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Abstract: Different from conventional reservoirs, a significant proportion of oil is in an adsorbed or
even immobile state in shale and tight rocks. There are established comprehensive mathematical
models quantifying the adsorbed, immobile, and free oil contents in shale rocks. However, the
conclusions of the monotonicity of the complicated models from sensitivity analysis might not be
universal, and rigorous mathematical derivation is needed to demonstrate their rationale. In this
paper, the models for oil/water storage in the nanoporous grains in shale, i.e., kerogen and clay,
are achieved based on the aforementioned storage models. Rigorous analytical derivations are
employed to strictly prove the monotonicity of the immobile and adsorbed models, which is the main
purpose of this work. This work expands the applicability of the storage models, is fundamental
and important for mobility analysis in shale reservoirs, and can shed light on its efficient exploration
and development.
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1. Introduction

The production of oil from conventional resources is declining, and unconventional reservoirs [1,2]
have captured growing attention worldwide. Among those resources, shale reserves are inspiring and
have huge potential to satisfy energy consumption. Nonetheless, the features of abundant nanoscale
porosity [3] and poor pore connectivity [4–6] result in difficulties in its economic utilization. Different
from conventional reservoirs, a significant proportion of oil is in an adsorbed or even immobile state in
shale and tight rocks. Therefore, one of the most urgent and fundamental issues is the mobility [7] or
occurrence state [8] in shale reservoirs. However, there has been limited research on this topic.

There are three states of shale oil states, namely free, adsorbed, and immobile. Wang et al. [9,10]
adopted molecular simulation to explore oil adsorption characteristics of organic pores in shale in
detail. Cui et al. [11] established the methodology to estimate the fractions of physically adsorbed,
immobile, and free oil in shale rocks. This method is based on continuous pore size distribution and
the Gaussian mixture model (as shown in Table 1), and it considers different pore types (organic and
inorganic) [12], different pore geometries (circular and slit) [13,14], and the multiscale attribute of pore
size. The monotonicity of the models has been concluded, but it was through calculations instead
of rigorous proof. The latter approach is needed to support the conclusions because the forms of
the models are complicated, and, therefore, the conclusions based on limited calculations might not
be universal.
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Table 1. Gaussian Mixture Model—literature review.

Year Reference Purpose

2017 Cui et al. [11] Mathematical models quantifying the occurrence states of
shale oil are established.

2015 Javadpour et al. [15] Generation of organic and inorganic pore size distributions.

2015 Naraghi et al. [16] Classification of pore-size distributions within organic and
inorganic matter

2019 Feng et al. [17] Same as above.

2019 Cui et al. [18] Same as above.

2019 Xu et al. [19] Same as above.

Immobile and adsorbed oil mainly exist in organic nanopores (instead of inorganic pores). In
consideration of the mathematical complexity of the models and the physical significance of immobile
and adsorbed oil, it makes sense to focus on the nanoporous kerogen grains. Moreover, clay [20] is
also rich in nanoporosity [21–23] and the regularities should be similar [24]. In addition, hydraulic
fracturing is indispensable for the efficient development of shale reservoirs [25], and water can be
trapped in clay [26–28] and kerogen [29–33]. In conclusion, the understanding of oil/water storage
features in kerogen/clay is crucial.

In this paper, in the first half (Sections 2.1 and 2.2), previous works on the Gaussian mixture model
and subsequent storage models are described, and the applicability of the storage models is expanded
(from oil storage in kerogen to oil/water storage in kerogen/clay). In the latter half (Sections 2.3 and 2.4),
rigorous proof of the monotonicity of storage models is provided. The latter half is the main purpose
of this work. This work is fundamental and important for mobility analysis in shale reservoirs and can
shed light on its efficient exploration and development.

