provided to study the performance of our real-time
distributed ED strategy. In comparison with the distributed ED strategy in reference [30], the
effectiveness and solution accuracy of the strategy are verified and analyzed in scenario 1. Scenario 2
simulates the switch of the exchanged power order. The plug and play functionality of the strategy are
demonstrated in scenario 3.

5.2. Scenario 1: Effectiveness Validation

The total load demand of the MG is 1000 kW and power instruction Pref is 120 kW. The initial
power of all the generation units were set to the minimum of their output. The simulation was carried
out in the case of neglecting and considering network power loss, respectively. Figure 4 shows the
results of our distributed ED strategy with δ = 0.003.
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Using the distributed ED strategy in reference [30], the simulation results are shown in Figure 5.
Note that, since the external grid was no longer regarded as a virtual generator, the total load of the
system was set to 880 MW.

Energies 2019, 12, x FOR PEER REVIEW 10 of 16 

 

0 50 100 150 200 250 300
Iteration number

0 50 100 150 200 250 300
Iteration number

-50

0

50

100

150

200

250

300

350

400

Po
w

er
 o

f e
ac

h 
un

it 
(M

W
)

PG1
PG2

PG3

PG4
PG5

PG6

PG1
PG2

PG3

PG4
PG5

PG6

Power loss neglected Power loss considered

 
(b) 

0 50 100 150 200 250 300
Iteration number

Total generation 
Total load demand
Power imbalance
Power at PCC
Power loss

0 50 100 150 200 250 300
Iteration number

0

200

400

600

800

1000

Po
w

er
 o

f s
ys

te
m

 (M
W

) Total generation 
Total load demand
Power imbalance
Power at PCC

Power loss neglected Power loss considered

 
(c) 

Figure 4. Simulation results of scenario 1. (a) incremental cost; (b) power of each unit; (c) power 
information of the system. 

Using the distributed ED strategy in reference [30], the simulation results are shown in Figure 5. 
Note that, since the external grid was no longer regarded as a virtual generator, the total load of the 
system was set to 880 MW. 

0 50 100 150 200 250 300
Iteration number

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

In
cr

em
en

ta
l c

os
t (

$/
M

W
)

λ1

λ2
λ3

λ4

λ5

250 260 270 280 290 300
11.8
11.9
12

12.1
12.2
12.3
12.4
12.5

λ∗=12.1964

 
(a) 

Figure 5. Cont.



Energies 2019, 12, 4007 11 of 16
Energies 2019, 12, x FOR PEER REVIEW 11 of 16 

 

0 50 100 150 200 250 300
Iteration number

-50

0

50

100

150

200

250

300

350

400

Po
w

er
 o

f e
ac

h 
un

it 
(M

W
)

PG1
PG2

PG3

PG4
PG5

 
(b) 

0 50 100 150 200 250 300
Iteration number

-100

0

100

200

300

400

500

600

700

800

900

1000

Po
w

er
 o

f s
ys

te
m

 (M
W

)

Total generation 
Total load demand
Power imbalance

 
(c) 

Figure 5. Simulation results by using the distributed ED strategy in reference [30]. (a) Incremental 
cost; (b) power of each unit; (c) power information of the system. 

As shown in Figure 4 and Figure 5, the distributed economic dispatch strategy adopted in this 
paper converges to the same value as the method in reference [30] without considering network loss. 
The incremental cost of all the power generation units eventually converge to 12.1964 $/MW, and the 
output power of the units in MG converge to PG* = [371.1725, 115.6008, 205.3564, 74.7759, 113.0943] 
(MW). Figure 4c shows that the exchanged power PPCC finally converges to its instruction of 120 kW, 
and the total power of all the generation units (including the 120 kW of the virtual generator) exactly 
balances the load demand 1000 kW of the MG. These results verify that our distributed strategy can 
solve the economic dispatch problem of an MG effectively and has the same solution accuracy as that 
of the method in [30]. 

