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Abstract: Recently, deep learning technology was successfully applied to mechanical fault diagnosis.
The convolutional neural network (CNN), as a prevalent deep learning model, occupies a place in
intelligent fault diagnosis, which reduces the need for human feature extraction and prior knowledge,
thereby achieving an end-to-end intelligent fault diagnosis model. However, the data for mechanical
fault diagnosis in practical application are limited, the CNN model is too deep and too complex,
making it prone to overfitting, and a model with too simple a structure and shallow layers cannot
fully learn the effective features of the data. Convolutional filters with fixed window sizes are widely
used in existing CNN models, which cannot flexibly select variable pivotal features. The model
may be interfered with by redundant information in feature maps during training. Therefore, in this
paper, a novel shallow multi-scale convolutional neural network with attention is proposed for
bearing fault diagnosis. The shallow multi-scale convolutional neural network structure can fully
learn the feature information of input data without overfitting. For the first time, a feature attention
mechanism is developed for fault diagnosis to adaptively select features for classification more
effectively, where the pivotal feature was emphasized, and the redundant feature was weakened
through an attention mechanism. The time frequency representations as the input of the model
were obtained from the vibration time domain signals, which contain the complete time domain
and frequency domain information of the vibration signals. Compared with the current popular
diagnostic methods, the results show that the proposed diagnostic method has fairly high accuracy,
and its performance is superior to the existing methods. The average recognition accuracy was
99.86%, and the weak recognition rate of I-07 and I-14 labels was improved.

Keywords: Bearing fault diagnosis; multi-attention mechanism; multi-scale convolutional neural
network; time frequency representation

1. Introduction

The rolling element bearing, an essential component of rotating machinery, is one of the most
common fault sources of equipment. Mechanical failure of bearings results in significant property losses.
However, the practical application environments of bearings are diverse and complex; thus, systematic
identification of fault types and fault degrees without human intervention is still a significant challenge.
The traditional engineering approaches include many data-driven methods, among which signal
processing methods are widely used [1]. Because of the periodicity of the fault bearing signal,
this method usually contains three parts: data acquisition, feature extraction [2,3], and fault location.
In feature extraction, the collected bearing signals are analyzed, and the useful features containing fault
information are selected according to prior knowledge. Generally, the time domain features that can be
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extracted manually include kurtosis [3] and entropy [4], and the time–frequency domain features that
can be extracted manually include the wavelet packet [5] and Hilbert spectrum [6]. Classification tasks
are involved in fault location, mostly using k-nearest neighbor (k-NN) [3], support vector machine
(SVM) [7,8], artificial neural network (ANN) [4], and other methods. Zhang et al. [9] optimized support
vector machines using the inter-cluster distance (ICD) in the feature space (ICDSVM) to identify the
fault types and the fault severity of bearing. The experimental results, taking into consideration various
combinations of fault types, fault degrees, and loads, showed that the proposed method has high
accuracy in identifying the fault type and fault degree of the bearing. Although these methods can
make full use of existing human knowledge, they cannot sufficiently meet the requirements of working
conditions and automation. The automatic completion of diagnostic tasks of feature extraction and
classification can be overcome by new advanced artificial intelligence technology.

With the rapid improvement of computational operations and the development of machine
learning and deep learning, various kinds of deep neural networks were applied to the field of
fault diagnosis, such as the convolutional neural network (CNN). Ince et al. [10] proposed a motor
fault diagnosis system based on a one-dimensional (1D) convolution neural network for 1D data.
Peng et al. [11] proposed a new deep 1D CNN to diagnose faults of wheel bearings for high-speed
trains. Eren et al. [12] proposed a system for bearing diagnosis using a compact adaptive 1D CNN
classifier. The system directly takes raw sensor data as input; thus, it is suitable for real-time fault
diagnosis. However, the accuracy of fault recognition is still limited. Guo et al. [13] proposed a new
intelligent method for fault diagnosis of machines based on transfer learning. The deep convolutional
transfer learning network was able to promote the application of fault diagnosis of machines with
unlabeled data, based on a complex deep CNN model. Huang et al. [14] proposed an improved CNN
called the multi-scale cascade convolutional neural network (MC-CNN) to enhance the classification
information of input. The multi-scale information was obtained by filters with different scales to input
the CNN. This method avoided the local optimization of CNN and exhibited high accuracy in bearing
fault diagnosis. An [15] provided a detailed mathematical definition of the feedback mechanism in
a deep CNN, and combined sparse expression with the feedback mechanism of CNN (FMCNN) to
determine the fault degree when assessing bearing fault location. However, these methods still cannot
mine the multi-scale information in the data. Guo et al. [16] reconstructed a two-dimensional (2D)
array using adaptive learning rate calculation and time vibration signals, and then applied the deep
learning method to effectively diagnose bearing faults. The remaining service life of the equipment
was predicted by Xiang et al. [17] utilizing a deep CNN. With the discrete Fourier transform of two
vibration signals as the input of the CNN in the study of Janssens et al. [18], the fault states of rotating
machinery were successfully diagnosed and classified using the 2D CNN. All of these CNN-based
methods identified the vibration data of equipment. However, CNN was originally designed for image
processing. Yang et al. [19] combined wavelet transform with CNN, and a new fault diagnosis method
was proposed, including the direct classification of continuous wavelet transform scalograms (CWTSs)
using CNN. According to this method, different types of vibration signals from rotating machinery
are decomposed into CWTSs after wavelet transform. After that, CWTSs are used as input to train
the CNN for fault diagnosis. A number of experiments were carried out on the rotor experimental
platform based on this method. The results showed that this method could accurately diagnose faults.
However, there are still the same limitations in the CNN. Udmale et al. [20] introduced a method
based on a kurtogram and convolutional neural network for the fault diagnosis of rotating machines.
The kurtogram as the input of CNN provided additional frequency information. Lei et al. [21] proposed
an intelligent fault diagnosis method based on unsupervised learning. An unsupervised neural
network by sparse filtering was used to learn the features from vibration signals. Compared with other
fault diagnosis methods, the high recognition accuracy of CNN relies on the complex deep network
structure. Thus, a large number of training samples are needed to improve the generalization ability
of the model. However, the data for mechanical fault diagnosis in practical application are limited,
the CNN model is too deep and too complex, making it prone to overfitting, and the model with too
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simple a structure and shallow layers cannot fully learn the effective features of the data. Two aspects
need to be improved in the existing CNN-based models for bearing fault diagnosis. Firstly, in the
structure of the traditional CNN, only feature maps in the last convolutional layer are provided for
classification, and the feature maps are more constant and robust with the loss of pivotal information.
Secondly, convolutional filters with fixed window sizes are widely adopted in most existing CNN
models, which cannot flexibly select variable pivotal features in bearing fault diagnosis, and the model
may be disturbed by redundant information in feature maps during training.