2. Mathematical Models

2.1. Gaussian Mixture Model

It is assumed that the organic and inorganic pore size distributions conform to lognormal Gaussian
distributions and are independent from each other. Based on this assumption, the total pore size
distribution of shale containing organic matter can be expressed as [16]:

P(r) =
P(Fin)
√

2πσin
e
−

(r−µin)
2

2σ2
in +

P(For)
√

2πσor
e
−

(r−µor)2

2σ2
or (1)

where P(F) is the ratio of organic porosity to total porosity, µ and σ are the mean and standard deviation
of pore radius distribution, and r is a random variable denoting pore radius. Subscripts or and in
stand for organic and inorganic media, respectively. Among the aforementioned variables, µ, σ, and r
are all log-transformed values. It should be noted that the nano-Gaussian component extracted from
experimental pore size distribution includes not only organic pores, but also inorganic nanopores within
clay [34,35]. The former works simply regarded this component as organic pores. For convenience, the
subscript or is still used to represent all the pores corresponding to the nano-Gaussian component.
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2.2. Storage Models

Based on Equation (1), Cui et al. [11] derived the following formulae for the fractions of adsorbed
oil, Mad; immobile oil, Mim; and free oil, Mfr within shale rocks:

Mad =
P(Fin)
√

2πσin
·

∞∫
log10 hin

e
−

(r−µin)
2

2σ2
in [α

2·10rhin−h2
in

102r + (1− α) hin
10r ]dr

+
P(For)
√

2πσor
·

∞∫
log10 hor

e
−

(r−µor)2

2σ2
or [α

2·10rhor−h2
or

102r + (1− α) hor
10r ]dr

(2)

Mim = P(Fin)

log10 hin∫
−∞

1
√

2πσin
e
−

(r−µin)
2

2σ2
in dr + P(For)

log10 hor∫
−∞

1
√

2πσor
e
−

(r−µor)2

2σ2
or dr (3)

M f r = 1−Mim −Mad (4)

where h is the thickness of the adsorption region and α is the volume ratio of circular pores. For both
Equations (2) and (3), the first component represents the contribution of inorganic pores, while the
second component accounts for the contribution of organic pores. Among all the variables used in the
models [11]:

• The thickness of an adsorption region reflects the strength of solid-liquid interaction, influenced
by the relevant proportion of light and heavy oil components [9], and the different definitions for
the adsorption region as well;

• The porosity ratio indicates the richness (or Total Organic Carbon) and maturity of organic matter
in shale rocks. As the maturity of organic matter grows, its porous structure becomes more
developed, and organic porosity increases;

• The pore size variance implies the dispersion or complexity of the porous structure of shale;
• The volume ratio of circular pores quantifies the overall pore morphology in shale, and it is

impacted by the geo-mechanical conditions, the mineralogy, etc.;
• The average pore radius is the most fundamental parameter characterizing the porous structure,

and it reflects how tight the porous rock is.

There are several underlying assumptions [11] for the models:

• Only circular and slit pores are considered [13], and α is constant in spite of different pore sizes;
• The critical pore radius for immobile oil is equal to the thickness of the adsorption region. To be

more exact, when pore radius is smaller than or equal to adsorption thickness, all oil stored in
pores is immobile; when pore radius is larger than adsorption thickness, oil exists as adsorbed
and free states.

• Water content is negligible, and only oil exists in the pores;
• The slight density difference (about 10%) between adsorbed and free oil is ignored;
• Immobile oil only refers to the oil trapped in the pore space resulting from van der Waals. If only

the nanoporous Gaussian component is considered, Equations (2) and (3) can be simplified as:

Mad =
1
√

2πσ
·

∞∫
log10 h

e−
(r−µ)2

2σ2 [α
2 · 10rh− h2

102r + (1− α)
h

10r ]dr (5)

Mim =
1
√

2πσ

log10 h∫
−∞

e−
(r−µ)2

2σ2 dr. (6)
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As mentioned in the introduction, water/oil storage characteristics in kerogen/clay are similar.
Therefore, Equations (5) and (6) can generally represent water and oil storage in kerogen and clay
particles, respectively. Rigorous proof of the monotonicity of the storage models follows.

2.3. Proof for the Adsorbed Model

In this subsection, the monotonicity of the adsorbed model is discussed in terms of volume ratio
of circular pores (α), thickness of the adsorption region (h), and average pore radius (µ). It should be
noted that the proof of variance of pore radius (σ) is too difficult and not achieved, as it is technically
quite tricky to isolate it away from the integration term.