However, we regarded the external power grid as a virtual generator that participates in power 
dispatch, meaning that the problem of global information being hard to obtain, as in reference [30], 
has been solved. At the same time, the setting of the Pref instruction makes the power regulation of 
the MG more flexible. More importantly, the method adopted in this paper can naturally take the 
power loss into account, as it can be considered as a variable load. Thus, the accuracy of the economic 
dispatch of an MG is improved. As we can ascertain from Figure 4, the final incremental cost is λ* = 
12.2290 $/MW when the network power loss is incorporated, which is little larger than the 12.1964 
$/MW. Additionally, the final power allocation in the MG is PG* = [373.5005, 117.3161, 207.1670, 

Figure 5. Simulation results by using the distributed ED strategy in reference [30]. (a) Incremental cost;
(b) power of each unit; (c) power information of the system.

As shown in Figures 4 and 5, the distributed economic dispatch strategy adopted in this paper
converges to the same value as the method in reference [30] without considering network loss.
The incremental cost of all the power generation units eventually converge to 12.1964 $/MW, and the
output power of the units in MG converge to PG* = [371.1725, 115.6008, 205.3564, 74.7759, 113.0943]
(MW). Figure 4c shows that the exchanged power PPCC finally converges to its instruction of 120 kW,
and the total power of all the generation units (including the 120 kW of the virtual generator) exactly
balances the load demand 1000 kW of the MG. These results verify that our distributed strategy can
solve the economic dispatch problem of an MG effectively and has the same solution accuracy as that
of the method in [30].

However, we regarded the external power grid as a virtual generator that participates in power
dispatch, meaning that the problem of global information being hard to obtain, as in reference [30], has
been solved. At the same time, the setting of the Pref instruction makes the power regulation of the MG
more flexible. More importantly, the method adopted in this paper can naturally take the power loss
into account, as it can be considered as a variable load. Thus, the accuracy of the economic dispatch of
an MG is improved. As we can ascertain from Figure 4, the final incremental cost is λ* = 12.2290 $/MW
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when the network power loss is incorporated, which is little larger than the 12.1964 $/MW. Additionally,
the final power allocation in the MG is PG* = [373.5005, 117.3161, 207.1670, 76.8129, 115.26709] (MW).
The difference of 10.0636 MW between total power generation and total load demand is exactly the
value of the power loss of the MG network. The difficulty of considering the network power loss in the
economic dispatch process, which seems to be insuperable to existing distributed ED algorithms, now
can be handled effectively by our strategy.

5.3. Scenario 2: Power Order Change

In this scenario, the exchanged power order Pref changed from 120 MW to −50 MW at the instance
of k = 150, to simulate the variation of the energy trading mode of the MG. The simulation results are
shown in Figure 6.

It can be ascertained from Figure 6 that at the instance of k = 150, the MG switches from the
electricity purchasing mode into the electricity selling mode. Accordingly, the incremental cost increases
from 12.2290 $/MW to 12.7816 $/MW to answer this change, and the final power allocation in the MG is
PG* = [412.9700, 146.3390, 237.8656, 111.3488, 152.1054] (MW). The goal of selling a power of 50 MW to
the external power grid is also achieved. These results prove that our strategy also has a satisfying
robustness in coping with the variation of the exchanged power order.

Figure 6. Cont.
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Figure 6. Simulation results of scenario 2. (a) Incremental cost; (b) power of each unit; (c) power
information of the system.

5.4. Scenario 3: Plug-and-Play Functionality Verification

In this simulation, the power unit G6 decided to disconnect from the MG at the instance of k =

300 and to reconnect at k = 600. The two communication links with a red color in Figure 3 are not
available during the disconnection of G6. Other settings are consistent with scenario 1. Figure 7 shows
the simulation results.