To overcome these limitations, this paper proposes a shallow multi-scale (MS) CNN with a
multi-attention mechanism for bearing fault diagnosis. The time–frequency representation (TFR) as the
input of the model was generated by original vibration data of the bearing. TFR bearing degradation
signals are complex, nonstationary, and more effective. Zhu et al. [22] proposed an effective deep
feature learning approach for remaining useful life prediction of bearings, which relied on the TFR and
CNN. The TFR was applied to analyze the transients, including rapid changes in amplitude or phase
during an event relative to post-event conditions [23]. TFR worked better than the vibration image used
by Hoang and Kang in CNNs based on bearing fault diagnosis, which retained more comprehensive
information in image data [24]. Wang et al. [25] compared eight time–frequency analysis methods
for creating images, and the results indicated that continuous wavelet transform and fast Stockwell
transform were the best methods for bearing diagnosis. Because of the low visual complexity of TFR
images, the shallow CNN structure effectively avoids the problem of deep network training, which does
not converge or overfit. MS convolutional networks were studied by Sermanet and LeCun [26], and
used for recognizing traffic signs. Their research showed that the multi-scale features combined with
precise details were more robust and invariant than the deep features based on the traditional CNN
structure. By studying the recent literature, most of the deep learning-based fault diagnosis methods
improved the depth of the network structure and the data of the training network, and they neglected
the utilization efficiency of the features in the model training process. In the study of Sun et al. [27],
before generating a multi-scale layer, the pooling layer and the last convolutional layer were combined,
and favorable performances were obtained in a face identification task. Therefore, it can be predicted
that, by keeping the global and local information synchronously, more identifiable features can be
obtained between bearing health status and modes. Using the MS layer as the last convolutional layer
in this study, the global and local features were sustained to increase the network capacity, allowing
more scale features to be extracted for classification. Furthermore, a multi-attention mechanism was
proposed to adaptively select vital features to obtain superior recognition results. Attention is an
effective mechanism for selecting vital information to achieve excellent results. There are some effective
attention mechanisms for image caption and machine translation, such as soft and hard attention [28],
and global and local attention [29]. In this study, a deep learning model combined with the attention
mechanism was adopted. The attention mechanism was used to focus on the more sensitive features of
specific labels in the training process for improving the performance of model. Deep neural networks,
including CNNs and recurrent neural networks, can achieve better results if they are equipped with
an attention mechanism. In this paper, a multi-scale convolutional neural network (MSCNN) was
combined with the multi-attention mechanism to propose a novel method for bearing fault diagnosis.
The MSCNN is different from the multi-scale information in Reference [14], which was obtained
from the signal before the input of the CNN; here, the multi-scale feature was obtained from the
training process, combining it with the multi-attention mechanism. The proposed method achieved
excellent results in simultaneously identifying the fault type and fault degree of bearings. Furthermore,
the identification of specific bearing conditions was improved using the multi-attention mechanism.