2.3.1. Volume Ratio of Circular Pores (α)

α is in the integration term of Equation (5), and it would be more convenient for analysis if it
could be moved out of the integration term. Equation (5) can be transformed into:

Mad =
1
√

2πσ
· [α

∞∫
log10 h

e−
(r−µ)2

2σ2 h
10r
− h

102r dr +

∞∫
log10 h

e−
(r−µ)2

2σ2
h

10r dr]. (7)

The monotonicity of Equation (7) cannot be easily determined. Therefore, the partial differentiation
of Equation (7) can be taken for α:

∂Mad
∂α

=
1
√

2πσ

∞∫
log10 h

e−
(r−µ)2

2σ2 h
10r
− h

102r dr. (8)

In the integration, r > log10h, thus 10r > h. As a result, δMad/δα > 0 always holds. Namely, a larger
proportion of circular pores is usually indicative of larger storage capacity of adsorbed liquid.

2.3.2. Thickness of Adsorption Region (h)

Similarly, effort is made to move h out of the integration term first for convenience. Equation (5)
can be transformed into:

Mad = 1
√

2πσ
·

∞∫
log10 h

e−
(r−µ)2

2σ2 [α 2·10rh−h2

102r + (1− α) h
10r ]dr

= 1
√

2πσ
·

∞∫
log10 h

e−
(r−µ)2

2σ2 [(1 + α) h
10r − α h2

102r ]dr

= 1
√

2πσ
· [h

∞∫
log10 h

e−
(r−µ)2

2σ2 1+α
10r dr− h2

∞∫
log10 h

e−
(r−µ)2

2σ2 α
102r dr]

(9)

The monotonicity of Equation (9) cannot be easily determined. Therefore, the partial differentiation
of Equation (9) is taken:

∂Mad
∂h = 1

√
2πσ
·[

∞∫
log10 h

e−
(r−µ)2

2σ2 1+α
10r dr− he−

(log10 h−µ)2

2σ2 1+α
h

1
h ln 10

−2h
∞∫

log10 h
e−

(r−µ)2

2σ2 α
102r dr + h2e−

(log10 h−µ)2

2σ2 α
h2

1
h ln 10 ]

= 1
√

2πσ
·[

∞∫
log10 h

e−
(r−µ)2

2σ2 1+α
10r dr− 2hα

∞∫
log10 h

e−
(r−µ)2

2σ2 1
102r dr

−e−
(log10 h−µ)2

2σ2 1
h ln 10 ]

(10)
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Again, the monotonicity or sign of Equation (10) cannot be easily determined. Therefore, the
partial differentiation of Equation (10) is taken:

∂2Mad
∂h2 = 1

√
2πσ
· {−

1
h ln 10 e−

(log10 h−µ)2

2σ2 1+α
h − [2α

∞∫
log10 h

e−
(r−µ)2

2σ2 1
102r dr

−2hα 1
h ln 10 e−

(log10 h−µ)2

2σ2 1
h2 ]+

log10 h−µ
σ2

1
h ln 10 e−

(log10 h−µ)2

2σ2 1
h ln 10

+e−
(log10 h−µ)2

2σ2 1
h2 ln 10 }

= 1
√

2πσ
·{−2α

∞∫
log10 h

e−
(r−µ)2

2σ2 1
102r dr + e−

(log10 h−µ)2

2σ2

[
log10 h−µ

σ2
1

h2(ln 10)2 +
α

h2 ln 10 ]}

(11)

Again, the monotonicity or sign of Equation (11) cannot be easily determined. Therefore, the
partial differentiation of Equation (11) is taken:

∂3Mad
∂h3 = 1

√
2πσ
·{2α 1

h ln 10 e−
(log10 h−µ)2

2σ2 1
h2 −

log10 h−µ
σ2

1
h ln 10 e−

(log10 h−µ)2

2σ2

[
log10 h−µ

σ2
1

h2(ln 10)2 +
α

h2 ln 10 ] + e−
(log10 h−µ)2

2σ2 [ 1
σ2

1
h ln 10

1
h2(ln 10)2 −

log10 h−µ
σ2

2
h3(ln 10)2 −

2α
h3 ln 10 ]}

= 1
√

2πσ
· e−

(log10 h−µ)2

2σ2 1
h3σ4(ln 10)3 {−

(
log10 h− µ

)2

−(α+ 2)σ2 ln 10
(
log10 h− µ

)
+ σ2
}

(12)

The zero-points of Equation (12) can be obtained by solving:

− (log10 h− µ)2
− (α+ 2)σ2 ln 10(log10 h− µ) + σ2 = 0. (13)

However, the expression of Equation (13) is still difficult for analysis. We can denote:

t = log10 h− µ. (14)

Therefore, Equation (13) can be simplified as:

t2 + (α+ 2)σ2 ln 10 · t− σ2 = 0. (15)

This equation has two zero-points:

t1,2 =
−(α+ 2)σ2 ln 10±

√
(α+ 2)2σ4(ln 10)2 + 4σ2

2
. (16)

Therefore, ∂3Mad/∂h3 is negative when t < t1 or t > t2, and is positive when t1 < t< t2. Based on
Equation (14), Equation (13) has two roots about h:

h1,2 = 10t1,2+µ. (17)
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Consequently, ∂3Mad/∂h3 is negative (∂2Mad/∂h2 decreases) when 0 < h < h1 or h > h2, and positive
(∂2Mad/∂h2 increases) when h1 < h < h2. In addition:

lim
h→0

∂2Mad
∂h2 = lim

h→0
1
√

2πσ
· {−2α

∞∫
log10 h

e−
(r−µ)2

2σ2 1
102r dr + e−

(log10 h−µ)2

2σ2

[
log10 h−µ

σ2
1

h2(ln 10)2 +
α

h2 ln 10 ]}

= − 2α
√

2πσ

∞∫
−∞

e−
(r−µ)2

2σ2 1
102r dr + 1

√
2πσ3(ln 10)2

lim
h→0

e−
(log10 h−µ)2

2σ2 log10 h−µ+ασ2 ln 10
h2

(18)

The latter part of Equation (18) can be calculated:

lim
h→0

e−
(log10 h−µ)2

2σ2 log10 h−µ+ασ2 ln 10
h2 = − lim

t→−∞
e−

t2

2σ2 −t−ασ2 ln 10
102(t+µ)

= − lim
t→−∞

e−
t2

2σ2 eln(−t−ασ2 ln 10)

e2(t+µ) ln 10 = − lim
t→−∞

e−
t2

2σ2 +ln(−t−ασ2 ln 10)−2(t+µ) ln 10
= 0

(19)

Therefore, Equation (18) can be simplified as:

lim
h→0

∂2Mad

∂h2 = −
2α
√

2πσ

∞∫
−∞

e−
(r−µ)2

2σ2
1

102r dr ≤ 0. (20)

Similarly, it can be proved that:

lim
h→+∞

∂2Mad
∂h2 = lim

h→+∞

1
√

2πσ
·{−2α

∞∫
log10 h

e−
(r−µ)2

2σ2 1
102r dr + e−

(log10 h−µ)2

2σ2

[
log10 h−µ

σ2
1

h2(ln 10)2 +
α

h2 ln 10 ]}

= 1
√

2πσ3(ln 10)2 lim
h→+∞

e−
(log10 h−µ)2

2σ2 log10 h−µ
h2

= 1
√

2πσ3(ln 10)2 lim
t→+∞

e−
t2

2σ2 t
102(t+µ)

= 1
√

2πσ3(ln 10)2 lim
t→+∞

e−
t2

2σ2 eln t

e2(t+µ) ln 10

= 1
√

2πσ3(ln 10)2 lim
t→+∞

e−
t2

2σ2 +ln t−2(t+µ) ln 10
= 0

(21)

Based on the above conclusions (the limits of ∂2Mad/∂h2 at zero and infinity and the signs of
∂3Mad/∂h3 at [0, h1], [h1, h2], [h2, +∞]), the graph of ∂2Mad/∂h2 can be sketched as Figure 1a. It can be
determined that this derivative has and only has one zero-point ha. ∂2Mad/∂h2 is negative (∂Mad/∂h
decreases) when h < ha and positive (∂Mad/∂h increases) when h > ha.
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Figure 1. Sketch map of the derivatives: (a); ∂2Mad/∂h2, (b) δMad/δh.

