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Abstract: In an AC microgrid, harmonic distortion is mainly caused by power electronic equipment
and nonlinear loads. In this paper, linear active disturbance rejection control (LADRC) is used to
control the fundamental current at the point of common coupling (PCC). Meanwhile, an active power
filter (APF) is added to eliminate the harmonic current generated by the nonlinear loads. The tracking
differentiator (TD) in active disturbance rejection control (ADRC) serves as a low-pass filter (LPF)
in the harmonic detection algorithm of APF. Compared to traditional harmonic detection algorithms,
the improved strategy solves the contradiction between rapidity, accuracy, and overshoot of
filtering. LADRC has good performance of disturbance rejection, internal decoupling, and accessible
parameters tuning. It can observe the internal uncertainty and external disturbance of the system
as the total disturbance through the extended state observer (ESO), and compensate it in time through
state feedback to make the system achieve the desired performance. The abilities of resonance
suppression for LCL-type filter and internal decoupling of LADRC demonstrates its advantages
through frequency domain analysis and simulation. The proposed strategy was simulated in
MATLAB/SIMULINK and realized in the experimental hardware platform, and the effectiveness of
the proposed strategy is approved.

Keywords: LADRC; TD; harmonic detection and compensation; LPF

1. Introduction

With the continuous improvement of semiconductor manufacturing technology, the performance
of power electronic devices has been strengthened. The grid-connected inverter as an energy conversion
interface plays a crucial role in delivering high-quality power into the grid.

At present, a single-function inverter cannot meet the needs of modern power equipment,
and it is necessary to design a system that can control the current at point of common coupling (PCC)
and suppress the harmonics of the grid. Single-function systems are slowly evolving toward large-scale
composite systems [1]. The grid-connected inverter is the critical equipment for grid-connected power
generation of renewable energy. Compared with the L-type filter, the LCL-type filter has higher
frequency harmonic suppression capability and smaller inductance, which can reduce the physical
size [2,3].

The design of the LCL-type grid-connected inverter control system is generally based on the α-β
stationary coordinate system and the d-q rotating coordinate system. In [4], the deadbeat control is
proposed. The current control in the time domain is obtained by inverting the model according to
the expected value of the controlled current at the next moment. The system response is faster but it
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depends on the accurate modeling of the system. In [5], a model-predictive control (MPC) is proposed,
which is based on the inequality constraints and objectives established by the precise mathematical
model of the controlled object. It has satisfactory control performance, but the calculation amount
is large, which is suitable for slow process control. Proportional resonance control (PR) is proposed
in [6–8]. Its greatest characteristic is that it can obtain infinite gain at a certain frequency to realize
the static error-free tracking of AC signal, but the disturbance rejection ability of the controller is poor.

Compared with the control strategies under the abc static coordinate system, in the d-q rotating
coordinate system, the independent control of the active and reactive power current can be realized,
and become the mainstream method of the grid-connected current control [9,10]. However, there is
a coupling problem between d-axis and q-axis current. In [11,12], the LCL-type filter is equivalent
to the L-type filter, which only decouples the filter inductance and ignores the coupling effect of
the filter capacitance. In [13], the coupling problem is solved by controlling the inverter-side current.
However, there is a phase difference between the output current and grid voltage. In [14], the feedback
linearization theory is applied to the L-type and LCL-type inverters for the decoupling design.
The decoupling ability depends on the accurate modeling of the system. In [15], a strategy based on
the decoupling of feedforward is proposed. The coupling components of the same axis and the opposite
directions are added to each axis to eliminate the coupling relationship between the d-axis and q-axis.
In [16], a three-closed-loop decoupling control strategy is proposed, which uses dynamic feedback
based on dual inductance current and capacitance voltage to realize dynamic decoupling of multi-input
and multi-output linear time-invariant systems. The core idea of active disturbance rejection control
(ADRC) proposed in [17] is to regard the uncertainty, model error and external disturbance in
the system as an extended state, and the real-time estimation and compensation by the extended
state observer (ESO). Hence, ADRC does not rely on accurate mathematical models, so it has a
strong robustness and disturbance rejection ability. However, the construction of nonlinear functions
and complex parameters tuning limits the widespread use of nonlinear ADRC in industry. To this
end, ADRC has been simplified to linear form (LADRC) in [18] and has been used in power systems
and power electronics [19–21].

The above method only considers that current distortion is not severe, but most of the loads are
nonlinear in practical production. If grid-connected current control strategy is used in the power
system without harmonic suppression, the power quality at PCC will not meet the standards set by
the International Electrotechnical Commission (IEC). An active power filter (APF) is a more advanced
power electronics device that compensates for harmonics today. Its good real-time performance
and high compensation accuracy are gradually replacing passive power filters (PPF) [22–24].
The accuracy detection of harmonic current has a significant influence on the operation of the active
power filter. If the harmonic current cannot be obtained accurately and in time, the APF cannot
accurately compensate for the harmonic components. In [25], the author proposes an FFT-based
harmonic detection method. The method requires two FFT transformations for harmonic detection,
which reduces real-time detection. Besides, when the voltage waveform is changed, a large
asynchronous sampling error will be caused, which will affect the detection accuracy of higher
order harmonics. In [26], the author proposes a harmonic current detection method based on Fryze
traditional power definition, which decomposes power into active power and generalized reactive
power. This method is computationally intensive and causes large time delays. Wavelet analysis [27]
overcomes the shortcomings of Fourier analysis in the frequency domain and no locality in the time
domain. It can decompose the mixed signals of different frequency components into signal blocks of
different frequencies to realize harmonic current detection. However, the wavelet transform is prone
to aliasing, which reduces the detection accuracy.