2. Proposed Method

As discussed above, a shallow multi-scale convolutional neural network with multi-attention
(MA-MSCNN) is proposed for bearing fault diagnosis. The TFR, as the input of the model, contains
time and frequency domain information of bearing vibration data, and the TFR can effectively represent
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the complex and nonstationary information of bearing degradation signals [22]. Compared with the
existing methods which only use the TFR to extract features manually, MSCNN can more fully mine
the multi-scale information in the data for classification. Because of the low visual complexity of
TFR images, the shallow structure of MA-MSCNN effectively avoids overfitting while ensuring fault
diagnosis accuracy. More importantly, the proposed multi-attention mechanism allows the model to
pay more attention to features which are valuable for classification, and, based on the experimental
results in Section 3, the effectiveness of the model for fault identification was further improved. Firstly,
the samples were generated by enhanced sampling [30]. Then, 1D vibration data were converted to
two-dimensional TFR image data via continuous wavelet transform. Because the frequency range
of the vibration data was broad, and the size of the generated TFR image was huge, the bilinear
interpolation method was used to reduce the size of the TFR. The resized TFR image was used as the
input of MA-MSCNN. During the training process, the parameters were updated using the Adam
optimizer. The procedure of the proposed method is illustrated in Figure 1.
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Figure 1. Framework of the proposed fault diagnosis method and structure of the multi-scale
convolutional neural network with a multi-attention mechanism.

2.1. Time–Frequency Representation

Firstly, samples were generated by improved sampling, and the enhanced sampling as a data
augmentation technology is shown in Figure 2. Samples were sampled in the vibration data of each
health condition, and each degree represented the damage by enhanced sampling. Then, each sample
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was converted to 2D image data. Compared with the time–frequency image obtained by short-time
Fourier transform, the time–frequency image obtained by wavelet transform is better [17], because the
resolution of wavelet transform at high frequency can be adjusted automatically, and the resolution of
the TFR image obtained is higher. It has a sinusoidal basis function, which is different from Fourier
transform. In wavelet transform, the signal can be decomposed into different resolutions in different
time and space scales by transforming and scaling the wavelet basis function. The reason why this
operation can be performed is due to the limited width of the time domain and frequency domain of
the wavelet basis function used in the wavelet transform. Monitoring rotating machinery conditions
is one of its main application fields [31]. A new concept of wavelet was firstly proposed, and then
continuous wavelet transform was applied as shown below.

Ψα,β(t) = |α|−
1
2 Ψ

(
t− β
α

)
; α, β ∈ R, α , 0, (1)

U(α, β) =
∫
∞

−∞

x(t)Ψα,β(t)dt, (2)

U(α, β) =
∫
∞

−∞

x(t)|α|−
1
2 Ψ

(
t− β
α

)
dt, (3)

where α is the scaling parameter, β is the translating parameter, and Ψ(t) is a continuous wavelet,
the shape and displacement of which are determined by α and β, respectively. The Morlet wavelet,
similar to the impulse signal of rotating machinery, was chosen as the mother wavelet, due to the lack
of a standard or general method to select mother wavelets [32], where U(·) is the wavelet 2D coefficient
of the 1D degradation signal x(t), which is the time–frequency representation (TFR).
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Figure 2. The samples generated by enhanced sampling.

The TFR images were generated from all the samples by continuous wavelet transform through
Equations (1)–(3). In order to illustrate the variation of frequency energy with different health conditions
and the variation of frequency energy with time, TFR images of each label are given in Figure 3.
When the bearing was in a normal condition, the rotation frequency was apparent in the TFR image,
and the frequency fluctuation was not evident. However, in the conditions of faults on the testing
bearings at the inner raceway, outer raceway, and ball, the bearings under defect conditions had
periodic impact phenomena, causing the effect of modulation.
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Figure 3. The vibration signal converted to a time–frequency representation (TFR) image by continuous
wavelet transform: (a) waveform for the sample in normal conditions; (b) TFR image for the sample in
normal conditions; (c) waveform for the sample with an inner raceway fault; (d) TFR image for the
sample with an inner raceway fault; (e) waveform for the sample with a ball fault; (f) TFR image for the
sample with a ball fault; (g) waveform for the sample with an outer raceway fault; (h) TFR image for
the sample with an outer raceway fault.

2.2. Dimensionality Reduction (Image Resize)

The vibration data of the testing bearing were collected by an accelerometer with a sampling
frequency of 12 kHz, and the vibration signal included a frequency range of 0–6000 Hz. The size of
the original generated TFR image was 1000 × 6000, and we needed to reduce the dimensions due to
the high-dimensional features of these TFRs. Instead of using general approaches such as principal
component analysis (PCA) and nearest-neighbor interpolation, a simple and effective method was
introduced, named bilinear interpolation, which was effectively applied in image processing [33].
The bilinear interpolation performed a linear interpolation operation in two directions, making full
use of the actual pixel values in the source image to determine the pixel value in the target image.
Therefore, it had a much better scaling effect than the simple nearest-neighbor interpolation.

Figure 4 shows that Q1,1, Q1,2, Q2,1, and Q2,2 were the four pixels in the original image, and the
corresponding positions were (x1, y1), (x1, y2), (x2, y1), and (x2, y2); P(x, y) was the result of the pixels
resized, as shown below.

f (R1) ≈
x2 − x
x2 − x1

f (Q1,1) +
x− x1

x2 − x1
f (Q2,1), (4)

f (R2) ≈
x2 − x
x2 − x1

f (Q1,2) +
x− x1

x2 − x1
f (Q2,2), (5)

f (P) ≈
y2 − y
y2 − y1

f (R1) +
y− y1

y2 − y1
f (R1). (6)
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Figure 4. Dimensionality reduction via bilinear interpolation.