It can be seen from Figure 7 that at the instance of k = 300, the remaining four power generation
sources in the MG collaborate in order to cope with the islanding of G6 by increasing their output power
simultaneously. Their incremental costs increase from 12.2290 $/MW to 12.7055 $/MW to re-establish
the balance between power generation and load demand. After the reconnection of G6 at k = 600, the
incremental costs all converge back to the initial value of 12.2290 $/MW. This case study clearly shows
that the proposed algorithm can provide a better plug-and-play capability for an MG, which is more
appreciated in the situation of a high penetration level of distributed generations.

Figure 7. Cont.
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Figure 7. Simulation results of scenario 4. (a) Incremental cost; (b) power of each unit; (c) power
information of the system.

6. Conclusions

Based on the principle of consensus theory and distributed sub-gradient optimization, this paper
proposes a real-time strategy that can fulfill the task of the economic dispatch of MGs in a fully
distributed fashion. The external power grid to which the MG connects is treated as a special power
source called a virtual generator and participates in the ED process. Only the power exchanged
between the external power grid and the MG should be measured and utilized locally by the virtual
generator, and only the consensus variable, i.e., incremental cost, should be shared between power
generation units and the virtual generator. In this way, a fully distributed dispatch system is achieved,
and more importantly, troublesome issues such as the need of global information regarding the total
load demand and network power loss can be tackled easily and completely.

Simulation results under several scenarios verify the effectiveness of the proposed strategy, and it
has good robustness and stability for power volatility and exchanged power instruction variations,
and the power unit plug-and-play. In comparison with the current distributed economic dispatch
methods, the proposed strategy is a fully distributed version and is very simple to implement because
it is insensitive to initial power settings and does not require any global information. In addition, it has
a higher power dispatch accuracy due to the capability of network power loss handling.



Energies 2019, 12, 4007 15 of 16

Author Contributions: Conceptualization, J.L. and Q.Z.; methodology, Q.Z.; validation, J.L., Q.Z. and L.Z.;
formal analysis, Q.Z., and Y.W.; investigation, Q.Z.; data curation, Y.W.; writing—original draft preparation, Q.Z.;
writing—review and editing, J.L., L.Z. and Y.W.; supervision, J.L.; funding acquisition, J.L.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pedrasa, M.A.A.; Spooner, T.D.; Macgill, I.F. Coordinated scheduling of residential distributed energy
resources to optimize smart home energy services. IEEE Trans. Smart Grid 2010, 1, 134–143. [CrossRef]

2. Joo, I.Y.; Choi, D.H. Distributed optimization framework for energy management of multiple smart homes
with distributed energy resources. IEEE Access 2017, 5, 15551–15560. [CrossRef]

3. Zandi, F.; Fani, B.; Sadeghkhani, I.; Orakzadeh, A. Adaptive complex virtual impedance control scheme for
accurate reactive power sharing of inverter interfaced autonomous microgrids. IET Gener. Trans. Distrib.
2018, 12, 6021–6032. [CrossRef]

4. Zhao, Z.; Yang, P.; Guerrero, J.M.; Xu, Z.; Green, T.C. Multiple-time-scales hierarchical frequency stability
control strategy of medium-voltage isolated Microgrid. IEEE Trans. Power Electron. 2016, 31, 5974–5991.
[CrossRef]

5. Zhan, J.P.; Wu, Q.H.; Guo, C.X.; Zhou, X.X. Fast-iteration method for economic dispatch with prohibited
operating zones. IEEE Trans. Power Syst. 2014, 29, 990–991. [CrossRef]

6. Kuo, M.T.; Lu, S.D.; Tsou, M.C. Considering carbon emissions in economic dispatch planning for isolated
power systems-a case study of the Taiwan power system. IEEE Trans. Ind. Appl. 2017, 54, 987–997. [CrossRef]

7. Zhang, Y.; Hajiesmaili, M.H.; Chen, M. Peak-aware online economic dispatching for Microgrids. IEEE Trans.
Smart Grid 2018, 9, 323–335. [CrossRef]