According to the instantaneous reactive power theory proposed by H. Akagi [28], the p-q method,
the d-q method, and the ip-iq method are proposed. In [29], the p-q method is proposed based
on the instantaneous reactive power, and the harmonic current is calculated by the instantaneous
active power and reactive power. This method has a fast detection speed and realizes a reactive
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power compensation and harmonics compensation, but if the grid voltage is distorted, the detection
is inaccurate. In [30], the ip-iq method is proposed, which can accurately detect the harmonic
value of the symmetrical three-phase circuit, and has good real-time performance. When only
harmonics are detected, the phase-locked loop (PLL) circuit can be omitted and adapted. In the case of
asymmetric grid and voltage waveform distortion, since only sin ωt and cos ωt are operated in the ip-iq
detection algorithm, the harmonic component of the distortion voltage does not appear in operation,
so the harmonic current can also be accurately detected under the condition of the power supply voltage
distortion, but the p-q method has a large error in this case. In [31], a harmonic detection method
based on the generalized synchronous rotating frame system is proposed. Firstly, the three-phase
current is transformed into the d-q coordinate system rotating at the k-th harmonic angular frequency,
and then the low-pass filter is used to the DC component is filtered out, and then the d-q to abc
inverse coordinate transformation is performed to obtain the k-th harmonic current to be detected.
In this paper, an improved ip-iq harmonic algorithm is proposed. In the harmonic detection algorithm,
a tracking differentiator (TD) is used instead of a Butterworth filter, which improves the detection
speed and accuracy of the algorithm and solves the contradiction between overshoot and rapidity.

According to the requirements of grid-connected current power quality, this paper proposes
a strategy with grid-connected current control and harmonic suppression. The structure of this
paper is as follows: Section 2 is the mathematical model of the grid-connected inverter; Section 3
is the LADRC controller design; Section 4 is the frequency domain analysis of LADRC controller;
Section 5 is the proposal and analysis of the harmonic detection method; Sections 6 and 7 are for
simulation verification and physical experiment verification. Further discussion is given in Section 8.
Finally, the experimental conclusions are given in Section 9.

2. System Characteristic Analysis

Grid-Connected Inverter Model Analysis

Traditional control strategies need to establish an accurate mathematical model of the object,
whereas the uncertainties and external disturbances can not be built into the mathematical model,
as it results in poor performance of the controller. The ADRC theory proposed by Jingqing Han is
independent of any existing control theory. It can extract the total disturbance (internal uncertainty
and external disturbance) of the system based on the input and output without an accurate
mathematical model.

In this paper, an LCL-type grid-connected inverter with LADRC algorithm is used to control
the amplitude and phase of the fundamental current at PCC, and APF is used to compensate harmonic
current. Figure 1a depicts the circuit topology and control strategy of LCL-type grid-connected inverter
and APF. The LCL filter consists of a converter-side inductance L1, passive damping resistance Rd, filter
capacitor C, and grid-side inductance L2. Rd is passive damping resistance which is used to suppress
the resonance of the LCL filter. In Figure 1b, ωg is the grid voltage angular frequency. The PCC
current is transformed from the abc stationary coordinate system to the d-q rotating system through
the C32 transformation matrix. LESO is a state observer that estimates the system state variables,
their differential signals, and the total disturbance of the system through the inputs and outputs
of the system. z1dq is the estimated value of i′2dq, z2dq is the differential signal of z1dq, and z3dq is
the total disturbance of the system including internal disturbance and external disturbance. Controller
1 and Controller 2 are PD controllers, and the controller’s output and total disturbance are subtracted
to eliminate the total disturbance of the system. b0 is the input gain of the system. The reference
voltage signal of the inverter is then obtained by the C23 inverse transform matrix.
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(a)  Circuit topology of  the composited system

(b)  Grid-connected inverter control strategy

(c)  Harmonic detection algorithm and APF control strategy
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Figure 1. Circuit topology and control strategy of LCL-type grid-connected inverter and an active
power filter (APF).
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In Figure 1c, the PCC current is transformed from the abc stationary coordinate system to the α-β
stationary coordinate system by the transformation matrix C32. The transformation matrix C is
transformed from the α-β coordinate system to the d-q rotation coordinate system. The fundamental
component is converted into a DC component, and the other components are all AC components.
The positive sequence component changes from kth to (k− 1)th, and the negative sequence component
changes from kth to (k + 1)th. The DC component is obtained by filtering the AC component quickly by
TD without overshoot. By transforming the matrices C−1 and C23, the d-axis component and the q-axis
component are inversely transformed to the abc coordinate system to obtain the fundamental
component of the current. The DC component and the PCC current are subtracted to obtain
the harmonic command current. Harmonic compensation can be achieved by tracking the command
current through the PI controller.

Complex space vectors in d-q coordinate system are implemented (i2 = i2d + ji2q). Therefore,
the state space expression of the LCL-type inverter is expressed in d-q coordinate system as:{

ẋdq = Axdq + BKpwmuidq + Fvgdq,

y = Cxdq.
(1)

where, xdq = [i1dq, i2dq, vCdq]
T = [i1d + ji1q, i2d + ji2q, vCd + jvCq]

T , i1dq is the converter-side inductance
current, i2dq is the grid-side inductance current, vCdq is the capacitance voltage, Kpwm is the pulse
width modulation gain, uidq is the converter output voltage, and vgdq is the voltage of the grid.
For the convenience of analysis, make Kpwm = 1. All the above variables are state variables in the d-q
coordinate system. The matrix in Formula (1) is represented as follows:

A =

 −(
Rd
L1

+ jωg)
Rd
L1

1
L1

Rd
L2

−( Rd
L2

+ jωg)
1
L2

1
C − 1

C −jωg

 , B =
(

1
L1

0 0
)T

,

F =
(

0 − 1
L2

0
)T

, C = ( 0 1 0 ). (2)

where, A is a system matrix whose parameters depend on the circuit components. B is the input matrix.
F is the perturbation matrix. C is the output matrix.