These TFR images were resized to 28 × 28 to train the MA-MSCNN model using bilinear
interpolation through Equations (4)–(6); the resized image of one TFR image is shown in Figure 5.
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2.3. Multi-Scale Convolutional Neural Network (MSCNN)

Classification in related fault diagnosis based on CNNs only uses the features of the last layer.
Thus, many detailed pieces of information in the inter-layers are lost through these feature flows.
Inspired by LeCun [26], the MS convolutional layer was proposed aiming to keep the global and local
information to increase the network capacity. The MS layer combined multiple convolution kernels
of different sizes in the same convolutional layer. The resulting MS convolutional feature map was
mixed, then passed to the next pooling layer for subsampling, and imposed to the fully connected
layer; finally, the result was obtained through the output layer by softmax.

After the convolution of the kernels and the input image, local features were formed in a
convolutional layer, and then a nonlinear activation function was imposed. A three-dimensional
tensor, containing a stack of matrices called feature maps, was the output of the convolutional layer.
The representation of the output feature map in the convolutional layer is shown below.

YT
j = ϕ

 n∑
i=0

ωT
ij ∗YT−1

j + bT
j

, (7)

where the ∗ operator was used for the 2D convolution of the channel., In this convolution operation,
YT−1

j is the j-th input tensor of layer T − 1, and YT
j is the j-th output tensor of layer T; bT

j is the weight of

convolution bias, while ωT
ij is the weight of convolution kernel; ϕ(·) is a nonlinear activation function

with, which the final output can be achieved.
In the traditional neural network, the high-level feature obtained by the last convolution layer

after the layer-by-layer convolution operation is used for the final task fitting, and the high-level feature
tends to be stable after multi-layer convolution. In some cases, some detailed low-level features may
be overlooked. The MS layer of MA-MSCNN was combined for convolution kernels on different scales
in the second convolutional layer before the formation of a mixed layer. The mixed layer helped the
net to learn higher-level features and low-level features, in order to represent the image features with
fewer neurons. The MS layer is illustrated in Figure 6. The output of the mixed layer can be written as

Y = ϕ

 n1∑
i=0

ω1
i j ∗ x1

i +

n2∑
i=0

ω2
i j ∗ x2

i +

n3∑
i=0

ω3
i j ∗ x3

i +

n4∑
i=0

ω4
i j ∗ x4

i + b j

, (8)
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where x1
i , ω1

i j, x2
i , ω2

i j, x3
i , ω3

i j, and x4
i , ω4

i j denote the neurons and weights from the kernels of the
multi-scale convolution layer, whereas ni means there are n filters in Conv2_i. Y, as the output of the
mixed layer, is sent into the next layer. The size of all feature maps remains the same, as they are fed
into the attention module, which requires the same size for multi-scale features.
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Figure 6. The multi-scale (MS) layer includes four different scale convolutions. X1, X2, X3, X4 are
the feature maps from the different scale convolutions, and Y represents the concatenated multi-scale
feature maps.

2.4. Multi-Attention Mechanism

2.4.1. Spatial Attention

According to the TFR image of the bearing vibration data, partial regions of the image corresponded
to the different fault types, which were observed by the spatial attention mechanism. YW×H represents
the output of a feature map from the MC layer. The width (W) and height (H) were unfolded to reshape
YW×H into a vector (y1, y2, . . . , ym) in which m = W ×H. Here, yi was regarded to be the feature of
the i-th location. The single-layer neural network and softmax function were applied successively on
the image area to form the attention distribution. The attention distribution α was generated by a
multi-layer perceptron and a softmax function. The spatial attention model φs can be defined as

αi = so f tmax(ϕ(ωiyi + bi)), (9)

where ωi and bi are the weight and bias of model. After the spatial attention weights (αi) were
generated through Equation (9), the feature was represented as a vector (α1y1,α2y2, . . . , αmym) by
element multiplication. Finally, the obtained feature vectors were reshaped into Y′W×H.

2.4.2. Channel-Based Attention

Spatial attention from the visual feature V was not the basis of attention. The feature V in this
study was analyzed by introducing a channel-based attention mechanism. Notably, the mode detectors
were provided by the CNN filters, and the response of the corresponding convolution filter could
activate the feature map channel in the CNN. Therefore, the application of the attention mechanism
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in channel mode could be regarded as a way to select the most sensitive feature channel for fault
recognition. As shown in Figure 6, Y = [y1, y2, . . . , ym] were the feature maps generated from the
previous layer, where y j is the j-th channel of the feature maps Y, and m is the total number of channels.
The channel attention model φc can be defined after the definition of the spatial attention model,
which is shown below.