8. Li, P.; Xu, D.; Zhou, Z.; Lee, W.-J.; Zha, B. Stochastic optimal operation of Microgrid based on chaotic binary
particle swarm optimization. IEEE Trans. Smart Grid 2017, 7, 66–73. [CrossRef]

9. Yuan, G.L.; Chen, S.L.; Liu, Y.; Fang, F. Economic optimal dispatch of virtual power plant based on time-of-use
power price. Power Syst. Technol. 2016, 40, 826–832. [CrossRef]

10. Chen, G.; Li, C.; Dong, Z.Y. Parallel and distributed computation for dynamical economic dispatch. IEEE Trans.
Smart Grid 2017, 8, 1026–1027. [CrossRef]

11. Chen, G.; Lewis, F.L.; Feng, E.N.; Song, Y. Distributed optimal active power control of multiple generation
systems. IEEE Trans. Ind. Electron. 2015, 62, 7079–7090. [CrossRef]

12. Cady, S.T.; Domínguez-García, A.D.; Hadjicostis, C.N. A distributed generation control architecture for
islanded AC Microgrids. IEEE Trans. Control Syst. Technol. 2015, 23, 1717–1735. [CrossRef]

13. Yun, Y.S.; Xia, Y.; Behdani, B.; Smith, J.C. Distributed algorithm for lifetime maximization in a delay-tolerant
wireless sensor network with a mobile sink. IEEE Trans. Mob. Comput. 2013, 12, 1920–1930. [CrossRef]

14. Dong, X.W.; Yu, B.C.; Shi, Z.Y.; Zhong, Y. Time-varying formation control for unmanned aerial vehicles:
Theories and applications. IEEE Trans. Control Syst. Technol. 2015, 23, 340–348. [CrossRef]

15. Mehrjerdi, H.; Saad, M.; Ghommam, J. Hierarchical fuzzy cooperative control and path following for a team
of mobile robots. IEEE/ASME Trans. Mechatron. 2011, 16, 907–917. [CrossRef]

16. Tang, Z.; Hill, D.J.; Liu, T. A novel consensus-based economic dispatch for Microgrids. IEEE Trans. Smart Grid
2018, 9, 3920–3922. [CrossRef]

17. Chen, G.; Zhao, Z. Delay effects on consensus-based distributed economic dispatch algorithm in Microgrid.
IEEE Trans. Power Syst. 2018, 33, 602–612. [CrossRef]

18. Yang, T.; Lu, J.; Wu, D.; Wu, J.; Shi, G.; Meng, Z.; Johansson, K.H. A distributed algorithm for economic
dispatch over time-varying directed networks with delays. IEEE Trans. Ind. Electron. 2017, 64, 5095–5106.
[CrossRef]

19. Zhang, Z.; Chow, M.Y. Convergence analysis of the incremental cost consensus algorithm under different
communication network topologies in a smart grid. IEEE Trans. Power Syst. 2012, 27, 1761–1768. [CrossRef]

20. Park, M.J.; Kwon, O.M.; Ju, H.P.; Lee, S.-M.; Cha, E.-J. A new analysis on leader-following consensus for
switched multi-agent systems with time-varying probabilistic self-delays. Int. J. Control Autom. Syst. 2015,
13, 611–619. [CrossRef]

http://dx.doi.org/10.1109/TSG.2010.2053053
http://dx.doi.org/10.1109/ACCESS.2017.2734911
http://dx.doi.org/10.1049/iet-gtd.2018.5123
http://dx.doi.org/10.1109/TPEL.2015.2496869
http://dx.doi.org/10.1109/TPWRS.2013.2287995
http://dx.doi.org/10.1109/TIA.2017.2771338
http://dx.doi.org/10.1109/TSG.2016.2551282
http://dx.doi.org/10.1109/TSG.2015.2431072
http://dx.doi.org/10.13335/j.1000-3673.pst.2016.03.024
http://dx.doi.org/10.1109/TSG.2016.2623980
http://dx.doi.org/10.1109/TIE.2015.2431631
http://dx.doi.org/10.1109/TCST.2014.2381601
http://dx.doi.org/10.1109/TMC.2012.152
http://dx.doi.org/10.1109/TCST.2014.2314460
http://dx.doi.org/10.1109/TMECH.2010.2054101
http://dx.doi.org/10.1109/TSG.2018.2835657
http://dx.doi.org/10.1109/TPWRS.2017.2702179
http://dx.doi.org/10.1109/TIE.2016.2617832
http://dx.doi.org/10.1109/TPWRS.2012.2188912
http://dx.doi.org/10.1007/s12555-013-0349-5