The transfer function from input voltage Uidq(s) to output current I2dq(s) is expressed as:

G1(s) = C(sI−A)−1B =
1

L1CL2
· 1
(s + jωg)3 + CRdw2

res(s + jωg)2 + w2
res(s + jωg)

. (3)

The transfer function from grid disturbance Vgdq(s) to output current I2dq(s) is expressed as:

G2(s) = C(sI−A)−1F =
1

L1CL2
·

L1C(s + jωg)2 + CRd(s + jωg) + 1
(s + jωg)3 + CRdw2

res(s + jωg)2 + w2
res(s + jωg)

. (4)

where wres is the resonant frequency, and w2
res = (L1 + L2)/(L1CL2). According to the above

Formulas (1) and (2), the block diagram of the grid-connected inverter in the s-domain redefine
the state variables, as shown in Figure 2.

According to Formulas (1) and (2), the control system model is a third-order system.
Controller design only depends on the relative-order of the object, not the actual-order. The relative-order
is equal to the number of minimum integrators passing through the input to the output path. It is
not important whether the information transformation relationship between the integrators is linear
or nonlinear, time-variant or time-invariant. In contrast, it is important that there is no information
channel between the integrators. In the LCL-type filter with passive damping resistance, the passive
damping resistance provides an information channel, so the shortest path passes through two integrators.
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Therefore, according to Figure 2, the relative order of the LCL-type filter with passive damping resistance
is two order.

Figure 2. Block diagram of LCL-type filter with passive damping resistance.

The common method for judging the relative order is to establish an input–output equation,
and the two sides of the equation are simultaneously differentiated. When an input item appears on
the right side of the equation, the number of derivatives of the output is recorded as a relative order.
The controller designed is a second-order LADRC controller with a third-order ESO.

According to the above block diagram, we redefine the state variables as shown in Figure 2.
I′1d(s) = I1d(s),

I′2d(s) = I2d(s),

V′cd(s) = Vcd(s) + Rd(I1d(s) + I2d(s)),

(5)

where, I′1dq(s), I′2dq(s), V′cdq(s) are the newly defined state variable. The differential equation between

input and output is shown as Formula (6).
d2i′2d
dt2 = b0uid + fd,

d2i′2q

dt2 = b0uiq + fq,

(6)

where,

b0 =
Rd

L1L2
, fd = f ′d + f ′0d, fq = f ′q + f ′0q,

fd and fq are described as total disturbance that includes external disturbance and internal disturbance,
i.e., vgd grid voltage change, and internal dynamics, coupling term between d-axis and q-axis, and
parameters variation. f ′0d and f ′0q are the part of the total disturbance that is known by modeling.
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According to the above Formula (5), the system becomes a second-order system.

f ′0d =− 1
L2C

i′2d,

f ′0q =− 1
L2C

i′2q,

fd =− 1
L2C

i′2d + ωg
di′2q

dt
+

1
L2C

i′1d +
1
L2

ωgv′cq

− Rd
L1L2

v′cq −
Rd

L2
2

v′cd −
Rd

L2
2

vgd −
1
L2

dvgd

dt
,

fq =− 1
L2C

i′2q −ωg
di′2d
dt

+
1

L2C
i′1q −

1
L2

ωgv′cd

− Rd
L1L2

v′cd −
Rd

L2
2

v′cq −
Rd

L2
2

vgq −
1
L2

dvgq

dt
.

(7)

According to Formula (7), it can be found that the LCL-type filter is a multivariable, strongly
coupled third-order system. Decoupling needs to be considered in controller design. LADRC has
the ability to estimate the external disturbance and internal disturbance and transform the system into
an ideal system through state feedback [32].

3. LADRC Controller Design

3.1. Structure of the LADRC Controller

According to the LCL system model, the d-axis and q-axis in the d-q coordinate system are
dual. The d-axis analysis is taken as an example. According to the standard ADRC proposed by
Han, the structure of LADRC controller with model information is shown as Figure 3. The known
information f ′0d and f ′0q can be obtained from Formula (7).

Figure 3. Linear active disturbance rejection control (LADRC) controller with model information.

3.2. LESO Design

According to the state equation, state variables are redefined (i′2d = z1d, di′2d
dt = z2d, f ′d = z3d)

and extended state variables f ′d are added to rewrite Formula (6), the model is expressed as Formula (8).{
żd = Adzd + Bduid + Ed ḟ ′d,

yd = Cdzd.
(8)
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The matrix is represented as Formula (9).

zd =
(

z1d z2d z3d

)T
, Ad =

 0 1 0
− 1

L2C 0 1
0 0 0

 , Bd =
(

0 b0 0
)T

,

Cd = ( 1 0 0 ), Ed = ( 0 0 1 ). (9)

Based on Formula (8), the state equation of LESO is constructed as Formula (10).

dẑd
dt

= Ad ẑd + Bduid + Ld(yd − Cd ẑd). (10)

where, Ld is the observer gain vector and recorded as: Ld = (β1 β2 β3)
T , ẑd is the state vector of

the extended state observer.
Subtracting Formula (8) from Formula (10), the error formula can be obtained as Formula (11).

ded
dt

= (Ad − LdCd)ed + Ed ḟ ′d. (11)

where ed = zd − ẑd,

Ad − LdCd =

 −β1 1 0
−β2 − 1

L2C 0 1
−β3 0 0

 . (12)

In order to guarantee the stability of the LESO, the poles of the LESO are placed in the left half
plane. As we design the observer poles are all located at −ωo, the state observer will be inherently
stable and parameters are selected as Formula (13).

λ(s) = (s + ωo)
3 = s3 + 3ωos2 + 3ω2

o s + ω3
o

= s3 + β1s2 + (β2 +
1

L2C
)s + β3.

(13)

The gain of the observer can be written as Formula (14).
β1 = 3ωo,

β2 = 3ω2
o −

1
L2C

,

β3 = ω3
o .

(14)

In this paper, part of the disturbance information is added to the controller through modeling.
When disturbance information is known, adding part of the signal to the controller can reduce
the bandwidth and noise sensitivity of LADRC controller without substantially affecting the control
accuracy [33].