β j = so f tmax
(
ϕ
(
ω jy j + b j

))
, (10)

where β j is the channel-wise attention weight, and ω j and b j are weight and bias terms. The final
representation Yatten and channel attention weights β j can be defined as follows:

Yatten =
[
y′1, y′2, . . . , y′m

]
, (11)

y′j =
m∑

j=1

β jy j. (12)

In addition to using channel attention and spatial attention separately, there were two kinds of
models according to the different realization order of the two attention mechanisms, which combined the
two attention mechanisms. The first type, SC-Attention, applied spatial attention before channel-wise
attention. The second type, denoted as CS-Attention, was the model with spatial attention implemented
first. All training objectives were to minimize the cross-entropy loss. The effects of the two models on
the results of fault diagnosis are also compared in the experimental analysis.

2.5. MA-MSCNN Training

The topology of the MA-MSCNN is shown in Figure 7. The classification layer after multi-attention
was a two-layer fully connected multi-layer perceptron with rectified linear unit (ReLU) activation
function and softmax output, and the dropout layer with a 50% rate was set between the two
fully connected layers to prevent overfitting. Features can be aggregated in different locations of
feature mapping through the pooling layer following the convolution layer. The convolution feature
dimensions of convolution layers can also be reduced through pooling; as the size of the feature graph
decreases, the computational efficiency is improved. Max-pooling was employed, which is given as

YT
j (m, n) = max

0≤p,q<s

{
YT−1

j (m·s + p, n·s + q)
}
, (13)

where YT−1
j and YT

j are the j-th input tensor of layer T − 1 and layer T, and the pooling size is s× s. At
last, the fully connected layer enables the expansion of the output of the last pooling layer to be the
input of the softmax layer for diagnosis. In this process, the cross-entropy lies between the true label
and the estimated softmax output, which is the loss function of MA-MSCNN, defined as

J(θ; f ,ρ) = −
1
m

m∑
i=0

ρ(i) log
[
hθ

(
f (i)

)]
+

(
1− y(i)

)
log

[
1− hθ

(
f (i)

)]
, (14)

where f is the expanding feature in the last layer, and ρ is the desired output for diagnosis; hθ is
the regression function for result predicting, and θ = {ω, b} denotes the parameters of the function.
There are many similarities between traditional CNN and other parts of MA-MSCNN. The initialization
of the weights and biases for all layers was carried out firstly in the training of MA-MSCNN. In order
to minimize the loss function when the learning rate was 0.001, the Adam optimizer was used to
optimize the parameter set θ of MA-MSCNN. A learning rate too high or too low may result in training
divergence or slow convergence, respectively, neither of which are favorable. Generally, in order to
ensure the speed and stability of training, repeated experiments in training were used to determine the
appropriate learning rate. The random division of the training samples into several small batches,
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containing 16 samples in each batch, was carried out in each epoch. Then, they were put into the
network. The details of the architecture of MA-MSCNN are shown in Table 1.

Energies 2019, 12, x FOR PEER REVIEW 10 of 19 

 

Table 1. The details of the architecture of the shallow multi-scale convolutional neural network with 
multi-attention (MA-MSCNN). 

Layer Parameter Value Output size 
Input layer - - 28 × 28 

C1 
Kernels 7 × 7 × 32 28 × 28 × 32 Strides 1 
Padding Same 

P1 
Ksize 2 × 2 14 × 14 × 32 

Strides 2 

MS layer 

Kernel_1 3 × 3 × 64 

14 × 14 × 256 

Kernel_2 5 × 5 × 64 
Kernel_3 7 × 7 × 64 
Kernel_4 9 × 9 × 64 
Strides 1 

Padding Same 

P2 
Ksize 2 × 2 7 × 7 × 256 

Strides 2 
F1 neurons 1024 1024 × 1 
Dl Dropout rate 50% - 
F2 neurons 1024 1024 × 1 

The multi-scale features [26] and deep hidden identity features [27] showed that the last 
convolutional layer had more constant and robust deep features (global information) than the low-
level layers, making it suitable for “large data” in complex operating conditions. Many precise details 
(local information) contained in low-level features which are sensitive to interference would be 
partially lost in high-level layers, which is unfavorable for the dissemination of information in the 
network. In this case, by inputting the multi-scale convolution result of the last convolution layer in 
the fully connected layer, the global and local features could be preserved simultaneously, making 
the classification more accurate. The topology of the MA-MSCNN proposed is shown in Figure 7. 
The feature maps of C1 were the outputs of the C1 layer using 32 filters. The multi-scale feature maps 
concatenated conv2_1, conv2_2, conv2_3, and conv2_4 generated by the MS-layer, as shown in Figure 
6. The attention feature maps were generated using the attention mechanism described in Section 2.4. 
From the channel attention feature maps shown in Figure 8, when the color of the feature channel is 
darker, the channel attention weight 𝛽  in Equation (10) is larger, which means that the channel of 
feature is more sensitive for fault recognition. Lighter colors have the opposite effect. In the spatial 
attention feature maps, the darker part represents a larger spatial attention weight 𝛼  in Equation 
(9), which means that, in each feature map, the information in this area is more relevant to the true 
label of the sample. The reweighted feature maps using the attention mechanism pay more attention 
to the features related to bearing health condition. 

