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Abstract: In this study, a new series of assessments and evaluations of the Dual-Miller cycle is
performed. Furthermore, the specified output power and the thermal performance associated with
the engine are determined. Besides, multi-objective optimization of thermal efficiency, ecological
coefficient of performance (ECOP) and ecological function (Eun) by means of NSGA-II technique
and thermodynamic analysis are presented. The Pareto optimal frontier obtaining the best optimum
solution is identified by fuzzy Bellman-Zadeh, Linear Programming Technique for Multidimensional
Analysis of Preference (LINMAP), and Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) decision-making techniques. Based on the results, performances of dual-Miller
cycles and their optimization are improved. For the results of the condition that (n < k) the best point
has been LINMAP answer. The thermal efficiency for this point has been 0.5388. In addition, ECOP
and Eun have been 1.6899 and 279.221, respectively. For the results of the condition that (n > k) the
best point has been LINMAP and TOPSIS answer. The thermal efficiency for this point has been
0.5385. Also, ECOP and Eun have been 1.6875 and 279.7315, respectively. Furthermore, the errors are
examined through comparison of the average and maximum errors of the two scenarios.

Keywords: Dual-Miller cycle; thermodynamic analysis; power; ecological coefficient of performance;
thermal efficiency; energy; entropy generation; multi-objective optimization (MOO); multi-criteria
decision making (MCDM); soft computing; genetic algorithm; finite-time thermoeconomic (FTT)
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1. Introduction

There are different approaches applied to evaluate the energy systems [1–4]. Finite-time
thermoeconomic (FTT) optimization is among the most appropriate approaches applicable for
evaluating the operation quality of internal combustion engine cycles (ICEC) [5–13]. In recent
studies of thermodynamic systems [14–23], comprehensive investigations have been carried out [24].
Entropy optimization [25–29], Eun criterion [30–34], and ecological coefficient of performance (ECOP)
criterion [35–40] are some of the recent various optimization objectives in ICEC analysis. Generally,
entropy reduction is not equal to enhancing thermal efficiency or maximum power generation. Under
certain circumstances, minimizing entropy generation leads to the highest power generation [41].
Blank et al. [42] investigated the efficiency of an endoreversible air standard dual cycle considering
the system heat loss. Chen and colleagues [43] investigated the air standard dual cycle considering
the friction and heat loss. Ust and colleagues [44] studied the performance optimization of an
irreversible air standard dual cycle taking the impact of internal irreversibility and heat loss into
account. Ghatak et al. [45] investigated the efficiency of an endoreversible air standard dual cycle
considering the fluid thermal characteristics. Wang et al. [46] carried out a performance analysis
considering the finite-time element and internal loss. Ge and colleagues [47] ran a thermodynamic
analysis of the irreversible air standard dual cycle. In the thermodynamic assessment and optimization
of air standard Miller cycles, Al-Sarkhi and colleagues [48] optimized the power density of a reversible
cycle. Chen and colleagues [49,50] assessed the efficiency of an irreversible air standard Miller cycle
considering the thermal properties of the working fluid and friction and heat loss of the system.
Lin and colleagues [51] conducted an optimization for an irreversible air standard Miller system.
Due to the thermodynamic evaluation of single cycles, Gonca et al. and other researchers [52–58]
and Gonca [59] analyzed irreversible Dual-Miller cycles taking power and thermal efficiency into
account. Ust and colleagues [60] conducted an exergy optimization for an irreversible Dual-Miller
cycle. Gonca and colleagues [61,62] analyzed the ECOP of an irreversible Dual-Miller cycle. Wu and
colleagues [63,64] investigated the efficiency of an irreversible Dual-Miller cycle considering linear [63]
and nonlinear [64] thermal properties of working fluid. Huleihil et al. [65] presented and evaluated a
reversible air-standard Otto model through polytropic processes. Gong and colleagues [66] performed
a performance optimization of an endoreversible Lenoir cycle, considering heat losses and polytropic
processes. Also, Xiong and colleagues [67] conducted a performance optimization of an endoreversible
air standard Otto cycle considering heat losses and polytropic processes. Zhang and colleagues [68]
designed and evaluated an irreversible universal cycle model, considering heat and friction losses,
polytropic stages, and thermal properties of the working fluid.