3.3. Controller Design

The process of trasforming a physical modeling system into an integral series system is called
dynamic compensation linearization. The effect is similar to the integral part of the PID, but it avoids
the negative impact of the integral link. Take the system control law as Formula (15).

u0 = kp(r− ẑ1)− kd ẑ2,

u =
u0 − f0(ẑ1, ẑ2)− ẑ3

b0
.

(15)
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where u0 is the output of the error feedback law, r is the given reference value, kp and kd, which are
the gains of PD control law. And ẑ1, ẑ2, and ẑ3 are observations of z1, z2, and z3.

The transfer function of the reference value r to the output y is shown as Formula (16).

Gc1 =
kp

s2 + kds + kp
. (16)

To configure the closed-loop pole at −ωc, there is the following formula:

(s + ωc)
2 = s2 + 2ωcs + ω2

c

= s2 + kds + kp.
(17)

According to Formula (17), the gain of the PD control law can be written as follows:{
kp = ω2

c ,

kd = 2ωc.
(18)

In general, the relationship between ωo and ωc is ωo = 3 ∼ 10ωc [10], in this paper, however, it is
ωo = 6ωc. If the control effect needs to be further optimized, the influence of each parameter in [34]
on the decoupling and stability of the system can be obtained. This paper only gives a conclusion:

1. Calculate b0 according to b0 =
Rd

L1L2
.

2. Determine the relationship between ESO bandwidth and controller bandwidth, generally take
ωo = 3 ∼ 10ωc, but not absolute, and can be adjusted according to the actual system.

3. Increase ωc until the system noise amplification causes the system to be unstable, and then
appropriately reduce wc, taking into account the dynamic characteristics and stability of
the system.

4. Appropriately increase β3 until the closed-loop dynamic performance of the system reaches
the desired index, appropriately reduce β2, and enhance the LADRC disturbance rejection ability.

5. Appropriately reduce b0 until the disturbance rejection ability is best.

4. Frequency Domain Analysis

LADRC can be equivalent to the series structure of PID and a low-pass filter. In the high-frequency
part, the gain of LADRC controller to high-frequency resonance current is smaller because of
the attenuation characteristics of the low-pass filter so that the resonance peak can be suppressed.
Compared with PID, LADRC has better suppression performance for the resonance of the LCL filter.
For the sake of generality, this paper takes a standard second-order as an example, and the system
model is as follows [35]: 

ẋ1 = x2,

ẋ2 = x3 + b0u,

ẋ3 = ḟ ,

y = x1.

(19)

The state equation of LESO can be written as follows:
˙̂z1 = β1(y− ẑ1) + ẑ2,
˙̂z2 = β2(y− ẑ1) + ẑ3 + b0u,
˙̂z3 = β3(y− ẑ1).

(20)

and the controller is as follows:

u =
kp(r− ẑ1)− kd ẑ2 − ẑ3

b0
. (21)
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Substituting Formula (21) into Formula (20), the formula can be as follows:
˙̂z1 = −β1ẑ1 + ẑ2 + β1y,
˙̂z2 = −(β2 + kp)ẑ1 − kd ẑ2 + β2y + kpr,
˙̂z3 = −β3ẑ1 + β2y.

(22)

Formula (22) is subjected to Laplace transform, and the solved ẑ1, ẑ2, ẑ3 are brought into
Formula (21) to obtain Formula (23). The system is regarded as a subsystem with two inputs and one
output, where the inputs are r and y and the outputs are u. The block diagram is shown in Figure 4.

U(s) =− 1
s
(β1kp + β2kd + β3)s2 + (β2kp + β3kd)s + β3kp

b0[s2 + (β1 + kd)s + β1kd + β2 + kp]
Y(s)

+
kp(s3 + β1s2 + β2s + β3)

b0s[s2 + (β1 + kd)s + β1kd + β2 + kp]
R(s),

=− C(s)Y(s) + C(s)H(s)R(s).

(23)

where,

C(s) =
1
s
(β1kp + β2kd + β3)s2 + (β2kp + β3kd)s + β3kp

b0[s2 + (β1 + kd)s + β1kd + β2 + kp]
,

H(s) =
kp(s3 + β1s2 + β2s + β3)

(β1kp + β2kd + β3)s2 + (β2kp + β3kd)s + β3kp
.

(24)

Figure 4. The transformation function block diagram of LADRC.

According to the parameterization of the bandwidth, the available parameters are as follows:

b0 ≈
R

L1L2
, ωo = 3ωc, kp = 2ωc, kd = ω2

c ,

β1 = 3ωo, β2 = 3ω2
o , β3 = ω3

o .
(25)

According to Formula (24), rewrite C(s) as follows:

C(s) =
(β1kp + β2kd + β3)s2 + (β2kp + β3kd)s + β3kp

b0(β1kd + β2 + kp)s
·

β1kd + β2 + kp

s2 + (β1 + kd)s + β1kd + β2 + kp

=(KDs + KP + KI
1
s
)

ω2
n

s2 + 2ξωns + ω2
n

=CPID(s)FL(s).

(26)

where,

KP =
β2kp + β3kd

b0(β1kd + β2 + kp)
, KI =

β3kp

b0(β1kd + β2 + kp)
, KD =

β1kp + β2kd + β3

b0(β1kd + β2 + kp)
. (27)

and
ωn =

√
β1kd + β2 + kp, ξ =

β1 + kd

2
√

β1kd + β2 + kp
. (28)
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In the Formulas (26) and (27) above, kp and kd represent the PD gain in LADRC, while KP,
KI , and KD represent the proportional, integral, and differential gain in PID. The Bode diagram of
the low-pass filter FL(s) is as shown in Figure 5a. The Bode plots of PID, LADRC, and PI for different
ωo values are shown in Figure 5b–d.