 
Figure 7. The topology of the shallow multi-scale convolutional neural network with multi-attention 
(MA-MSCNN). C1 is the first convolution layer with 32 filters with a size of 7 × 7. The MS layer as the 
second convolution layer includes four convolution layers of 64 filters with a size of 3 × 3, 64 filters 
with a size of 5 × 5 , 64 filters with a size of 7 × 7, and 64 filters with a size of 9 × 9. The classification 

Figure 7. The topology of the shallow multi-scale convolutional neural network with multi-attention
(MA-MSCNN). C1 is the first convolution layer with 32 filters with a size of 7 × 7. The MS layer as the
second convolution layer includes four convolution layers of 64 filters with a size of 3 × 3, 64 filters
with a size of 5 × 5, 64 filters with a size of 7 × 7, and 64 filters with a size of 9 × 9. The classification
layer includes two fully connected layers with 1024 units, and the dropout layer between two fully
connected layers avoids overfitting with a 50% dropout rate.

Table 1. The details of the architecture of the shallow multi-scale convolutional neural network with
multi-attention (MA-MSCNN).

Layer Parameter Value Output size

Input layer - - 28× 28

C1
Kernels 7× 7× 32

28× 28× 32Strides 1
Padding Same

P1
Ksize 2× 2

14× 14× 32Strides 2

MS layer

Kernel_1 3× 3× 64

14× 14× 256

Kernel_2 5× 5× 64
Kernel_3 7× 7× 64
Kernel_4 9× 9× 64
Strides 1

Padding Same

P2
Ksize 2× 2

7× 7× 256Strides 2
F1 neurons 1024 1024× 1
Dl Dropout rate 50% -
F2 neurons 1024 1024× 1

The multi-scale features [26] and deep hidden identity features [27] showed that the last
convolutional layer had more constant and robust deep features (global information) than the
low-level layers, making it suitable for “large data” in complex operating conditions. Many precise
details (local information) contained in low-level features which are sensitive to interference would be
partially lost in high-level layers, which is unfavorable for the dissemination of information in the
network. In this case, by inputting the multi-scale convolution result of the last convolution layer in
the fully connected layer, the global and local features could be preserved simultaneously, making
the classification more accurate. The topology of the MA-MSCNN proposed is shown in Figure 7.
The feature maps of C1 were the outputs of the C1 layer using 32 filters. The multi-scale feature maps
concatenated conv2_1, conv2_2, conv2_3, and conv2_4 generated by the MS-layer, as shown in Figure 6.
The attention feature maps were generated using the attention mechanism described in Section 2.4.
From the channel attention feature maps shown in Figure 8, when the color of the feature channel is
darker, the channel attention weight β j in Equation (10) is larger, which means that the channel of
feature is more sensitive for fault recognition. Lighter colors have the opposite effect. In the spatial
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attention feature maps, the darker part represents a larger spatial attention weight αi in Equation (9),
which means that, in each feature map, the information in this area is more relevant to the true label of
the sample. The reweighted feature maps using the attention mechanism pay more attention to the
features related to bearing health condition.
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2.6. MA-MSCNN Fault Diagnosis

The original vibration data were cut into samples of the same size by enhanced sampling, and then
the samples were labeled and divided into a training set and test set. The vibration data sample was
converted into a cropped TFR to construct the input of the MA-MSCNN. The detected fault condition
came from the result of fault detection, which was also the output of the model.

3. Experimental Verification

A series of experiments were carried out to evaluate the effectiveness of the proposed bearing fault
diagnosis method. The Bearing Data Center of Case Western Reserve University provided experimental
data for multiple faults [34]. Single point faults of 0.007, 0.014, and 0.021 inches were distributed on
the rolling parts, and the inner and outer rings of drive end bearings, respectively. In the experiment,
there were four load conditions, including 0, 1, 2, and 3 hp. The vibration generated in the test was
measured at 12-kHz sampling frequency. According to the proposed method, fault type and fault degree
could be separated simultaneously. The damage degree of the bearing was indicated by the fault sizes
of 0.007, 0.014, 0.021, and 0.028 inches. Twelve kinds of bearing health conditions under four kinds of
loads were included in the dataset, among which the same health conditions under different loads were
divided equally. Table 2 shows the 12 data labels from different fault types and different fault degrees.
Samples were obtained in the vibration data of each health condition by enhanced sampling. Each sample
contained 1000 points, and the stride of enhanced sampling was 100. Therefore, each dataset contained
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4360 samples. In total, 70% of the 17,440 samples were used as training samples and 30% were used as
test samples. Figure 9 shows that the loss value and accuracy of the proposed MA-MSCNN tended to
stabilize during the training steps of 8000 to 10,000. Thus, in the experiment, the number of training steps
was determined to be 10,000 steps. The model was built by TensorFlow (1.8.0) and was only completed
by central processing unit (CPU) training. The training time was nearly six hours on a laptop computer
(64-bit, i7 7700HQ 2.8-GHz CPU, 16 GB random-access memory (RAM)).

