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Abstract: Performing numerous simulations of a building component, for example to assess its
hygrothermal performance with consideration of multiple uncertain input parameters, can easily
become computationally inhibitive. To solve this issue, the hygrothermal model can be replaced by a
metamodel, a much simpler mathematical model which mimics the original model with a strongly
reduced calculation time. In this paper, convolutional neural networks predicting the hygrothermal
time series (e.g., temperature, relative humidity, moisture content) are used to that aim. A strategy is
presented to optimise the networks’ hyper-parameters, using the Grey-Wolf Optimiser algorithm.
Based on this optimisation, some hyper-parameters were found to have a significant impact on the
prediction performance, whereas others were less important. In this paper, this approach is applied to
the hygrothermal response of a massive masonry wall, for which the prediction performance and the
training time were evaluated. The outcomes show that, with well-tuned hyper-parameter settings,
convolutional neural networks are able to capture the complex patterns of the hygrothermal response
accurately and are thus well-suited to replace time-consuming standard hygrothermal models.

Keywords: Metamodeling; Convolutional neural networks; Time series modelling; Probabilistic
assessment; Hygrothermal assessment

1. Introduction

When simulating the hygrothermal behaviour of a building component, one is confronted with
many uncertainties, such as those in the exterior and interior climates, in the material properties,
or even in the configuration geometry. A deterministic assessment does not enable taking into account
these uncertainties, and as such, often does not allow for a reliable design decision or conclusion.
A probabilistic analysis [1–6], on the other hand, enables including these uncertainties, and thus
allows a more reliable assessment of the hygrothermal performance and the potential moisture
damages. For this purpose, usually, the Monte Carlo approach [7] is adopted, where the uncertain
input parameters’ distributions are sampled multiple times and a deterministic simulation is executed
for each sampled parameter combination. This approach often involves thousands of simulations and
therefore, easily becomes computationally inhibitive. To surmount this problem, the hygrothermal
model can be replaced by a metamodel, which is a simpler and faster mathematical model mimicking
the original model, thus strongly reducing the calculation time. Static metamodels have already been
applied in the field of building physics multiple times [8–10]. The main disadvantage is that these types
of metamodels are developed for a specific single-valued performance indicator (e.g., the total heat
loss or the final mould growth index). The wish to use a different performance indicator would require
the construct of a new metamodel, which is time-intensive. Additionally, single-valued performance
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indicators provide less information, which might impede decision-making. For example, the maximum
mould growth index is calculated based on the temperature and relative humidity time series and
shows the maximum value over a period, but does not allow for assessing how long or how often this
maximum occurs, or how high the mould growth index is the rest of the time.

Dynamic metamodels, on the other hand, aim to predict actual time series (temperature,
relative humidity, moisture content, etc.), and thus provide a more flexible approach. Predicting the
hygrothermal time series allows post-processing by any desired damage prediction model (e.g., the
mould growth index), as well as provides information over the whole period. Using a metamodel
to predict time series, rather than single-value performance indicators, is, to the authors’ knowledge,
new to the field of building physics. However, it is also more difficult, as the metamodel must be able
to capture the complex and time-dependent pattern between input and output time series, and not all
metamodeling strategies are suited for time series prediction.

In a previous study [11], the authors demonstrated that neural networks are well-suited to
reproduce the dynamic hygrothermal response of a building component. Three popular types of
neural networks were considered: multilayer perceptrons (MLP), the long-short-term memory network
(LSTM) and the gated recurrent unit network (GRU), both of which are a type of recurrent neural
network (RNN), and convolutional neural network (CNN). These networks were trained to predict
the hygrothermal time series such as temperature, relative humidity and moisture content at certain
positions in a masonry wall, based on the time series of exterior and interior climate data. The results
showed that a memory mechanism to access information from past time steps is required for accurate
prediction performance. Hence, only the RNN and the CNN were found to be adequate. Furthermore,
the CNN was shown to outperform the RNN and was also much faster to train.