Multi-objective optimization (MOO) is a valuable method to model various real-life problems
simultaneously [69–71]. Answering a multi-objective optimization question needs simultaneous
substantiation of various objectives. Consequently, evolutionary algorithms presented and advanced
to answer multi-objective problems applying various methods [72]. A proper approach to find a
solution to for a multi-objective problem is to examine a group of routes, each satisfies the objectives at
an acceptable level and do not interfere with other routes [73]. MOO problems generally represent a
practicably numerous collection of routes named frontier of Pareto, which examined vectors that show
the possible primary connections in the whole area of the objective function. New studies indicate that
MOOs for different energy systems applied in various engineering problems [74–109].

In this study, the performance of the Irreversible Dual-Miller Cycle is studied. Besides, the effect
of critical parameters on the performance of the Dual-Miller cycle is investigated. Key parameters that
presented include ε, ρ and the n. The effects of these parameters on the power, efficiency, ECOP, and
Eun of the system are evaluated. Then and MOO calculation is performed to obtain the best point of
performance of the Dual-Miller Cycle.
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2. Dual-Miller Cycle through a Polytropic Stage

In order to accurately model the operation of energy systems, it is necessary to consider all of the
factors influencing their performance [110–112]. Figure 1 represents the diagram of an air standard
Dual-Miller cycle. To increase the accuracy of performance assessment, the polytropic process replaces
by the reversible adiabatic stage, which is impractical to attain in the improved Dual-Miller cycle [64].
As depicted in Figure 1, cycle 1–2–3–4–5–6–1 represents the condition in which n = k. In the Dual-Miller
cycle, the basic concept is the same as the Atkinson cycle in which the intake valves are kept open in
part of the compression process. However, in Miller cycles, heat rejection is more. Consequently, the
intake process can be replaced with a two-step heat rejection process: step one fresh air admittance
as a constant volume process and step two partial compression while the valves are still open as a
constant pressure compression. The combustion process is as well a two-step process in which the
ignition first rises the pressure, then expansion begins with valves partially open, then the valves will
be closed up to the end of the complete expansion. The process 1-2 is a reversible compression process
corresponding to 1′-2 that is the irreversible compression. Heat addition occurs in two steps: processes
2-3 and 3-4 reversible or 3-4′ irreversible that lead to higher pressure and temperature. Exhaust process
or expansion occurs in 4-5 or 4′-5. The intake process is replaced by a two-step heat rejection that can be
seen in processes 5-6 and 6-1 or 6-1′. As can be seen in the figure, for each value of n a different actual
compression/expansion process is defined. For n < k the endpoint of compression and expansion 2 and
5 are taken as the common final point between isentropic and actual process and the beginning point 1′

and 4′ vary between the two processes conversely for n > k the beginning points of each process are the
common references and the endpoints vary in ideal and actual processes. In both cases, the effective
area encompassed by the whole process for the actual cycle must be less than the ideal cycle, and this
is the reason why ∆s < 0 can be seen in both cases that don’t violate second law at all.
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2.1. Ideal Air Standard Dual-Miller Cycle

In ideal gas systems (n equal to k), the state elements of each stage can be practically obtained, by
the ideal gas state equation. According to the first law of thermodynamics, the heat transfer rates and
power generation of the cycle can be determined. Equation (1) presents ε, λ, ρ, and rM, respectively:

ε =
V1

V2
, λ =

P3

P2
, ρ =

V4

V3
, rM =

V6

V1
(1)

The primary thermodynamic equations of each stage defined as:

T2 = T1ε
k−1 (2)

T3 = T2λ (3)

T4 = T3ρ (4)

T5 = T4

(
ρ

ε · rM

)k−1

(5)

T6 = T5

 rk
M

λ · ρk

 (6)

T1 =
T6

rM
(7)

The total heat absorption and heat rejection are as follows:

Qin = Q23 + Q34 =
.

m(Cv(T3 − T2) + Cp(T4 − T3)) (8)

Qout = Q56 + Q61 =
.