In addition, it can be proved that:

lim
h→+∞

∂Mad
∂h = lim

h→+∞

1
√

2πσ
·[

∞∫
log10 h

e−
(r−µ)2

2σ2 1+α
10r dr

−2hα
∞∫

log10 h
e−

(r−µ)2

2σ2 1
102r dr− e−

(log10 h−µ)2

2σ2 1
h ln 10 ]

= − 2α
√

2πσ
lim

h→+∞

∞∫
log10 h

e
−
(r−µ)2

2σ2 1
102r dr

h−1

= − 2α
√

2πσ
lim

h→+∞

e
−
(log10 h−µ)2

2σ2 1
102 log10 h

1
h ln 10

h−2

= − 2α
√

2πσ
lim

h→+∞
e−

(log10 h−µ)2

2σ2 1
h5 ln 10 = 0

(22)

Meanwhile, it can be proved that:

lim
h→0

∂Mad
∂h = lim

h→0
1
√

2πσ
· [

∞∫
log10 h

e−
(r−µ)2

2σ2 1+α
10r dr

−2hα
∞∫

log10 h
e−

(r−µ)2

2σ2 1
102r dr− e−

(log10 h−µ)2

2σ2 1
h ln 10 ]

= 1
√

2πσ

∞∫
−∞

e−
(r−µ)2

2σ2 1+α
10r dr− 1

√
2πσ ln 10

lim
t→−∞

e−
t2

2σ2 −(t+µ) ln 10

= 1
√

2πσ

∞∫
−∞

e−
(r−µ)2

2σ2 1+α
10r dr > 0

(23)

Based on the above conclusions (the limits of ∂Mad/∂h at 0 and +∞, and the signs of ∂2Mad/∂h2

at [0, ha], [ha, +∞]), the graph of ∂Mad/∂h can be sketched as Figure 1b. Therefore, ∂Mad/∂h has and
only has one zero-point, and consequently Mad(h) first increases and then decreases with increasing
adsorption thickness.
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2.3.3. Average Pore Radius (µ)

Similarly, effort is made to move µ out of the integration term first for convenience. Equation (5)
is rearranged in form at first, and then we can denote t = r-µ:

Mad = 1
√

2πσ
·[

∞∫
log10 h

e−
(r−µ)2

2σ2 [(1 + α) h
10r − α h2

102r

]
dr

= 1
√

2πσ
·[h(1 + α)10−µ

∞∫
log10 h

e−
(r−µ)2

2σ2 1
10r−µ dr

−h2α10−2µ
∞∫

log10 h
e−

(r−µ)2

2σ2 1
102(r−µ) dr

= 1
√

2πσ
·[h(1 + α)10−µ

∞∫
log10 h−µ

e−
t2

2σ2 1
10t dt

−h2α10−2µ
∞∫

log10 h−µ
e−

t2

2σ2 1
102t dt]

(24)

The monotonicity of Equation (24) cannot be easily determined. Therefore, the partial
differentiation of Equation (24) is taken:

∂Mad
∂µ = 1

√
2πσ
· [− ln 10h(1 + α)10−µ

∞∫
log10 h−µ

e−
t2

2σ2 1
10t dt + (1 + α)e−

(log10 h−µ)2

2σ2

+2 ln 10h2α10−2µ
∞∫

log10 h−µ
e−

t2

2σ2 1
102t dt− αe−

(log10 h−µ)2

2σ2 ]

(25)

Integral and non-integral terms coexist in Equation (25), and the integral term seems more difficult
to deal with. Luckily, the non-integral term can be transformed and combined with the integral term:

∂Mad
∂µ = 1

√
2πσ
·[−h(1 + α)10−µ ln 10

∞∫
log10 h−µ

e−
t2

2σ2 1
10t dt

−(1 + α)h10−µ
∞∫

log10 h−µ
d
(
e−

t2

2σ2 1
10t

)
+ 2h2α10−2µ ln 10

∞∫
log10 h−µ

e−
t2

2σ2 1
102t dt + αh210−2µ

∞∫
log10 h−µ

d
(
e−

t2

2σ2 1
102t

)
]

= 1
√

2πσ
·[−h(1 + α)10−µ ln 10

∞∫
log10 h−µ

e−
t2

2σ2 1
10t dt + (1 + α)h10−µ

∞∫
log10 h−µ

(
ln 10 + t

σ2

)
e−

t2

2σ2 1
10t dt + 2h2α10−2µ ln 10

∞∫
log10 h−µ

e−
t2

2σ2 1
102t dt

−αh210−2µ
∞∫

log10 h−µ

(
2 ln 10 + t

σ2

)
e−

t2

2σ2 1
102t dt]