This study builds upon these previous findings. As the CNN was found to perform best,
it is developed further, aiming to replace HAM-simulations (HAM: Heat, Air and Moisture) for a
spectrum of facade constructions (with different geometry and materials) and/or boundary conditions
(with varying exterior and interior climate, orientation, wind-driven rain, etc.). During development,
many parameters inherent to the neural network architecture and training process—called the
hyper-parameters—need to be defined though. Considering that these parameters can significantly
influence the network’s performance, it is important to choose the most optimal combination.
However, this is usually a trial-and-error process, as there are no general guidelines. This paper
hence proposes an approach to optimise these hyper-parameters, using the Grey-Wolf Optimisation
(GWO) algorithm, as it was found competent for other applications [12,13]. This is applied to a
one-dimensional (1D) brick wall, of which, the hygrothermal performance is evaluated for typical
moisture damage patterns.

The next section first presents the architecture of the convolutional neural network.
Next, the hyper-parameters optimisation method is explained, after which, the networks’ performance
evaluation is described. Section 3 describes the application and calculation object and in Section 4,
the results of the hyper-parameter optimization and the networks’ performance are brought together
and discussed. In the conclusions, the main findings are summarised, and some final remarks are drawn.

2. Optimising Convolutional Neural Networks (CNN)

2.1. The Network Architecture

Convolutional neural networks are a class of deep neural networks most commonly applied to
image analysis. More recently though, CNNs have been applied to sequence learning as well [11,14,15].
A convolution is a mathematical operation on two functions to produce a third function, defined as
the integral of the product of these functions after one is reversed and shifted. In the case of a CNN,
the convolution is performed on the input data and a weights array, called the filter, to then produce a
feature map. The filter actually slides over the input, and at every time step, a matrix multiplication
is performed. This is repeated for each input parameter (feature) and the result is summed into a
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new feature map. In case of sequences or time series, often dilated causal convolutions are used.
Causal means that the output of the filter does not depend on future input time steps. Dilated means
that the filter is applied over a range larger than its length by skipping input time steps with a certain
step. By stacking dilated convolutions, the network can look further back into history (i.e., the receptive
field) with just a few layers, while still preserving the input resolution throughout the network (i.e., the
number of time steps in the sequence) as well as the computational efficiency. Often, each additional
layer increases the dilation factor exponentially, as this allows the receptive field to grow exponentially
with the network depth. This principle is shown in Figure 1 for a filter width of two time-steps.
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Figure 1. The causal dilated convolutions allow an output time step to receive information from a
larger range of input time steps (i.e., the receptive field) with an increasing number of hidden layers.
In the presented scheme, a filter width of two, four layers and one stack results in a receptive field of
sixteen input steps.

The architecture of the CNN network used in this paper, shown in Figure 2 is based on the
Wavenet architecture [16] and is developed using Keras 2.2.4 [17]. The network consists of stacked
‘residual blocks’, followed by two final convolutional layers. By layering multiple residual blocks, a
larger receptive field is obtained. The dilation can be exponentially increased for a number of layers
and then repeated, e.g., 20, 21, 22, . . . , 29, 20, 21, 22, . . . , 29, 20, 21, 22, . . . , 29, for filter width two.
These repetitions of layered residual blocks are called stacks. The combination of the filter width,
number of layers and number of stacks defines the length of the receptive field.