m(Cv(T5 − T6) + Cp(T6 − T1)) (9)

A desirable reversible air standard Dual-Miller cycle, the heat transfer impact is not considered,
while it considered for an actual DMC. This waste is considered relevant to the temperature difference
of the cylinder wall and the functioning fluid as follows [102,103]

Ql =
B
2
(T2 + T4 − 2T0) (10)

B is the heat transfer coefficient, and T0 is ambient temperature. The power production and
performance are calculated as:

P = Qin −Qout (11)

η =
P

Qin + Ql
(12)

2.2. Air Standard Dual-Miller Cycle (n < k)

As it is depicted in Figure 1, T1 in a Dual-Miller cycle (n less than the k) is higher than the T1 in
the air standard Dual-Miller cycle. In order to keep T2 fixed through the compression stage, heat is
extracted through the polytropic stage 1’–2. Considering heat waste through the heat input stage, T4’

is lower than T4. In order to keep T5 fixed, heat should be increased through the polytropic stage 4’–5.
The equations of each stage are defined as:

T2 = T1′ε
(

k(n−1)
n ) (13)
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T5 = T4′

(
ρ

ε · rM

) k(n−1)
n

(14)

The heat transfer rate of polytropic stage 1’–2, is defined as follows:

Q1′2 =
.

mCv(
k− n
n− 1

)(T2 − T1′) (15)

The heat transfer rate of stages 2–3 and 3–4’, are defined as follows:

Q23 =
.

mCv(T3 − T2) (16)

Q34′ =
.

mCp(T4′ − T3) (17)

The heat transfer rate of stage 4’–5, is defined as follows:

Q4′5 =
.

mCv(
k− n
n− 1

)(T4′ − T5) (18)

The heat transfer rate of stages 5–6 and 6–1’, are defined as follows:

Q56 =
.

mCv(T5 − T6) (19)

Q61′ =
.

mCp(T6 − T1′) (20)

The heat input of the cycle is

Qin1 = Q23 + Q34′ + Q4′5 (21)

The heat output of the cycle is

Qout1 = Q1′2 + Q56 + Q61′ (22)

In a desirable air standard Dual-Miller cycle, the ratio of the highest temperature to the lowest
temperature is defined as follows:

T4

T1
= ρ · λ · εk−1 (23)

As stated by [102,103,109], the heat waste ratio is defined as follows:

Ql1 =
B
2
(T2 + T4′ − 2T0) (24)

As a result, the generated power and the first law efficiency of the system are defined as follows:

P1 = Qin1 −Qout1 (25)

η1 =
P1

Qin
=

P1

Q23 + Q34′ + Q4′5 + Ql1
(26)

Considering the assumption in [104], the exhaust gas recirculation due to the heat transfer loss is
determined as follows:

σq1 =
B(T2 + T4′ − 2T0)

2T0
(27)

The exhaust gas recirculation due to the working fluid heat rejection is defined as [105]:

σpq1 = m(

∫ T6

T1′

Cp(
1

T0
−

1
T
)dT +

∫ T5

T6

Cv(
1

T0
−

1
T
)dT +

∫ T2

T1′

Cv(
k− n
n− 1

)(
1

T0
−

1
T
)dT) (28)
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As a result, the total entropy generation (σun1) of the system is defined as follows:

σun1 = σq1 + σpq1 (29)

According to refs. [30–34], ECOP of the cycle is defined as follows:

ECOP =
P1

T0σun1
(30)

According to references [30–34], Eun is defined as follows:

Eun1 = P1 − T0σun1 (31)

2.3. Air Standard Dual-Miller Cycle (n > k)

As depicted in Figure 2, T2 the highest temperature of the adiabatic stage 1–2 is less than that of
the polytropic stage, due to the heat waste through the isochoric stage 2–3 (n higher than the k). Thus,
more heat applied through the polytropic stage 1–2′. On the other hand, heat is extracted through
the stage 4–5’ as T5 the minimum temperature of the adiabatic stage 4–5 is greater than that of the
polytropic stage 4–5’ taking the heat waste through the isobaric stage 3–4, into account.