According to Figure 5a, the Bode diagram of FL exhibits the characteristics of a second-order
low-pass filter. According to Figure 5b–d, in the process of wide-scale change, the direction of the bode
diagram between LADRC, PI, and PID is basically unchanged. Among them, the controller of PID
increases with the increase of frequency, which is extremely unfavorable for high-frequency signals.
Compared with LADRC, the PI controller is equal in the low-frequency band, while the gain of
LADRC is higher in the intermediate frequency band, so the response speed of LADRC is faster,
and in the high-frequency band, the attenuation of LADRC is more than that of the PI controller.
The attenuation characteristics of the low-pass filter in LADRC at high-frequencies make controller
have better high-frequency rejection than PI.

Bode Diagram

Frequency  (rad/s)

10-1 100 101 102 103 104 105
-180

-135

-90

-45

0

Ph
as

e 
(d

eg
)

-120

-100

-80

-60

-40

-20

0

M
ag

ni
tu

de
 (d

B)

wo=10
wo=100
wo=1000

(a)

-140

-120

-100

-80

-60

-40

M
ag

ni
tu

de
 (d

B)

10-2 10-1 100 101 102 103
-90

-45

0

45

90

Ph
as

e 
(d

eg
)

PID
LADRC
PI

Bode Diagram

Frequency  (rad/s)

(b)

-100

-80

-60

-40

-20

0

M
ag

ni
tu

de
 (d

B)

10-1 100 101 102 103 104
-90

-45

0

45

90

Ph
as

e 
(d

eg
)

PID
LADRC
PI

Bode Diagram

Frequency  (rad/s)

(c)

-60

-40

-20

0

20

40

M
ag

ni
tu

de
 (d

B)

100 101 102 103 104 105
-90

-45

0

45

90

Ph
as

e 
(d

eg
)

PID
LADRC
PI

Bode Diagram

Frequency  (rad/s)

(d)

Figure 5. (a): Bode diagram of FL(s); (b): Bode diagram of LADRC, PID and PI under ωo = 10;
(c): Bode diagram of LADRC, PID and PI under ωo = 100; (d): Bode diagram of LADRC, PID and PI
under ωo = 1000.

For the different characteristics of the controller, draw the open-loop Bode diagram of the LCL
filter in series with different controller in Figure 6a. The parameters of the LCL-type filter and passive
damping resistance are shown as below:

L1 = 0.2 mH, L2 = 0.042 mH, C = 30 µF, Rd = 0.5 Ω.

According to Figure 6a, a resonance peak appears, which causes the harmonics around
the resonant frequency in the circuit to amplify into the system. After adding PID, PI, and LADRC,
the resonance phenomenon is partially suppressed. The PID controller is unable to deal with
high-frequency signal, and the suppression effect of PI in the middle frequency band is better than that
of LADRC. LADRC is better than PI in the high-frequency range.

Figure 6b shows the open-loop Bode diagram of the LCL filter with passive damping resistance in
series with a different controller. According to Figure 6b after the series resistance is applied to the LCL
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circuit, the resonance peak disappears. However, there is still a partial rise around the resonance
peak. The PI and LADRC controllers have a substantially coincident gain of less than 1000 rad/s,
and the LADRC effect is not as good as PI at the intermediate frequency range. LADRC is more
effective at attenuating signals at higher frequencies than PI. If the pole position of the LADRC is
adjusted, the frequency characteristics of the LADRC can be changed to enhance the LADRC harmonic
suppression capability, especially near the switching frequency.
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Figure 6. (a): Bode diagram of LCL in series with different controllers; (b): Bode diagram of LCL with
passive damping resistance in series with different controllers.

By reducing β2, increasing β3, redrawing the Bode diagram of LADRC and adjusting the gain of
LADRC in each frequency band, the LADRC harmonic suppression capability is improved. The new
changed observer gains are as follows: 

β1 = 3ωo,

β2 = 0.05ω2
o ,

β3 = 3ω3
o .

(29)

Other parameters are still calculated according to Formulas (27) and (28). Then repeating those
steps will get Figure 7a,b.
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Figure 7. (a): Bode diagram of LCL in series with different controllers; (b): Bode diagram of LCL with
passive damping resistance in series with different controllers.

According to Figure 7a,b, the gain margin and phase margin corresponding to the two different
parameters selection schemes are listed in Table 1.

Comparing two different parameter-selected methods, LADRC is better than PI in both
the resonance suppression capability and the dynamic performance of the system under the condition
of the novel method selection parameters. Although reducing β2 and increasing β3 are beneficial to
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resonance suppression and quicken the dynamic response speed effectively, the stability of the system
is degraded. In the practical application, it needs to weigh the advantages and disadvantages.

Table 1. Phase margin and gain margin of PI and LADRC.

Parameters β1 = 3ωo β2 = 3ω2
o β1 = 3ωo β2 = 0.05ω2

o
β3 = ω3

o β3 = 3ω3
o

Gain margin Phase margin Gain margin Phase margin

PI 37 dB 49.7◦ 23.5 dB 70.9◦

LADRC 30.6 dB 55.4◦ 30.3 dB 69.4◦

According to Table 1, the improved method is used to design the observer gain so that the LADRC
has an amplitude margin greater than the amplitude margin of the PI, and the phase margin is
substantially equal. This demonstrates that LADRC has better dynamic characteristics and robustness
under new parameters selection.

5. Active Power Filter Design

In this section, harmonic current detection is based on the ip-iq method of instantaneous reactive
power, which uses the TD filter instead of the Butterworth filter, which improves compensation
and response of APF.

5.1. The Improved Harmonic Detection Algorithm

The instantaneous space vector method based on instantaneous reactive power theory is currently
the most widely used detection method. When the method only detects the reactive current,
the detection result can be obtained without delay. When the harmonic current is detected, there will
be different delays due to the difference in the harmonics of the current to be detected and the filter
used, but the delay may not exceed one cycle at most. For the three-bridge rectifier circuit, the most
typical harmonic source in the power system, the detection delay is about 1/6 of a cycle.