Each residual block contains three important elements that give the network its prediction strength:
a gated activation unit, residual and skip connections and global conditioning. The gated activation
unit starts with a causal dilated convolution, which then splits, passes through either a tanh or sigmoid
activation and finally recombines via element-wise multiplication. The tanh activation branch can
be interpreted as a learned filter and the sigmoid activation branch as a learned gate that regulates
the information flow from the filter [18]. Recurrent neural networks such as the Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) use similar gating mechanisms to control the flow
of information. The gated activation unit can mathematically be represented by Equation (1), where,
W corresponds to the learned dilated causal convolution weights and f and g denote filter and gate,
respectively:

z = tanh
(
W f ∗ x

)
� σ

(
Wg ∗ x

)
(1)

The skip connections allow lower level signals to pass unfiltered to the final layers of the network.
Hence, earlier feature layer outputs are preserved as the network passes forward signals for final
prediction processing. This allows the network to identify different aspects of the time series, i.e., strong
autoregressive components, sophisticated trend and seasonality components, as well as trajectories
difficult to spot with the human eye. Residual connections allow each block’s input to bypass the gated
activation unit, and then add that input to the gated activation unit output. This helps allow for the
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possibility that the network learns an overall mapping that acts almost as an identity function, with the
input passing through nearly unchanged. The effectiveness of residual connections is still not fully
understood, but a compelling explanation is that they facilitate the use of deeper networks by allowing
for more direct gradient flow in backpropagation [19].Energies 2019, 12, x FOR PEER REVIEW 4 of 19 
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Finally, global conditioning allows the network to produce output patterns for a specific context.
For example, if different brick types are included, the network can be trained by feeding it the brick
characteristics as additional input. In this case, the gated activation unit can mathematically be
represented by Equation (2), where, V corresponds to the learned convolution weights and h is a tensor
that contains the conditional scalar input and is broadcast over the time dimension:

z = tanh
(
W f ∗ x + V f ∗ h

)
� σ

(
Wg ∗ x + Vg ∗ h

)
(2)

2.2. Hyper-Parameter Optimization

In order to configure and train the network, the hyper-parameters of the network need to be set.
For configuring the proposed architecture (Figure 2), these are:

• Filter width f of causal dilated convolution
• Number of c-filters for initial conditional connection
• Number of g-filters for gate connections
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• Number of s-filters for skip connections
• Number of r-filters for residual connections
• Number of p-filters for the penultimate connection
• Number of layers of residual blocks
• Number of stacks of layered residual blocks

Additionally, there are hyper-parameters concerning the training process itself:

• Loss function
• Learning algorithm
• Learning rate
• Number of training epochs
• Batch size

The loss function is minimised during training by determining the neurons’ optimal weights and
is a measure of how good the network fits the data. In this optimisation, the root-mean-squared-error
(RMSE) is used as the loss function, because it effectively penalises larger errors more severely.
The learning algorithm defines how the neurons’ weights are updated during the learning process.
Many learning algorithms exist, but in this study, the Adam algorithm [20] is used, as the authors’
previous experiments showed it to perform best for the current problem. The learning rate is the
allowed amount of change to the neurons’ weights during each step of the learning process. At extremes,
a learning rate that is too large may result in too-large weight updates, causing the performance of
the network to oscillate over training epochs. A too-small learning rate may never converge or may
get stuck on a suboptimal solution. The learning rate must thus be carefully configured. The batch
size is the number of training samples passed through the neural network in one step. The larger the
batch size, the more memory is required during training. As the networks are trained on a computer
with two NVIDIA RTX 2070 GPU’s, each with 8 GB RAM, the available memory is limited. For this
reason, the batch size is fixed to four samples. After each batch, the network’s weights are updated.
When all batches have passed through the network once, one training epoch is completed. The number
of training epochs is the number of times the entire training dataset is passed through the neural
network. The more often the network is exposed to the data, the better it becomes at learning to predict.
However, too much exposure can lead to overfitting: the network’s error on the training data is small
but when new data is presented to the network, the error is large. This is prevented by stopping
training if the error on the validation dataset no longer decreases, a mechanism called ‘early stopping’.