The equations of polytropic stages are defined as follows:

T2′ = T1 · ε
n−1 (32)

T5′ = T4 ·

(
ρ

ε · rM

)n−1

(33)

For polytropic stage 1–2’, the heat transfer ratio is defined as:

Q12′ =
.

mCv(
n− k
n− 1

)(T2′ − T1) (34)

For stages 2’–3 and 3–4, heat transfer rates are defined as:

Q2′3 =
.

mCv(T3 − T2′) (35)

Q34 =
.

mCp(T4 − T3) (36)

For stage 4–5’, the heat transfer rate is defined as:

Q45′ =
.

mCv(
n− k
n− 1

)(T4 − T5′) (37)

For stages 5’–6 and 6–1′, heat transfer rates are defined as:

Q5′6 =
.

mCv(T5′ − T6) (38)

Q61 =
.

mCp(T6 − T1) (39)

The net heat input ratio is calculated as:

Qin2 = Q12′ + Q2′3 + Q34 (40)

The net heat output ratio is calculated as:

Qout2 = Q45′ + Q5′6 + Q61 (41)
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The heat waste ratio is calculated as [102,103]:

Ql2 =
B
2
(T2′ + T4 − 2T0) (42)

The power generation and the first law efficiency of the system are defined as follows:

P2 = Qin2 −Qout2 (43)

η2 =
P2

Qin
=

P2

Q12′ + Q2′3 + Q34 + Ql2
(44)

The exhaust gas recirculation of the heat transfer loss is calculated as follows [104]:

σq2 =
B(T2′ + T4 − 2T0)

2T0
(45)

The exhaust gas recirculation based on the functioning fluid heat rejection is as follows [105]:

σpq2 = m(

∫ T6

T1′

Cp(
1

T0
−

1
T
)dT +

∫ T5′

T6

Cv(
1

T0
−

1
T
)dT +

∫ T4

TE

Cv(
n− k
n− 1

)(
1

T0
−

1
T
)dT) (46)

The total exhaust gas recirculation of the system is defined as follows:

σun2 = σq2 + σpq2 (47)

According to refs. [30–34], ECOP of the cycle is defined as follows:

ECOP =
P2

T0σun2
(48)

The Eun is defined as follows:
Eun2 = P2 − T0σun2 (49)
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3. Optimization Development: Evolutionary Algorithm

Genetic Algorithm

Genetic algorithms provide the best suitable answer of the studding system employing a repetitious
and random exploration approach and duplicate it by simple basics of biological evolution [72].
The individual that is a possible solution to the optimization case [73] presents the values of the
decision elements. More explanations about Genetic algorithms and its function is available in
References [72,73].

4. Results and Discussions

4.1. Performance Analyses for the Condition n Less than the k

Figure 2 depicts the impact of n on the performance relations among power, efficiency and
compression ratio. It is evident that as ε increases, P1 and η1 initially increase and finally decrease.
It should be noted that that P1,max and η1,max do not take place at the same time. On the other hand,
P1,max and η1,max increase by the enhancement of n. Furthermore, the efficiency at maximum power
rises by the enhancement of n.

Figure 3 illustrates the impact of ρ on the relationship between P1 and ε at n = 1.2. As depicted in
Figure 3, the output power has an early rise to the pick, and gradually falls at the various values of the
compression ratio (ε) and the cut-off ratio (%). However, at the constant value of the compression ratio
(ε), as the value of the cut-off ratio (%) rises the output power also follows the rise.
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Figure 4 depicts the Eun changes against P1 and η1 relations at various n. It is obvious that n has a
direct relationship with P1 and η1. The maximum Eun point is adjacent to P1,max and η1,max. In other
words, the optimum values of P1 and η1 could be achieved when Eun is optimized.
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As shown in Figure 5a. As the compression ratio increases, with a very steep gradient, ECOP
first increases to its maximum point and then begins to decrease. Also, in a constant compression,
the ECOP increases with the increase of the n (n < k). Figure 5b,c shows that the maximum value
of the coefficient of performance for various n (n < k) will occur at almost the maximum power and
maximum thermal efficiency.
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4.2. Performance Evaluation at the Condition of n higher than the k