The traditional APF detects the load current, the harmonics are obtained by the harmonic detection
algorithm, and a opposite harmonic is generated by the inverter so that the load current contains
only the fundamental component. However, such a detection algorithm is an open-loop algorithm.
At the same time, the load harmonics and the grid harmonics are detected, and the harmonic command
current is simultaneously sent to the inverter so that the grid current detection path makes the system
form a closed-loop system. The algorithm block diagram is shown in Figure 1. The transformation
matrices are as seen in Formula (30).

C32 =
2
3

(
1 − 1

2 − 1
2

0 −
√

3
2

√
3

2

)
, C =

(
sin (ωgt) − cos (ωgt)
− cos (ωgt) − sin (ωgt)

)
, C23 =

 1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

 . (30)

The TD algorithm is as follows:
f h = f han(x1(k)− v(t), x2(k), r, h0),

x1(k + 1) = x1(k) + hx2(k),

x2(k + 1) = x2(k) + h f h,

y(k + 1) = x1(k + 1).

(31)
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where h is the discretization step size and function f han is defined as follows:

d = rh2
0,

a0 = h0x2,

y = x1 + a0,

a1 =
√

d(d + 8 |y|),

a2 = a0 + sign(y)(a1 − d)/2,

a = (a0 + y) f sg(y, d) + a2(1− f sg(y, d)),

f sg(x, d) = (sign(x + d)− sign(x− d))/2,

f han = −r(
a
d
) f sg(a, d)− rsign(a)(1− f sg(a, d)),

(32)

where, r is the speed factor of the TD tracking signal. The larger r is, the faster the TD tracks the target
signal. h0 is the filtering factor. The larger the h0, the better the TD filtering effect, but the slower
the response speed.

5.2. Low-Pass Filter Design

The traditional ip-iq harmonic detection algorithm uses a Butterworth filter to filter out AC
component. Although the Butterworth filter has better filtering effects, it will have a large overshoot.
Not only that, if the order of the filter is increased, the response speed will be significantly reduced.
In this paper, we propose to use a nonlinear TD instead of a low-pass filter to solve the contradiction
between the response speed of the Butterworth filter and the filtering effect, so that the filtering is fast
and no overshoot. The frequency characteristic curve of TD is shown in Figure 8.

According to Figure 8, it can be seen that the nonlinear characteristic of the nonlinear
TD is reflected in the fact that the difference in amplitude of the input signal also causes
a difference in frequency characteristics and not only in relation to the frequency of the input signal.
The amplitude-frequency characteristic curve of TD is obviously a fold line composed of two straight
lines, and the phase-frequency curve is near the corner frequency, and the phase shift is quickly
reduced to −180◦, which is an ideal phase-frequency characteristic.
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Figure 8. Bode diagram of the tracking differentiator (TD).
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In addition to the r determining the bandwidth of the TD, the filtering factor h0 also determines
the bandwidth and gain. Choosing the appropriate h0 can improve the frequency characteristics
of the TD. If h0 increases, the gain can be reduced while the bandwidth increases. Because TD is
used as a low-pass filter in APF, increasing h0 can make the AC component sufficiently attenuate.
While DC component is not affected, it can reduce the overshoot of the system to achieve fast
no-overshoot filtering.

Butterworth low-pass filter has a large overshoot in the filtering process. TD has f han function,
thus avoiding the overshoot of the filter and solving the problem between fastness and overshoot.
The f han function can reach the setpoint in a finite step and stay there, and f han softens the input signal
or arranges the transition process so that the system quickly keeps the given signal without overshoot.

6. Simulation Results

In this section, the performance of the designed microgrid with the proposed strategy is evaluated
through the simulation results, which are conducted through MATLAB/SIMULINK under three
situations. For convenience of description, Scheme I is the method proposed strategy, and Scheme II is
a conventional method. The detailed configuration scheme of each scheme is shown in Table 2.
The parameters of the grid, grid-connected inverter, and APF are shown in Table 3. The grid
inductance is to filter out the harmonics near the switching frequency generated by the two inverters.
The parameters of controllers are shown in Table 4.

Table 2. Control strategy for different scheme.

Scheme I II

Grid-connected inverter LADRC PI
APF PI PI

Table 3. Circuit parameters.

Symbol Description Value

gabc Grid phase voltage 220 V
Lg Inductance of grid 3 mH
L Inductance of nonlinear load 9 mH
R Resistance of nonlinear load 10 Ω
fs Switching frequency of grid-connected inverter 10 kHz
fc Switching frequency of APF 20 kHz
L1 Filter-side inductance 0.2 mH
C Filter-side capacitance 30 µF
L2 Grid-side inductance 0.042 mH
Rd Passive damping resistance 0.5 Ω

Vdc1 DC voltage source of grid-connected inverter 1000 V
Vdc2 DC voltage source of APF 1400 V
L3 Filter inductance of APF 8.6 mH

Table 4. Controller parameters.

Scheme I Scheme II

Symbol Value Symbol Value Symbol Value

ωc 600 rad/s kp1 3.6× 105 kp 2
ωo 3600 rad/s kd1 1.2× 103 ki 200
b0 9.5× 108 Kp 7 Kp 7
β1 1.08× 104 Ki 60 Ki 60
β2 6.48× 105 ipccd 80 A ipccd 80 A
β3 1.4× 1011 ipccq 0 A ipccq 0 A
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In Table 4, kp1 and kd1 represent the proportional differential control gain in the LADRC
controller for the grid-connected inverter, Kp and Ki represent the proportional-integral control
gain of the PI controller in the APF, and kp and ki represent parameters of the PI controller of
the grid-connected inverter. The parameters of LADRC controller are set according to Formula (14),
and then according to the system performance requirements, reduce β2 and increase β3 appropriately
until the system performance meets the requirements.

6.1. Case I

This case is that the nonlinear load is connected to the grid, and the grid-connected inverter
and APF are sequentially connected. The objective of the simulation is to validate the harmonics
reduction performance of the proposed strategy. In order to verify that LADRC has better dynamic
characteristics than PI, the simulation compares the grid-connected current control effect and harmonic
suppression effect.