To reduce the training time during the optimisation process, two measures are taken:
Firstly, the training set contains only 256 samples, which reduces the number of batches in each epoch.
Secondly, each neural network is trained for a maximum of only 50 epochs, and training is stopped
earlier if the RMSE on the validation set (containing 64 samples) decreases less than 0.001 over 5 epochs.
These measures reduce training time successfully, but do not allow for reaching the best prediction
performance, as both the number of epochs and the number of samples in the training set are too small.
However, this approach allows for identifying the hyper-parameter combinations that converge fastest
and are thus likely to perform best. Table 1 gives an overview of all hyper-parameters that need to be
fine-tuned, in order to get optimal prediction results. Because evaluating all possible combinations in a
full factorial way would be extremely expensive, optimization of these hyper-parameters is done via
the Grey-Wolf Optimiser (GWO) [12]. It is a population-based meta-heuristic based on the leadership
hierarchy and hunting mechanism of grey wolves in nature. Grey wolves live in a pack in which
alpha (α), beta (ß), delta (δ) and omega (ω) wolves can be identified. Positioned on top of the pack,
the α-wolf decides on the hunting process and other vital activities. The other wolves should follow
the α-wolf’s orders. The ß-wolves help the α-wolf in decision-making. The δ-wolves have to submit
to the α- and ß-wolves, but dominate theω-wolves, who are considered the scapegoats of the pack.
In the GWO, the fittest solution is considered as α, and the second and third fittest solutions are named



Energies 2019, 12, 3966 6 of 18

ß and δ, respectively. The rest of the solutions are ω. In search of the optimal solution, the α-, ß-,
and δ-solutions guide the direction, and theω-solutions follow. The three best solutions are saved and
the other search agents (ω) are obligated to update their positions according to the positions of the best
search agents.

Table 1. The search range of the hyper-parameters.

Hyper-Parameter Range

Number of filters c (25; 29)
Number of filters g (25; 29)
Number of filters s (25; 29)
Number of filters r (25; 29)
Number of filters p (25; 29)
Filter width f (2; 24)
Number of layers (1; 8)
Number of stacks (1; 4)
Learning rate (0.0001; 0.01)

In this study, 10 search agents are deployed to explore and exploit the search space over
100 iterations. If the best solution does not change for 25 iterations, the search algorithm is stopped.
This is repeated for five independent runs as different runs might end with different optimal solutions.
The RMSE on the validation set is used to evaluate the fitness of the solutions.

2.3. Performance Evaluation

Once the GWO algorithm has finished, the ten best solutions (lowest RMSE) of all runs are
trained fully to reach the networks’ full prediction potential, by using a training set of 768 samples,
with a validation set of 192 samples. A maximum of 200 epochs is set, with early stopping if the
RMSE decreases less than 0.001 over 20 epochs. Each combination is trained five times, to overcome
initialisation differences. Note that the size of the training dataset is chosen rather arbitrarily: this is
based on previous experiments, showing that training on 786 samples resulted in better prediction
performance compared to 256 training samples (for identical hyper-parameters). These numbers might
not be optimal, i.e., a larger dataset might result in even better prediction performance or vice versa,
a smaller dataset might provide equally satisfying results.

The performance of these 10 fully-trained neural networks is evaluated using three performance
indicators: the root mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of
determination (R2), quantified as follows:

RMSE =

√
1
T

∑
(y− ŷ)2 MAE =

1
T

∑∣∣∣y− ŷ
∣∣∣ R2 = 1−

∑
(y− ŷ)2∑
(y− y)2 (3)

where, y is the true output, ŷ is the predicted output, y is the mean of the true output and T is the total
number of data points. Additionally, the models’ training time is evaluated.

Finally, the best performing network, defined as the one with the lowest RMSE on the validation
dataset (192 samples), is selected. Because performance on the validation dataset is incorporated
into the network’s hyper-parameter optimisation, this final network’s performance is tested using
an independent test set, containing 256 samples. This way, an unbiased performance evaluation is
obtained. The performance indicators are calculated for each target separately, to identify which
targets are more or less accurately predicted. Subsequently, the network’s output is used to predict the
damage risks. These results are evaluated using the same performance indicators as described above.
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3. Application

3.1. Hygrothermal Simulation Object

The calculation object in this study is a 1D cross-section of a massive masonry wall. The masonry
wall is simplified to an isotropic brick layer—no mortar joints are modelled [21]—and an interior plaster
layer of 1.5 cm. Note that no construction details, such as corners or embedded beams, are modelled.