= h10−µ
√

2πσ3 · [(1 + α)
∞∫

log10 h−µ
e−

t2

2σ2 t
10t dt− αh10−µ

∞∫
log10 h−µ

e−
t2

2σ2 t
102t dt]

(26)

The signs of the integral terms in Equation (26) need further determination. A new function is
introduced and defined as the expression in the brackets of Equation (26):

f (µ) = (1 + α)

∞∫
log10 h−µ

e−
t2

2σ2
t

10t dt− αh10−µ
∞∫

log10 h−µ

e−
t2

2σ2
t

102t dt. (27)
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The monotonicity of Equation (27) cannot be easily determined. Therefore, the partial derivation
of Equation (27) is taken:

f ′(µ) = (1 + α)h−110µe−
(log10 h−µ)2

2σ2 (log10 h− µ)

+α ln 10 · h10−µ
∞∫

log10 h−µ
e−

t2

2σ2 t
102t dt− αh−110µe−

(log10 h−µ)2

2σ2 (log10 h− µ)

= h−110µe−
(log10 h−µ)2

2σ2 (log10 h− µ) + α ln 10 · h10−µ
∞∫

log10 h−µ
e−

t2

2σ2 t
102t dt

(28)

Again, integral and non-integral terms coexist in Equation (28), and the integral term seems more
difficult to deal with. Luckily, the non-integral term can be transformed and combined with the integral
term:

f ′(µ) = −h−110µ[h210−2µ
∞∫

log10 h−µ
d(e−

t2

2σ2 t
102t )]

+α ln 10 · h10−µ
∞∫

log10 h−µ
e−

t2

2σ2 t
102t dt

= h10−µ
∞∫

log10 h−µ
e−

t2

2σ2 10−2t( t2

σ2 + 2 ln 10 · t− 1)dt

+α ln 10 · h10−µ
∞∫

log10 h−µ
e−

t2

2σ2 10−2ttdt

= h10−µ
∞∫

log10 h−µ
e−

t2

2σ2 10−2t[ t2

σ2 + (2 + α) ln 10 · t− 1]dt

(29)

However, the sign of the integral term in Equation (29) is still difficult to determine. Another new
function is defined as the integration in Equation (29):

g(µ) =

∞∫
log10 h−µ

e−
t2

2σ2 10−2t[
t2

σ2 + (2 + α) ln 10 · t− 1]dt. (30)

The monotonicity of Equation (30) cannot be easily determined. Therefore, the partial
differentiation of Equation (30) is taken:

g′(µ) = h−2102µe−
(log10 h−µ)2

2σ2 [
(log10 h− µ)2

σ2 + (2 + α) ln 10 · (log10 h− µ) − 1]. (31)

The zero-points of Equation (31) can be obtained by solving:

(log10 h− µ)2

σ2 + (2 + α) ln 10 · (log10 h− µ) − 1 = 0. (32)

However, the expression of Equation (32) is still difficult to analyze. When we denote t = log10h-µ,
Equation (32) can be simplified as:

t2

σ2 + (2 + α) ln 10 · t− 1 = 0. (33)



Energies 2019, 12, 3985 10 of 15

This equation has two zero-points:

t1,2 =
−(2+α) ln 10±

√
(2+α)2(ln 10)2+4/σ2

2/σ2

=
−(2+α) ln 10σ2

±

√
(2+α)2(ln 10)2σ4+4σ2

2

(34)

Therefore, g’(µ) is positive when t < t1 or t > t2, and negative when t1 < t < t2. Equation (32) has
two roots:

µ2,1 = log10 h− t1,2. (35)

Therefore, g’(µ) is positive (g(µ) increases) when µ < µ1 or µ > µ2, and negative (g(µ) decreases)
when µ1 < µ < µ2. In addition:

lim
µ→−∞

g(µ) = lim
µ→−∞

∞∫
log10 h−µ

e−
t2

2σ2 10−2t[
t2

σ2 + (2 + α) ln 10 · t− 1]dt = 0. (36)