In this simulation experiment, the nonlinear load is a three-phase uncontrolled rectifier circuit.
The simulation runs for a total of 0.3 s, and the grid-connected inverter is connected at 0.02 s, and the APF
is accessed at 0.1 s. Figure 9 shows the FFT analysis results of the nonlinear load current and the grid
current when the system is connected to the power equipment at different times and the grid current
after the cut-in time.
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Grid current harmonic content analysis
Fundamental (50Hz) = 80.22 , THD= 2.08%
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Figure 9. Scheme I: (a) nonlinear load current and grid current; (b) the FFT result of the nonlinear load
current at the 0 s; (c) the FFT result of the grid current at the 0.07 s; (d) the FFT result of the grid current
at the 0.15 s.

By comparing Figures 9a and 10b, LADRC is stable in two cycles, while the PI controller requires
three and a half cycles to stabilize. According to Figures 9b and 10b, the harmonic content of the system
is 17.8% when the nonlinear load is connected to the system. As can be seen from comparing Figures 9c
and 10c, the harmonic content is 7.06% and 6.02% at 0.07 s seconds under different controller. At this
time, the grid current is bigger than the given value, and the magnitude of the harmonic current is
constant, resulting in a lower harmonic content than using LADRC. By comparing Figures 9d and 10d,
after the APF is connected to the system, the system harmonics are 2.08% and 5.39%. From the results,
LADRC has better dynamic performance and harmonic suppression. The former can reduce the THD
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(Total Harmonic Distortion) of the distortion current to 2.1%, while the latter can only reduce the current
distortion rate to 5.39%, which can not satisfies the IEEE Standard. A comparison of the filtering effects
of TD and Butterworth in the simulation is shown in Figure 11.

According to Figure 11, it can be seen that TD has a better filtering effect and dynamic
characteristics, and avoids overshoot, improving the dynamic characteristics of the whole system. TD
stabilized around 0.2 s, and Butterworth stabilized around 0.32 s. TD is approximately 37.5% faster
than the Butterworth.

6.2. Case II

This case is when the system is running stably, the reference value is abrupt. In order to verify
the disturbance rejection ability and the dynamic performance of the proposed strategy under reference
value changing condition, the simulation runs for a total of 0.3 s. At 0.1 s, the d-axis reference current
signal steps from 80 A to 113 A, and at 0.2 s, the q-axis reference signal steps from 0 A to 20 A. Figure 12
and Figure 13 show the response curves of the currents of the Scheme I and the Scheme II at PCC of
the reference current abrupt change, respectively.
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0 200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (Hz)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
ag

 (%
 o

f F
un

da
m

en
ta

l)

(c)

Grid current harmonic content analysis
Fundamental (50Hz) = 80.48 , THD= 5.39%
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Figure 10. Scheme II: (a) nonlinear load current and the grid current; (b) the FFT result of the grid current
at the 0 s; (c) the FFT result of the grid current at the 0.07 s; (d) the FFT result of the grid current at the 0.15 s.

By comparing Figures 12 and 13, Scheme I can reach steady-state in a shorter time, and in the case
of a sudden change in the d-axis reference current, there is only a small effect on the q-axis; in the case
of a sudden change in the q-axis reference current, it basically has no effect on the d-axis current.
In the case of a sudden change in the reference current, Scheme II not only has a large overshoot of
the current but also track the given reference signal for a longer time. The change in the reference signal
of either of the d-axis and the q-axis has a large effect on the current of the other axis. In the case of
sudden changes in operating conditions, Scheme I has better disturbance rejection ability and dynamic
response than Scheme II.
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Figure 13. The point of common coupling current response curve of Scheme II.
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6.3. Case III

This case is that the grid voltage fluctuates repeatedly. When the grid voltage repeatedly fluctuates,
the dynamic performance of Scheme I and Scheme II is compared. The simulation runs for a total of
0.3 s. At 0.1 s, the grid voltage drops to 0.6 times the rated voltage. At 0.15 s, the grid voltage recovers
the rated voltage. Figure 14 shows the nonlinear load current and the grid current for Schemes I and II
in the case of grid voltage fluctuations.

By comparing Figure 14a,b, in the moment of grid voltage drop, Scheme I only needs one and a half
cycles to realize the control of grid-connected current, while Scheme II requires two and a half cycle to
realize control of grid current. In engineering applications, if the working conditions change rapidly,
Scheme I performs better than Scheme II.
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Figure 14. (a) Three-phase nonlinear load current and grid current of Scheme I; (b) three-phase
nonlinear load current and grid current of Scheme II.

According to the above three cases, the disturbance rejection ability and the dynamic response
performance of the system, Scheme I is superior to Scheme II in each phase index. The cut-in of
the equipment, the sudden change of the reference current, and the sudden change of the grid
respectively can be regarded as the total disturbance of the system, because the LADRC controller
can observe the external disturbance of the system and the uncertainty of the system through ESO
as the total disturbance, and transform the system into the ideal system through dynamic feedback
linearization. The simulation proves that Scheme I can eliminate the disturbance as mentioned
above through the state feedback. However, the PI controller will generate the corresponding control
signal after the error occurs, which means that the PI controller is slower than the LADRC controller.
The simulation results are also consistent with the above analysis.

7. Experimental Results

Compared with PI control, the main advantages of the LADRC controller is the attenuation of
high-frequency signals, and ESO has the effect of disturbance observation, which makes LADRC better
for disturbance rejection. In physical hardware experiments, the electrical characteristics of electrical
components change with temperature. Besides, the parasitic resistance of electrical components,
such as inductance and capacitance, is often unavoidable, which is a challenge for the controller.

In this paper, an LCL-type with passive damping resistance three-phase three-leg inverter
and an L-type three-phase three-leg inverter were built. The LCL-type filter with passive damping
resistance was controlled by a Speedgoat semi-physical simulator. The L-type inverter was controlled
by a TMS320F28335 digital signal processor microcontroller. The topology of the hardware circuit was
the same as that of Figure 1, and the hardware circuit parameters are shown as Table 5. The parameters
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of controller are shown Table 6. In this section, two experiments are described to verify the performance
of the control strategy described above. The experimental platform is shown in Figure 15.