Energies 2019, 12, 4007 16 of 16

21. Binetti, G.; Abouheaf, M.; Lewis, F.; Naso, D.; Davoudi, A.; Turchiano, B. Distributed solution for the economic
dispatch problem. In Proceedings of the 21st Mediterranean Conference on Control and Automation, Chania,
Greece, 25–28 June 2013; pp. 243–250. [CrossRef]

22. Yang, S.; Tan, S.; Xu, J.X. Consensus based approach for economic dispatch problem in a smart grid. IEEE
Trans. Power Syst. 2013, 28, 4416–4426. [CrossRef]

23. Guo, F.; Wen, C.; Mao, J.; Song, Y. Distributed economic dispatch for smart grids with random wind power.
IEEE Trans. Smart Grid 2017, 7, 1572–1583. [CrossRef]

24. Binetti, G.; Davoudi, A.; Lewis, F.L.; Naso, D.; Turchiano, B. Distributed consensus-based economic dispatch
with transmission losses. IEEE Trans. Power Syst. 2014, 29, 1711–1720. [CrossRef]

25. Liu, Z.F.; Liu, G.; Liu, X. Coordinated optimal dispatching of distributed generation based on quantum
differential evolution algorithm. Power Syst. Technol. 2013, 37, 1922–1928. [CrossRef]

26. Nedic, A.; Ozdaglar, A. Distributed subgradient methods for multi-agent optimization. IEEE Trans.
Autom. Control 2009, 54, 48–61. [CrossRef]

27. Horn, R.A.; Johnson, C.A. Matrix Analysis; Cambridge University Press: Cambridge, UK, 1985. [CrossRef]
28. Yang, W.; Wang, Y.; Wang, X.; Shi, H.; Ou, L. Optimal selection strategy for multi-agent system with

single leader. In Proceedings of the 51st IEEE Conference on Decision and Control, Maui, HI, USA,
10–13 December 2012; pp. 2767–2772. [CrossRef]

29. Gaing, Z.L. Particle swarm optimization to solving the economic dispatch considering the generator
constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [CrossRef]

30. Xie, J.; Chen, K.X.; Yue, D.; Li, Y.; Wang, K.; Wang, S.; Huang, C. Distributed economic dispatch based on
consensus algorithm of multi agent system for power system. Electr. Power Autom. Equip. 2016, 36, 112–117.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MED.2013.6608729
http://dx.doi.org/10.1109/TPWRS.2013.2271640
http://dx.doi.org/10.1109/TSG.2015.2434831
http://dx.doi.org/10.1109/TPWRS.2014.2299436
http://dx.doi.org/10.13335/j.1000-3673
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1017/CBO9780511810817
http://dx.doi.org/10.1109/CDC.2012.6426786
http://dx.doi.org/10.1109/TPWRS.2003.814889
http://dx.doi.org/10.16081/j.issn.1006-6047.2016.02.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Distributed ED Framework of an MG 
	Distributed ED Model and Optimization Solution 
	Distributed Economic Dispatch Model 
	Sub-Gradient-Based Optimization Method 

	Convergence Analysis of the Distributed ED System 
	Simulation Verifications 
	Simulation Model 
	Scenario 1: Effectiveness Validation 
	Scenario 2: Power Order Change 
	Scenario 3: Plug-and-Play Functionality Verification 

	Conclusions 
	References