To explore the capabilities of the proposed convolutional neural network, all characteristics and
boundary conditions that are expected to significantly influence the hygrothermal performance of the
1D wall are considered probabilistic (Table 2). Variability in climatic conditions is included by using
different years of climate data of four Belgian cities [22]. Since the aim is to predict the expected future
performance of the wall, future climate data is used. Variability in the wall conditions is incorporated
via uniform distributions of the wall orientation, solar absorption and exposure to wind-driven
rain. The wind-driven rain load is calculated by using the catch ratio, as described in Reference [23].
The catch ratio relates the wind-driven rain (WDR) intensity on a facade to the unobstructed horizontal
rainfall intensity and is a function of the reference wind speed and the horizontal rainfall intensity
for a given position on the building facade and wind direction. In this model, variability in wall
position and potential shelters, trees or surrounding buildings are reckoned with by the exposure factor.
Additionally, the transiency and variation of the wind speed is taken into account in the convective
heat transfer coefficient, via Equation (4) (EN ISO 06946), where, h0 = 4 W/m2K and ke = 1.

hc = h0 + ks·vke
wind (4)

Table 2. Probabilistic input parameters and distributions.

Parameter Value

Exterior climate D (Gent; Gaasbeek; Oostende, St Hubert)
Exterior climate start year D (2020; 2047)
Wall orientation (degrees from North) U (0; 360)
Solar absorption (-) U (0.4; 0.8)
Ext. heat transfer coefficient slope ks (J/m3K) U (1; 8)
WDR exposure factor (-) U (0; 2)
Brick wall thickness (m) U (0.2; 0.5)
Brick material D (Brick 1; Brick 2; Brick 3)
Interior humidity load [24] D (load A; load B)

U (a, b): uniform distribution between a and b; D (a, b): discrete distribution between a and b.

The exterior moisture transfer coefficient is related to the exterior heat transfer coefficient through
the Lewis relation. The interior climate is calculated according to EN 15026 [24] and variability
in building use is included by using two different humidity loads. Finally, to explore the CNN’s
capabilities to the maximum, three different brick types as well as a uniform distribution of the wall
thickness are included as well. The basic characteristics of the used brick types can be found in Table 3
and Figure 3, which clearly show the variations in the bricks’ moisture properties.

Table 3. Brick type characteristics.

Parameter Brick 1 Brick 2 Brick 3

Dry thermal conductivity (W/m2K) 0.87 0.52 1.00
Dry vapour resistance factor (-) 139.52 13.25 19.00
Capillary absorption coefficient (kg/m2s0.5) 0.046 0.357 0.100
Capillary moisture content (m3/m3) 0.128 0.266 0.150
Saturation moisture content (m3/m3) 0.240 0.367 0.250
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The remaining parameters are all variables either with small variations or of less importance for
the current study of a 1D wall. Therefore, these boundary conditions are assumed deterministically.
Table 4 gives an overview of the deterministic boundary conditions.

Table 4. Discrete input parameters.

Parameter Value

Exterior surface
Long wave emissivity 0.9

Interior surface
Total heat transfer coefficient h (W/m2K) 8
Moisture transfer coefficient β (s/m) 3 × 10−8

Initial conditions
Initial temperature (◦C) 20
Initial relative humidity (%) 50

When evaluating the hygrothermal performance of a massive masonry wall, one is typically
interested in frost damage at the exterior surface, decay of embedded wooden floors and mould growth
on the interior surface [3,25–27]. The latter is mainly important in the case of thermal bridges and of
less importance in 1D simulations. Table 5 gives an overview of frequently used prediction models
for these damage patterns, and the required hygrothermal time series to evaluate them. Figure 4
schematically presents the two-dimensional (2D) building component (top) and the modelled 1D mesh
(bottom) and indicates at which positions the hygrothermal performance is monitored. The simulations
were performed using the hygrothermal simulation environment Delphin 5.8 [28], and a simulation
period of four years was adopted. As most damage prediction models require hourly data, an hourly
output frequency is used.