Figure 6 depicts the impact of n on the performance relations among power, efficiency and
compression ratio. It is obvious that when ε increases, P2 and η2 initially increase and finally decrease.
Enhancing n leads to a slow reduction of P2 and η2. It should be noted that P2, max and η2, max, do not
take place at the same value of epsilon. Hence, the η2 at P2, max reduces by enhancement of n.Entropy 2019, 21, x FOR PEER REVIEW 12 of 25 
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Figure 7 illustrates the impact of ρ on the relationship between P2 and ε at n = 1.6. As depicted
in Figure 7, the output power at the beginning rises to its maximum then gradually decreases as the
compression ratio (ε) rises at the various cut-off ratio (%). However, at the constant compression ratio
(ε), when the cut-off ratio (%) rises the value of the output power declines.Entropy 2019, 21, x FOR PEER REVIEW 13 of 25 
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Figure 7. Effect of ρ on P2 against ε (n = 1.6).

Figure 8 presents the Eun impact on P2 and η2 at various n. It is obvious that increasing n leads to
Eun, and Eun reduction. The Eun,max is adjacent to P2, max and η2, max. In other words, othe ptimum
values of P2 and η2 could be achieved when Eun is optimized.
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As shown in Figure 9a. As the compression ratio increases, with a very steep gradient, the ECOP
first increases to its maximum point and then begins to decrease. In addition, in a constant compression,
then ECOP decreases with the increase of the n (n > k). Figure 9b,c shows that the maximum value
of the coefficient of performance for various n (n > k) will occur at almost the maximum power and
maximum thermal efficiency.
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4.3. Optimization Results for n Less than the k

Three objective functions are utilized in this optimization: η1, ECOP and Eun1, described by
Equations (26), (30) and (31), respectively. Also, three decision variables are considered: ε, ρ and n.

Although the decision variables might be various in the optimizing plan, they typically need to be
fitted in a sensible range. Thus, the objective functions are determined by the limits of decision variables:

18 ≤ ε ≤ 25 (50)
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1.5 ≤ ρ ≤ 1.8 (51)

1.2 ≤ n ≤ 1.4 (52)

In this study η1, ECOP and Eun1 of the dual Miller cycle are maximized concurrently employing
MOO by the mean of the NSGA-II approach. The objective functions are illustrated by Equations (26),
(30) and (31) and the limitations by Equations (50)–(52).

The decision parameters of optimization are as follows: ε, ρ and n. The Pareto optimal frontier of
objective functions (the thermal efficiency, ECOP, and Eun1) is depicted in Figure 10. All the optimized
solutions for three objective functions obtained by NSGA II depicted in Figure 10. Selected points with
different decision-making methods are presented, as well.
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Table 1 outlines and compares the optimum values associated with the optimization elements
utilizing Bellman-Zadeh, LINMAP, and TOPSIS approaches. In Table 1, the optimal solutions are
determined for the considered objective functions and parameters used for decision by applying Fuzzy,
LINMAP and TOPSIS methods and the outcomes of [102] for n less than k is represented. In order to
calculate the results’ deviation from the solutions in ideal and non-ideal conditions, Equations (53) to
(55) are used.

d+ =

√(
η1 − η1,n

)2
+ (Eun1 − Eun1,n)

2 + (ECOP− ECOPn)
2 (53)

d− =

√(
η1 − η1,n,non−ideal

)2
+

(
Eun1 − Eun1,n,non−ideal

)2
+

(
ECOP− ECOPn,non−ideal

)2
(54)

d =
d+

(d+) + (d−)
(55)

where η1,n refers to Euclidian the thermal efficiency, Eun1,n is Ecological function and ECOPn denotes
ECP. Moreover, in Table 1, the deviation index (d) of the data in each case is shown.
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Table 1. Optimization results (n < k).