Meanwhile:

lim
µ→+∞

g(µ) = lim
µ→+∞

∞∫
log10 h−µ

e−
t2

2σ2 10−2t[ t2

σ2 + (2 + α) ln 10 · t− 1]dt

=
∞∫
−∞

e−
t2

2σ2 10−2t[ t2

σ2 + (2 + α) ln 10 · t− 1]dt
(37)

It is difficult to determine the sign of Equation (37). It is regarded as a function of α:

w(α) =

∞∫
−∞

e−
t2

2σ2 10−2t[
t2

σ2 + (2 + α) ln 10 · t− 1]dt. (38)

The partial derivation of Equation (38) is taken:

w′(α) =
∂
∂α

∞∫
−∞

e−
t2

2σ2 10−2t[
t2

σ2 + (2 + α) ln 10 · t− 1]dt = ln 10

∞∫
−∞

e−
t2

2σ2 10−2ttdt. (39)

It can be proved that Equation (39) is negative:

w′(α) = ln 10
∞∫
−∞

e−
t2

2σ2 10−2ttdt = ln 10[
0∫
−∞

e−
t2

2σ2 10−2ttdt +
∞∫
0

e−
t2

2σ2 10−2ttdt]

= ln 10[−
+∞∫
0

e−
t2

2σ2 102ttdt +
∞∫
0

e−
t2

2σ2 10−2ttdt]

= ln 10
+∞∫
0

e−
t2

2σ2 t(10−2t
− 102t)dt < 0

(40)

Therefore, w(α) decreases on (0, 1). Considering that:

w(0) =
∞∫
−∞

e−
t2

2σ2 10−2t( t2

σ2 + 2 ln 10 · t− 1)dt = −
∞∫
−∞

d(e−
t2

2σ2 t
102t )

= lim
t→+∞

e−
t2

2σ2 t
102t − lim

t→−∞
e−

t2

2σ2 t
102t

= lim
t→+∞

e−
t2

2σ2 +ln t−2t ln 10
+ lim

t→−∞
e−

t2

2σ2 +ln(−t)−2t ln 10
= 0

(41)
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Hence, w(α) is negative, which means that:

lim
µ→+∞

g(µ) =

∞∫
−∞

e−
t2

2σ2 10−2t[
t2

σ2 + (2 + α) ln 10 · t− 1]dt < 0. (42)

Based on the above conclusions (the limits of g(µ) at 0 and +∞, and the signs of g’(µ) at [-∞,
µ1], [µ1, µ2], [µ2, +∞]), the graph of g(µ) can be sketched as Figure 2a. From this graph, it can be
concluded that g(µ) has and only has one zero-point, µa. g(µ) > 0 when µ < µa, and g(µ) < 0 when µ >

µa. Therefore, f ’(µ) only has one zero-point, µa. When µ < µa, f ’(µ) > 0 (f (µ) increases); When µ > µa, f
’(µ) < 0 (f (µ) decreases). In addition:

lim
µ→+∞

f (µ) = (1 + α)
+∞∫
−∞

e−
t2

2σ2 t
10t dt = (1 + α)[

0∫
−∞

e−
t2

2σ2 t
10t dt +

+∞∫
0

e−
t2

2σ2 t
10t dt]

= (1 + α)[−
+∞∫
0

t10te−
t2

2σ2 dt +
+∞∫
0

e−
t2

2σ2 t
10t dt]

= (1 + α)
+∞∫
0

te−
t2

2σ2 ( 1
10t − 10t)dt < 0

(43)

Figure 2. Sketch map of (a) g(µ) and (b) f (µ).

Meanwhile:

lim
µ→−∞

f (µ) = lim
µ→−∞

(1 + α)

∞∫
log10 h−µ

e−
t2

2σ2
t

10t dt− αh10−µ
∞∫

log10 h−µ

e−
t2

2σ2
t

102t dt

. (44)

For both terms of Equation (44), the integration terms approach zero as the lower limits approach
infinity, which are the same as the upper limits. Therefore, the first term of Equation (44) approaches
zero. However, for the second term of Equation (44), the expression before the integration term
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approaches infinity, therefore the limit of the second term of Equation (44) is uncertain and needs
further determination:

lim
µ→−∞

f (µ) = −α lim
µ→−∞

∞∫
log10 h−µ

e
−

t2
2σ2 t

102t dt

h−110µ

= −α lim
µ→−∞

e
−
(log10 h−µ)2

2σ2 10−2( log10 h−µ)(log10 h−µ)
h−110µ ln 10

= − α
ln 10 lim

t→+∞

e
−

t2
2σ2 10−2tt

10t = − α
ln 10 lim

t→+∞
e−

t2

2σ2 −3t ln 10+ln t
= 0

(45)

Based on the above conclusions (the limits of f (µ) at -∞ and +∞, and the signs of f’(µ) at [-∞, µa],
[µa, +∞]), the graph of f (µ) can be sketched as Figure 2b. From this graph, f (µ) has and only has one
zero-point. Therefore, Mad(µ) first increases and then decreases with increasing average pore radius.