Table 5. Damage prediction models and required Delphin output.

Damage Pattern Prediction Model Required Hygrothermal Time Series

Frost damage Moist freeze-thaw cycles T, RH, saturation degree
Decay of wooden beam ends VTT wood decay model T, RH
Mould growth Updated VTT mould growth model T, RH

T: temperature; RH: relative humidity.
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The frost damage risk is evaluated via the number of moist freeze-thaw cycles at 0.5 cm from
the exterior surface. A ‘moist’ freeze-thaw cycle is a freeze-thaw cycle that occurs in combination
with a moisture content high enough to induce frost damage [3]. In this study, the critical moisture
content is defined as a moisture content above 25% of the saturated moisture content. Note that this is
a rather arbitrary value, as currently no precise prediction criterion is at hand. An indication of the
decay risk of wooden beam ends can be made using the VTT wood decay model, which calculates the
percentage of mass loss of the wooden beam end based on the temperature and relative humidity [29].
Note, however, that in this 1D wall study, solely a rough indication of the wood decay risk is acquired,
as two- and three-dimensional heat and moisture transport, as well as potential air rotations around
the wooden beam end, are neglected [30]. At the interior surface, a too-high relative humidity entails a
risk on mould growth. The mould growth risk can be estimated by the VTT mould growth model,
which calculates the Mould Index based on the fluctuation of the temperature and relative humidity [31].
The Mould Index is a value between 0 and 6, going from no growth to heavy and tight mould growth.
In the updated VTT model, the expected material sensitivity to mould growth is implemented as well.
In this study, the materials are assumed to belong to the class ‘very sensitive’.

3.2. Training the Convolutional Neural Network

The training and validation datasets are obtained by sampling the input parameters described
above multiple times, using a Sobol sampling scheme [32], and simulating the deterministic HAM
model once for each sampled input parameter combination. In this study, in total, 960 samples
are used. The network is trained to predict hygrothermal time series as requested for the damage
prediction models (see Table 5), based on the input in Tables 2 and 3. The inputs are pre-processed to
facilitate learning. The scalar parameters ‘wall orientation’, ‘exterior heat transfer coefficient slope’,
‘solar absorption’ and ‘rain exposure’ are integrated in the exterior climate time series but also preserved
as a separate scalar input parameter, to condition the network (see Figure 2). The categorical parameters
‘start year’ and ‘interior humidity load’ are incorporated into the climate time series. The categorical
parameter ‘brick type’ is replaced by scalar parameters of the characteristics in Table 3. This simplifies
the network architecture and allows more flexibility on using brick types with differing characteristics.
This results in 6 input time series (exterior temperature, exterior relative humidity, wind-driven
rain load, short-wave radiation, interior temperature and interior relative humidity) and 10 scalar
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inputs (exterior heat transfer coefficient slope (Equation (4)), rain exposure factor, solar absorption,
wall orientation, brick wall thickness and the 5 brick characteristics from Table 3.

Before presenting the input and output data to the neural network, all data are standardised
(zero mean, unit variance). This ensures that all features are on the same scale, which allows weighting
all features equally in their representation. Standardising the output data ensures that errors are
penalised equally for all targets.