Table 2. The labels of data with different fault types and different degrees.

Fault Degree Inner Ball Outer Normal

0.007 I-07 B-07 O-07

N-00
0.014 I-14 B-14 O-14
0.021 I-21 B-21 O-21
0.028 I-28 B-28 -
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3.1. Evaluations of Single Attention

In this section, the comparison of a single kind of attention mechanism with the multi-scale
CNN is evaluated. S_1 was a pure spatial attention mechanism followed by the first convolution
layer (C1). After getting the spatial attention weights from the attention mechanism, we combined it
with the feature maps of the C1 layer through element multiplication and fed it into the next layer.
S_2 was a pure spatial attention mechanism followed by the MS layer. Then, the spatial weighted
feature maps were fed into the next layer for classification. C_1 was a pure channel-based attention
mechanism followed by the first convolution layer (C1). After getting the channel attention weights
from the attention mechanism, we combined it with the feature maps of the C1 layer using Equations
(11) and (12) and fed it into the next layer. C_2 was a pure channel-based attention mechanism
followed by the MS layer. Then, the channel weighted feature maps were fed into the next layer for
classification. N_0 was the MSCNN without an attention mechanism, and the architecture was similar
to the multi-attention layer removed in Figure 7.

According to the statistics during the experiment, there were a total of 51,124 valid samples
participating in this section of the validation, of which 35,787 were for training, and 15,337 were for
testing. All the results are reported in Figure 10. The identification of each faulty label in each method
is represented in the form of a confusion matrix. According to the results from Figure 10, we can make
a few observations. Firstly, from the average recognition accuracy, shown in Figure 10f, by identifying
all the test samples, we can see that the fault recognition ability of the model was improved by
setting the single attention mechanism followed by the first convolution layer (C1). Secondly, from the
confusion matrix shown in Figure 10a–e, we can see that the single attention mechanism had an
impact on the recognition of the specific condition of the bearing, and the accuracy of normal condition
(N_0) recognition was significantly improved by the model. Thirdly, from the recognition results,
the identification of the label I-14 sample using the single attention mechanism was not improved,
and the sample identification accuracy of the label I-07 was even reduced.
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3.2. Evaluations of Multi-Attention

Depending on the order of implementation of channel-based attention and spatial attention,
there were two types of models that combined the two attention mechanisms. The distinction between
these two types is shown in Figure 11. The first type, named the SC-Attention mechanism, applied
spatial attention before channel-based attention. Firstly, initial feature map Vl was given, and the
spatial attention weight αl was obtained by using the spatial attention φs. The spatial weighted feature
maps were obtained by the linear combination of αl and Vl. Then, the spatial weighted feature maps
were input into the channel-based attention model φc to receive the channel attention weight βl. Finally,
the channel attention weights βl and feature maps after spatial attention were multiplied in the channel
dimension to get the final feature Xl. The second type, denoted as the CS-Attention mechanism, was a
model with the channel-based attention implemented first. For the CS-Attention mechanism, given the
initial feature map Vl, the channel attention weight βl was firstly obtained using the channel-based
attention φc. Then, the channel weighted feature maps were input into the spatial attention model φs
to obtain the spatial attention weight αl. Finally, feature maps Xl were obtained by multiplying the
spatial weights αl and the feature maps after channel attention in the spatial dimension.
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In this section, the comparisons of MA-MSCNN with different kinds of multi-attention mechanisms are
evaluated. SC_1 was the SC-Attention mechanism followed by the first convolution layer (C1). The feature
maps after multi-attention mechanism were fed into the next layer. CS_1 was the SC-Attention mechanism
followed by the first convolution layer (C1). SC_2 was the SC-Attention mechanism followed by the MS
layer. Then, the attention weighted feature maps were fed into the next layer for classification. CS_2 was
the CS-Attention mechanism followed by the MS layer. The results of these four comparisons are shown
in Figure 12. According to the results from Figure 12, we can make a few observations. Firstly, from the
average recognition accuracy, shown in Figure 12e, by identifying all the test samples, we can see that
the multi-attention mechanism after a multi-scale convolutional layer (MS-Layer) is better than a single
attention mechanism. This shows that the MA-MSCNN model combined with the multi-scale convolutional
layer and the multi-attention mechanism proposed in this paper is more effective in bearing fault diagnosis.
Secondly, by using the multi-attention mechanism, the ability of the model to identify individual fault
types was also improved. It can be seen from the experimental results that the identification of fault labels
I-07 and I-14 was not excellent using the single attention mechanism, and the recognition accuracy of the
two fault labels was significantly improved by the multi-attention mechanism. Tables 3 and 4 show the
identification results for different situations using the single attention mechanism and the multi-attention
mechanism, respectively. Comparing Tables 3 and 4, the results show clearly that the model with the
multi-attention mechanism had better diagnosis accuracies for labels I-07 and I-14 than the model with the
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single attention mechanism. Table 5 shows the recognition results of the different fault degrees under each
fault type. It can be seen that the diagnosis method proposed in this paper can also perform well in the
case of a small difference in fault degree.Energies 2019, 12, x FOR PEER REVIEW 16 of 19 
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Table 3. Recognition accuracy of fault labels I-07 and I-14 using single attention mechanisms.