2.4. Proof for the Immobile Model

In this subsection, the monotonicity of the immobile model is analyzed in terms of thickness of
the adsorption region (h), variance of pore radius (σ), average pore radius (µ), and volume ratio of
circular pores (α). It is noteworthy that all the variables are analyzed here.

2.4.1. Thickness of Adsorption Region (h)

The monotonicity of Equation (6) cannot be easily determined. Therefore, the partial differentiation
of Equation (6) is taken for h:

∂Mim
∂h

=
1
√

2πσ
e−

(log10 h−µ)2

2σ2
1

h ln 10
. (46)

It is apparent that δMim/δh is always positive, and Mim increases with the increase of h.

2.4.2. Variance of Pore Radius (σ)

σ is contained in the integration function of Equation (6), and the corresponding partial derivative
cannot be directly taken. Instead, variable substitution is utilized for solving. If we denote t = (r-µ)/σ,
then r = tσ+µ and Equation (6) is transformed into:

Mim =
1
√

2π

log10 h−µ
σ∫

−∞

e−
1
2 t2

dt. (47)

The monotonicity of Equation (47) cannot be easily determined. Therefore, the partial derivative
of Equation (47) is taken for σ:

∂Mim
∂σ

=
1
√

2π
e−

1
2 (

log10 h−µ
σ )

2 µ− log10 h

σ2 . (48)

If µ > log10h, δMim/δσ > 0. Otherwise, δMim/δσ < 0. Hence, Mim will increase with increasing σ if
µ > log10h, and decrease with the increment of σ when µ < log10h.
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2.4.3. Average Pore Radius (µ)

The partial differentiation for µ is obtained in a similar way. If we denote t = r-µ, r = t+µ, and
Equation (6) is transformed into:

Mim =
1
√

2πσ

log10 h−µ∫
−∞

e−
t2

2σ2 dt. (49)

Again, the monotonicity of Equation (49) cannot be easily determined. Therefore, the partial
derivation of Equation (49) is taken for µ:

∂Mim
∂µ

= −
1
√

2πσ
e−

(log10 h−µ)2

2σ2 . (50)

It is apparent that δMim/δµ is always negative, and Mim decreases if µ increases.

2.4.4. Volume Ratio of Circular Pores (α)

α does not appear in Equation (6), therefore:

∂Mim
∂α

= 0. (51)

All the strictly proved monotonous relationships are summarized in Table 2.

Table 2. Monotonous relationships.

Adsorbed Model (Mad) Immobile Model (Mim)

Thickness of adsorption region (h) ↑↓ ↑

Variance of pore radius (σ) ? µ>log10h: ↑ µ<log10h: ↓

Average pore radius (µ) ↑↓ ↓

Volume ratio of circular pores (α) ↑ →

Notes: ↑ indicates increase, ↓ indicates decrease,→ indicates no change, ? indicates not resolved.

3. Conclusions

The non-negligible adsorbed and immobile oil within shale and tight rocks are of urgent and crucial
research interest. There are established mathematical models quantifying the adsorbed and immobile
fractions, but there has been no rigorous proof in support of the conclusions on the monotonicity of the
models. In this paper, the applicability of the storage models is greatly expanded (from oil storage in
kerogen to oil/water storage in kerogen/clay), and the monotonicity of storage models is strictly proved
(summarized in Table 2). The latter point (rigorous proof) is the main purpose of this work, and it
can help to understand the mobility in shale reservoirs better. However, the relationship between the
adsorbed model and the variance of pore radius still needs determination. This work is fundamental
and important for mobility analysis in shale reservoirs, and can shed light on its efficient exploration
and development.
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