Speedgoat

Scope

Nonlinear loads

LCL type with passive damping 

three-phase three-leg inverter

DSP controller

Linear loads

DC electrical source

Power quality analyzer

Active power filter

Speedgoat

Scope

Nonlinear loads

LCL type with passive damping 

three-phase three-leg inverter

DSP controller

Linear loads

DC electrical source

Power quality analyzer

Active power filter

Figure 15. Experimental hardware platform.

Table 5. Experimental circuit parameters.

Symbol Description Value
gabc Grid phase voltage 22 V
Lg Inductance of grid 3 mH
L Inductance of nonlinear load 9 mH
R Resistance of nonlinear load 70 Ω
Rl Linear load 40 Ω
fs Switching frequency of grid-connected inverter 10 kHz
fc Switching frequency of APF 20 kHz
L1 Filter-side inductance 0.2 mH
C Filter-side capacitance 30 µF
L2 Grid-side inductance 0.042 mH
Rd Passive damping resistance 0.5 Ω

Vdc1 DC voltage source of grid-connected inverter 140 V
Vdc2 DC voltage source of APF 130 V
L3 Filter inductance of APF 8.6 mH

Table 6. Controller parameters in physical experiment.

Scheme I Scheme II

Symbol Value Symbol Value Symbol Value

ωc 700 rad/s kp1 4.9× 105 kp 25
ωo 4200 rad/s kd1 1.4× 103 ki 60
b0 6× 107 Kp 25 Kp 25
β1 1.3× 104 Ki 60 Ki 60
β2 8.8× 105 ipccd 1A ipccd 1A
β3 2.2× 1011 ipccq 0A ipccq 0A

7.1. Harmonic Suppression Effect without APF

The grid supplies power to the nonlinear and linear loads, after which the grid-connected inverters
are connected to the grid. Experimental waveform and THD analysis diagram are shown in Figure 16.

When the grid-connected inverter is not connected, the THD of grid current is 15.25%, which is
severely distorted. In order to verify that the grid-connected inverter has partial harmonic suppression
effect, the grid-connected reference current is set to 1A, which is slightly smaller than the grid
current before the grid-connected inverter is not added. When the grid-connected inverter connected
to the grid, the THD drops to 10.31%. The LADRC controller has a second-order low-pass
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filter characteristic, which makes it more advantageous when dealing with harmonic currents.
However, LADRC has a limited ability to process high-frequency signals. ESO has certain limitations
when observing high-frequency disturbance signals. Phase delay and bandwidth problems determine
that LADRC can only deal with low-frequency harmonics. Harmonics can also be slightly suppressed
by PI controller because the PI controller has high gain in the low-frequency range and low gain in
the high-frequency range.

(a) (b) (c)

(d) (e) (f)
Figure 16. (a) Nonlinear load current; (b) when the grid-connected inverter is controlled by LADRC
the grid current waveform; (c) when the grid-connected inverter is controlled by PI, the grid current
waveform; (d) THD for (a); (e) THD for (b); (f) THD for (c).

7.2. Harmonic Suppression Effect with APF

Based on Experiment 7.1, during the operation of the grid-connected inverter, access the APF
and observe the grid current waveform. Scheme I adopts the LADRC control algorithm for the grid
current, and the APF uses the improved ip-iq detection method to track the signal. Scheme II control
the grid-connected current with PI controller, and the harmonic detection method and harmonic
tracking algorithm are consistent with Scheme I.

As can be seen from Figure 17, although the grid-connected inverter can perform harmonic
suppression, its effect is limited, and only low-order harmonics can be processed. When APF is
connected to the system, the waveform can be significantly improved. Scheme I reduces the harmonic
content from 10.31% to 3.18%, while Scheme II reduces it from 11.68% to 5.87%. Scheme I meets
international standards and proves that the proposed control strategy is to suppress harmonics while
controlling grid-connected current effectively.

8. Discussion

The simulation and experiment results confirm the effectiveness of the proposed control strategy.
The composite control strategy can improve the speed and accuracy of the harmonic detection. Due to
the existence of the LADRC controller, the system has a strong disturbance rejection ability. By adjusting
the different parameters of the ESO, the decoupling ability and dynamic performance of the system
can be further improved.

From the experimental results, the grid current still has a harmonic distortion rate of 3.18%.
The reason is that the switching frequency of the active power filter is limited, which makes it
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impossible for PI controller to track the command harmonics without static error. The track controller
can be improved in the next study.

Although the proposed scheme can realize the functions of grid current control and harmonic
suppression, its hardware is complex to realize. The system has some difficulty in the debugging
process. In the subsequent studies, harmonic detection and compensation method, and grid-connected
current control strategy for single inverter can be improved continuously.

(a) (b) (c)

(d) (e) (f)
Figure 17. (a) The output current of APF of Scheme I; (b) the output current of APF of Scheme II;
(c) the grid current waveform of Scheme I; (d) the grid current waveform of Scheme II; (e) THD for (c);
(f) THD for (d).

9. Conclusions

Conventional active power filters and grid-connected inverters only realize control
and compensation of the fundamental or harmonics current. From the perspective of control theory,
the system only achieves incomplete control of the current. According to this problem, the author
proposes to control the fundamental current through the grid-connected inverter and compensate
the harmonics through the active power filter.

LADRC controller with model information is added to the grid-connected inverter to improve
dynamic performance and disturbance rejection ability. In the harmonic detection algorithm, TD is
used instead of Butterworth filter, which improves the detection speed and accuracy of the algorithm
and solves the contradiction between overshoot and rapidity. The novel control strategy proposed
by the author achieves the control of the current fundamental wave and the compensation of
the harmonics. The author verifies the effectiveness of the proposed strategy through experiments
and simulations.
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