S_1 S_2 C_1 C_2 N_0

I-07 98.55 96.44 98.45 99.54 99.46
I-14 96.82 95.87 99.38 90.96 95.41

Table 4. Recognition accuracy of fault labels I-07 and I-14 using multi-attention mechanisms.

SC_1 SC_2 CS_1 CS_2

I-07 99.35 99.14 99.89 99.77
I-14 98.24 99.23 97.67 99.38

Table 5. Recognition results for different fault degrees.

Type Inner Ball Outer Normal

Fault degree 0.007 0.014 0.021 0.028 0.007 0.014 0.021 0.028 0.007 0.014 0.021 -
No. samples 4360 4360 4360 4360 4360 3266 4359 4360 4360 4359 4260 4360
Accuracy (%) 99.14 99.23 100 99.92 99.63 100 100 100 100 99.70 100 100

4. Comparison with Related Works

As a common method in the study of mechanical fault diagnosis, the rolling bearing dataset used
in this investigation is very popular. Many excellent classification results were reported in recent years
(95%) and higher testing accuracies were achieved in References [9,14,15,21]. However, when studying
the existing methods for this dataset, it was found that the accuracy of the current intelligent diagnosis
reached a ceiling. Most studies focused on the input data and the structure of model, whereas very
limited work could be found on efficiently mining multi-scale features using the attention mechanism.

In the latter case, a testing accuracy of 97.91% was obtained in Reference [9] using optimized support
vector machines. The model was trained by 880 samples, and the number of test samples was 1320.
Then, 1000 test samples were divided into 11 classes with different fault types and degrees. An improved
multi-scale cascade CNN (MC-CNN) was proposed in Reference [14] to mine multi-scale features of
input signals. This study focused on the input data of the CNN, and the multi-scale information was
obtained in the input layer to improve the performance of the CNN. Only four bearing conditions
were classified, and 99.61% testing accuracy was obtained based on 50 experiments. The 800 samples
used in the experiment were divided into training sets and testing sets according to three proportions,
and the model had the best testing accuracy when the training set had the largest number of samples.
Ten bearing conditions were considered in Reference [15], and 20,000 samples were obtained via data
augmentation. As a result, as high as 98.8% classification accuracy was achieved from 2500 testing
samples. In Reference [21], a two-stage machine learning method based on unsupervised feature learning
and sparse filtering was proposed. The experimental dataset contained 4000 samples, and a fairly high
identification accuracy of 99.66% was obtained when 10% of samples were used for training.

The method proposed in this paper allowed achieving an accuracy of bearing fault diagnosis
as high as 99.86%. The MSCNN model with a multi-scale attention mechanism provided higher
recognition accuracy, as shown in Figure 11e. This study carried out a more detailed condition
segmentation using the same dataset obtained from Case Western Reserve University. Considering
12 bearing health conditions, the trained model identified 15,337 testing samples. A detailed study
on the comparisons of classification accuracy with other researches on the same bearing dataset with
diagnosis accuracy higher than 95% is shown in Table 6.
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Table 6. Comparisons of classification accuracy of other researches on the same bearing dataset.

Models Method Number of Fault Classes Testing Accuracy

ICDSVM [9] 11 97.91%
MC-CNN [14] 4 99.61%
FMCNN [15] 10 98.8%

Unsupervised learning [21] 10 99.66%
MA-MSCNN Proposed 12 99.86%

5. Conclusions

In this paper, a novel multi-scale convolutional neural network with a multi-attention model,
dubbed MA-MSCNN, was proposed for bearing fault diagnosis. MA-MSCNN combines multi-scale
convolutional layers with a multi-attention mechanism to optimize the model’s use of multi-scale
information to achieve advanced good performance in intelligent bearing fault diagnosis. Since there is
an MS layer in the MA-MSCNN, both global and local features can be preserved. Then, attentive features
generated by a multi-attention mechanism allow the better utilization of label-related information
in classification. Comprehensive experiments were carried out to evaluate the value of the attention
mechanism. Different kinds of single attention mechanisms and multi-attention mechanisms were
compared. We found that the multi-attention mechanism could effectively improve the diagnosis
accuracy by paying more attention to the features valuable for classification. A comparison with
other methods and related studies was provided to verify the superiority of the proposed method.
The results showed that samples of different fault types and degrees were well distinguished by this
method. Furthermore, the method proposed in this paper effectively improved the accuracy of data
identification of the I-14 label, which was a problem present in Reference [9]. This reveals that the
proposed method can diagnose bearing faults more effectively with varying loads.

In future work, two points need to be addressed. Firstly, the experimental data were collected from
a stable environment, and actual working environments are more complicated. Therefore, in future
work, we will collect fault data in actual work environments and further evaluate the performance
of the proposed model. Secondly, we will develop a real-time fault diagnosis system based on the
method proposed in this paper.
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