4. Results and Discussion

4.1. Hyper-Parameter Optimization

The results of the hyper-parameter optimization show that some (combinations of) parameters
have a significant influence on the network’s performance, while others are less important. Figure 5
shows the RMSE on the validation dataset of all GWO candidate solutions, in function of the receptive
field and the filter width of the causal dilated convolution. This figure clearly shows that a receptive
field of at least 14 months (10,224 h) is required to obtain a low RMSE. The length of the receptive
field is defined by the filter width, number of layers and number of stacks, and determines how many
past-input time steps the network can use to predict the current output time step. Hence, it makes sense
that the receptive field has a threshold below which the network does not perform well, as it cannot
access enough information. Figure 5 also shows that a low RMSE can be obtained for all filter widths.
Note that this is not the case for filter widths below five, as these require a large number of layers and
stacks (cfr. receptive field), which caused out-of-memory errors on the used hardware. If more GPU
memory is available, one might not run into this problem. Additionally, Figure 6 (top) shows that
using multiple stacks results in a slightly lower RMSE, compared to only one stack. Adding extra
stacks to the network allows for increasing the depth—and thus the complexity of the model—without
increasing the receptive field exponentially. Indeed, if the receptive field becomes much larger than the
actual time series length, the computational efficiency decreases. On the other hand, Figure 6 (top) also
shows that the training time increases with the number of stacks. The number of layers has a similar
influence on the training time (not shown here), but not on the prediction performance, provided that
the receptive field is large enough. Hence, if the number of stacks were fixed, a large filter width would
require fewer layers and thus shorter training time, compared to a smaller filter width, while both
options would yield similar prediction performance.

Regarding the number of filters for the different connections, some tendencies can be observed in
Figure 7 but there appears to be no clear relationship with the validation RMSE—with the exception
that 32 filters is too few for all connections. However, the number of filters has a significant impact
on the training time, as shown by Figure 6 (bottom). Combined with the filter width and the
number of layers and stacks, the number of filters determines the number of trainable parameters.
Hence, using fewer filters, for the same combination of filter width, layers and stacks, generally results
in a lower training time.

Finally, Figure 8 indicates that the optimal learning rate for networks with larger filter widths is
around 0.0015, whereas networks with smaller filters widths (i.e., deeper networks) seem to perform
better with a larger learning rate around 0.003.
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4.2. Performance Evaluation

The ten best solutions of the Grey-Wolf Optimiser algorithm are shown in Table 6. and confirm
the overall findings described above. The performance indicators of training five repetitions of these
ten combinations on the entire training dataset are shown in Figure 9. The results indicate that no
single hyper-parameter combination performs significantly better than the others. As long as the
receptive field is large enough (>14 months), the network is deep enough (≥2 stacks) and the learning
rate is in the range (0.0015; 0.003), the other hyper-parameters appear to have only a minor influence
on the prediction performance. Furthermore, due to weight and bias initialisation differences, training
a network with identical hyper-parameters twice does not necessarily result in the same prediction
performance, as can be observed in Figure 9. Hence, it is best to repeat training a few times, and select
the best performing network afterwards. Figure 9 also confirms that, in general, deeper networks with
more layers are slower to train. Finally, note that increasing the maximum number of training epochs
and the size of the training dataset resulted in a much lower RMSE, compared to the results obtained
by the GWO algorithm. This underlines the importance of a representative training dataset, as well as
allowing enough training iterations.

Table 6. The ten best performing solutions of the Grey Wolf Optimiser algorithm.

Conditional
Filters

Gate
Filters

Skip
Filters

Residual
Filters

Penultimate
Filters

Filter
Width Layers Stacks Learning

Rate

1 256 512 256 128 64 11 3 3 0.00245
2 256 256 256 512 64 24 3 2 0.00172
3 256 512 256 128 128 11 3 3 0.00220
4 256 256 256 256 128 20 3 2 0.00179
5 128 512 512 256 128 20 3 2 0.00167
6 32 512 256 256 64 20 3 2 0.00164
7 128 64 128 256 256 6 5 3 0.00245
8 128 64 128 256 256 7 5 3 0.00241
9 128 512 128 64 128 12 3 3 0.00266

10 128 128 128 128 128 6 6 3 0.00263
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Figure 9. The performance indicators and training time for the ten best-performing hyper-parameter
combinations, after being trained fully. For each combination, the dots indicate each repetition’s result,
whereas the cross indicates the average over all five repetitions.