Optimization
Method

Variables Objective Functions Deviation
Indexε ρ n η1 ECOP Eun1(kW)

TOPSIS 19.4528 1.6852 1.4000 0.5373 1.6848 280.7994 0.0412

LINMAP 19.8660 1.6408 1.3999 0.5388 1.6899 279.2210 0.1333

Fuzzy 20.0708 1.5424 1.4000 0.54067 1.6959 275.5724 0.3462

[102] For maximum
of η1

27.8400 2.0000 1.4000 0.5364 1.3430 258.7400 0.8015

[102] For maximum
of ECOP 15.7800 2.0000 1.4000 0.5174 1.6540 266.6000 0.8698

[102] For maximum
of Eun1(kW)

19.8000 2.0000 1.4000 0.5300 1.6000 276.5300 0.2904

Ideal Solution - - - 0.5428 1.6962 281.5052 0

Non-Ideal Solution - - - 0.5346 1.6739 264.3691 ∞

As represented in Table 1, in the cases of employing LINMAP, TOPSIS, and Fuzzy, the deviation
indexes are 0.1333, 0.0412 and 0.3462, respectively. Based on these obtained values for deviation, it is
concluded that employing TOSPSIS results in a more appropriate solution, therefore, the final solution
is selected according to this method of decision making.

Table 2 demonstrates the comparative analysis of the optimization, utilizing the maximum
absolute percentage error (MAAE) (see the first row), and the mean absolute percentage error (MAPE)
(see the first row) to calculate the performance of the aforementioned optimization. Every optimization
is run 30 times in MATLAB ® (9.5, MathWorks, Natick, MA, USA) software to deliver the ultimate
results considering FUZZY Bellman-Zadeh, LINMAP, and TOPSIS methods.

Table 2. Comparative analysis presenting mean absolute percentage error (MAPE) and maximum
absolute percentage error (MAAE).

Optimization Method LINMAP TOPSIS Fuzzy

Objectives η1 ECOP Eun1(kW) η1 ECOP Eun,1(kW) η1 ECOP Eun,1(kW)

Max Error % 1.3610 1.4930 1.1620 1.2620 1.3840 1.2710 1.1830 1.6860 1.9430

Average Error % 0.5550 0.7340 0.4610 0.6340 0.6550 0.6020 0.4780 0.9360 0.8530

4.4. Optimization results for n higher than the k

Three objective functions are utilized in this optimization: η2, ECOP and Eun2, described by
Equations (44), (48) and (49), respectively. Also, three decision variables are considered: ε, ρ and n.

Although the decision variables might be different in the optimizing plan, they typically need to be
fitted in a sensible range. Thus, the objective functions are determined by the limits of decision variables:

18 ≤ ε ≤ 25 (56)

1.5 ≤ ρ ≤ 1.8 (57)

1.4 <n ≤ 1.6 (58)

In this study, η2, ECOP and Eun2 of the dual Miller cycle are maximized concurrently utilizing
MOO based on the NSGA-II approach. The objective functions are illustrated by Equations (48)–(50)
and limitations by Equations (56)–(58).

The decision parameters of optimization are as follows: ε, ρ and n. The Pareto optimal frontier of
objective functions (the thermal efficiency, ECOP, and Eun2) is depicted in Figure 11. All the optimized
solutions for three objective functions obtained by NSGA II depicted in Figure 11. Selected points with
different decision-making methods are presented, as well.
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Table 3 outlines and compares the optimum values associated with the optimization elements
utilizing Bellman-Zadeh, LINMAP, and TOPSIS approaches. In Table 3, the optimal answers to the
objective functions and the employed variables for decision making are represented for the executed
methods. In order to calculate the deviation from ideal and non-ideal cases, Equations (59) to (61)
are used.

d+ =

√(
η2 − η2,n

)2
+ (Eun2 − Eun2,n)

2 + (ECOP− ECOPn)
2 (59)

d− =

√(
η2 − η2,n,non−ideal

)2
+

(
Eun2 − Eun2,n,non−ideal

)2
+

(
ECOP− ECOPn,non−ideal

)2
(60)

d =
d+

(d+) + (d−)
(61)

η2,n is Euclidian the thermal efficiency, Eun2,n denotes Ecological function and ECOPn refers to
COP. In addition, the indexes of deviation in different considered cases are represented in Table 3.