Model 2 performs best on average, but one repetition of model 5 performs better than all other
models. Hence, this model’s performance is evaluated using the independent test set. Figure 10 shows
an example of a test set sample prediction. The performance indicators shown above each panel are
calculated on the standardised output for each target separately, as this indicates the difference in
accuracy between targets. It is clear that the chosen network is able to predict all hygrothermal outputs
quite accurately. These hygrothermal predictions can be used to evaluate damage risks, as described
in Section 3.1. Figure 11 shows the damage predictions (orange) using the networks’ output (for the
sample shown in Figure 10), which are in almost perfect agreement with the damage predictions
from the Delphin simulations (blue). By expressing the damage risks as single values, it is possible to
show the damage prediction accuracy of all individual samples (Figure 12, top) and the cumulated
distributions (Figure 12, bottom). The latter is a common presentation in a probabilistic assessment, as it
gives information on the distribution of the expected performance taking into account all uncertainties.
The frost damage risk is given by the total number of moist freeze-thaw cycles at the end of the
simulated period, the mould growth risk on the interior surface is expressed as the maximum mould
index over the whole simulated period and the wood decay risk is expressed as the total wood mass
loss at the end of the simulated period. Figure 12 shows that the damage risk prediction, based on the
networks’ hygrothermal predictions, is quite accurate for most samples of the test set. The number of
moist freeze-thaw cycles tends to be overestimated, due to small prediction errors in the temperature
and relative humidity. A slightly lower temperature and/or relative humidity at one time step can
lead to counting more freeze-thaw cycles compared to the true value. However, both the original
hygrothermal model and the neural network predict a low number of moist freeze-thaw cycles, and a
difference of a few cycles will likely not much influence the extent of the expected damage. In case
of the mould index at the interior surface, the deviations are so small they are negligible. The wood
decay risk tends to be slightly underestimated, but the overall agreement in cumulative distribution
function is very good.
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5. Conclusions

In this paper, convolutional neural networks were used to replace HAM models, aiming to predict
the hygrothermal time series (e.g., temperature, relative humidity, moisture content). A strategy was
presented to optimise the networks’ hyper-parameters, using the Grey-Wolf Optimiser algorithm and
a limited training dataset. This approach was applied to the hygrothermal response of a massive
masonry wall, for which the prediction performance and the training time were evaluated. Based on
the GWO optimisation, it was found that the receptive field—defined by the filter width, number of
layers and number of stacks—has a significant impact on the prediction performance. For the current
case study of massive masonry exposed to driving rain, it needs to span at least 14 months. The results
also showed that good performance can be obtained for all filter widths, as long as the receptive field is
large enough. Additionally, using multiple stacks resulted in slightly better performance compared to
a single stack, as this allows adding complexity to the model, but also resulted in longer training time.
The number of layers, determined by the filter width and the number of stacks to obtain a large enough
receptive field, had a similar influence on the training time, but not on the prediction performance.
Hence, if the number of stacks were fixed, a large filter width would require fewer layers and thus
shorter training time, compared to a smaller filter width, while both options would yield similar
prediction performance. The same applies to the number of filters for the different convolutional
connections: the more filters that are used, the longer the training time becomes, without obvious
benefit to the prediction performance. Finally, the learning rate was found to be optimal between 0.015
and 0.03, but only had a minor influence on prediction performance.

The 10 best-performing hyper-parameter combinations were trained further on a larger dataset.
Of these, the best performing network was chosen and evaluated on an independent test set.
These results showed that the proposed convolutional neural network is able to capture the complex
patterns of the hygrothermal response accurately. To end, the predicted hygrothermal time series were
used to calculate damage prediction risks, which were found to correspond well with the true damage
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prediction risks. Hence, in conclusion, the proposed convolutional neural networks are very suited to
replace time-consuming, standard HAM models.
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