As shown in Table 3, the indexes of deviation in the cases of employing Fuzzy, LINMAP and
TOPSIS equal to 0.3173, 0.0696 and 0.0696, respectively. On the basis of the mentioned obtained values
of deviation indexes, the final solution is selected by using LIMAP and TOPSIS for the dual Miller cycle.

Table 4 demonstrates the comparative analysis of the optimization, using MAAE and MAPE to
calculate the performance of the aforementioned optimization. Every optimization is run 30 times in
MATLAB ® software to deliver the ultimate results considering FUZZY Bellman-Zadeh, LINMAP,
and TOPSIS methods.
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Table 3. Optimization results (n > k).

Optimization
Method

Variables Objectives Functions Deviation
Indexε ρ n η2 ECOP Eun2(kW)

TOPSIS 20.2187 1.6870 1.4000 0.5385 1.6875 279.7315 0.0696

LINMAP 20.2187 1.6870 1.4000 0.5385 1.6875 279.7315 0.0696

Fuzzy 20.3829 1.5243 1.4000 0.5412 1.6959 273.7808 0.3173

[102] For maximum
of η1

27.8400 2.0000 1.4000 0.5364 1.3430 258.7400 0.9417

[102] For maximum
of ECOP 15.7800 2.0000 1.4000 0.5174 1.6540 266.6000 0.6161

[102] For maximum
of Eun2(kW)

19.8000 2.0000 1.4000 0.5300 1.6000 276.5300 0.2029

Ideal Solution - - - 0.5435 1.6959 281.4043 0

Non-Ideal Solution - - - 0.5347 1.6745 257.3777 ∞

Table 4. Comparative analysis presenting MAPE and MAAE.

Optimization Method LINMAP TOPSIS Fuzzy

Objectives η2 ECOP Eun2(kW) η2 ECOP Eun2(kW) η2 ECOP Eun2(kW)

Max Error % 0.8130 2.0580 2.0640 0.8130 1.2340 2.2604 1.1273 1.7732 2.9402

Average Error % 0.5421 0.8870 0.9210 0.5052 0.6450 0.9731 0.5690 0.9531 1.3503

5. Conclusions

A thermodynamic optimization has been carried out to obtain the thermal efficiency, ECOP,
and Eun of the Dual-Miller Cycle. The compression ratio, the cut-off ratio, and the polytropic index are
examined by the NSGA-II approach. Employing various decision-making methods (LINMAP, TOPSIS
and fuzzy), the best optimum answer selected from the Pareto frontier. The study achieved a promising
and satisfactory state of operation for Dual-Miller systems. The three methods give closed results (with
a relative difference less than 3% on the compression ratio, 5% on cut-off ratio, 2% on the objective
function. Two scenarios for optimization presented in this article that for the results of condition
that (n < k) the best point has been LINMAP answer. The thermal efficiency for this point has been
0.5388. Also, the Ecological Coefficient of performance and Ecological function have been 1.6899 and
279.2210, respectively. For the results of the condition that (n > k) the best point has been LINMAP and
TOPSIS answer. The thermal efficiency for this point has been 0.5385. Also, the Ecological Coefficient
of performance and Ecological function have been 1.6875 and 279.7315, respectively. Finally, with the
purpose of error investigation, average and maximum errors of obtained results are computed for every
two scenarios. The results may be applicable to optimize the performance of practical Dual-Miller Cycle
engines. The work which represents a theoretical investigation will be extended to an experimental
investigation for future studies.
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Nomenclature

DMC Dual-Miller cycle
m Mass flow rate (kg/S)
n Polytropic exponent
k The specific heat ratio (adiabatic exponent)
P Power (kW)
Q Heat (kW)
T Temperature (K)
ECOP Ecological Coefficient of Performance
Eun Ecological function
V volume
Cv The specific heat at constant volume (kJ/kg.K)
Cp The specific heat at constant pressure (kJ/kg.K)
σun total entropy generation (kW/K)
η Efficiency
rM The Miller cycle ratio of a Dual-Miller cycle
ρ The cut-off ratio
λ The pressure ratio
ε The compression ratio
B Heat transfer coefficient
T0 Ambient temperature
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