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Abstract: Condition monitoring can improve the reliability of wind turbines, which can effectively
reduce operation and maintenance costs. The temperature prediction model of wind turbine
gearbox components is of great significance for monitoring the operation status of the gearbox.
However, the complex operating conditions of wind turbines pose grand challenges to predict
the temperature of gearbox components. In this study, an online hybrid model based on a long
short term memory (LSTM) neural network and adaptive error correction (LSTM-AEC) using
simple-variable data is proposed. In the proposed model, a more suitable deep learning approach
for time series, LSTM algorithm, is applied to realize the preliminary prediction of temperature,
which has a stronger ability to capture the non-stationary and non-linear characteristics of gearbox
components temperature series. In order to enhance the performance of the LSTM prediction model,
the adaptive error correction model based on the variational mode decomposition (VMD) algorithm
is developed, where the VMD algorithm can effectively solve the prediction difficulty issue caused
by the non-stationary, high-frequency and chaotic characteristics of error series. To apply the hybrid
model to the online prediction process, a real-time rolling data decomposition process based on VMD
algorithm is proposed. With aims to validate the effectiveness of the hybrid model proposed in this
paper, several traditional models are introduced for comparative analysis. The experimental results
show that the hybrid model has better prediction performance than other comparative models.

Keywords: deep learning; time series; temperature prediction; adaptive error correction;
wind turbines; VMD

1. Introduction

Wind energy, as a clean and renewable energy, now has been one of the major potential and
practical renewable resources. In recent years, the installed capacity of wind turbines all over the
world has increased rapidly [1,2]. With the increase of installed capacity and wind turbine complexity,
frequent malfunctions result in low reliability and expensive maintenance costs of wind turbines.
According to statistics, the cost of operation and maintenance of onshore wind farms and offshore
wind farms account for about 15–20% and 30–35% of the total revenue, respectively [2,3]. To raise the
availability and reliability of wind turbines, monitoring the operation status of wind turbines and
detecting potential faults are increasingly significant. Gearbox, as a key component of wind turbines,
often occurs various faults, which leads to high maintenance costs. Statistically, the maintenance cost
caused by gearbox is as high as 13% of the total cost [4]. In recent years, monitoring the operation
status of the gearbox has attracted wide attention.
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With the development of the wind power industry, there are numerous studies on wind turbines
fault diagnosis and condition monitoring. According to the methods adopted by these studies, they can
be roughly classified into two types: model-based methods and data-driven methods [5]. In addition to
classical methods such as state estimation and parameter estimation, many new model-based studies
have been proposed in recent years [6–10]. In [8], a set-valued approach is proposed for wind turbine
fault diagnosis. In order to ensure the performance of fault diagnosis, model-based methods need to
establish accurate mathematical models of wind turbines system. However, due to the complexity of
wind turbine systems, it is difficult to establish an accurate mathematical model, which leads to the
difficulty of model-based in practical application [5]. In contrast, data-driven methods do not require
accurate mathematical models, and most wind turbines are equipped with a supervisory control and
data acquisition (SCADA) system, which makes it easy to obtain data. Therefore, the data-driven
method is a very worthwhile aspect to be studied for wind turbine fault diagnosis and condition
monitoring. The temperature of gearbox components is closely related to the operation state of
the gearbox. Excessive temperature will cause the occurrence of faults. Similarly, the occurrence
of faults in a component will also be accompanied by a significant change in temperature [11].
Therefore, high temperature warning of gearbox components is crucial for condition monitoring of
wind turbines and reduction of operational and maintenance costs. The key of high-temperature
warning is to improve the accuracy of the temperature prediction model as much as possible. In this
paper, a data-driven method based on temperature prediction is studied to monitor the operation
status of the gearbox.

Generally, according to the sources of data, the time series prediction models can be divided
into two categories as the multi-variable models and single-variable models in the wind turbines
system. At present, most temperature prediction models adopt multi-variable data based on SCADA
system [12,13]. Huang et al. [12] put up with a hybrid method combining principal component analysis
(PCA) and nonlinear autoregressive dynamic neural network to establish a gearbox oil temperature
prediction model. Wang et al. [13] presented a condition monitoring method of wind turbine main
bearing based on the deep belief network (DBN), where DBN is adopted to establish the normal
temperature prediction model, so as to realize the condition monitoring of wind turbine main bearing.
However, the use of multi-variate data may increase the complexity and uncertainty of the modeling
process, which will reduce the performance of the prediction model. Compared to the multi-variable
model, the single-variable model has lower computational complexity and easier data acquisition [14].

Although single-variable methods are seldom used in temperature prediction of gearbox
components, many prediction methods have been proven to be effective in other aspects of wind
energy systems, such as wind speed and wind power. The prediction methods can be roughly classified
into three categories: the statistical methods [15,16], conventional machine learning methods [17,18]
and deep learning methods [19,20]. Among the statistical methods, autoregressive integrated moving
average (ARIMA) is the most classical and widely adopted model. However, most statistical
methods are difficult to deal with the non-linear characteristics of the time series, which results
in low prediction accuracy. In addition, the conventional machine learning methods are also widely
chosen in time series prediction, which mainly include back propagation (BP) neural networks, radial
basis function (RBF) neural network, extreme learning machine (ELM), support vector machine
(SVM) methods and so on. Nevertheless, although the traditional machine learning method is
an intelligent method, its ability of learning data nonlinearity and non-stationarity is not strong
because of its shallow structure. In recent years, with the breakthrough of neural network technology,
deep learning approaches have attracted wide attention because of its better performance in many
tasks. Compared with the shallow methods, the deep learning methods can have a better ability of
non-linear expression and data feature extraction [21]. Wang et al. [19] carried out a novel hybrid deep
learning-based approach. The comparison results indicate that the hybrid model can better learn the
non-linear and non-stationary characteristics.
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The performance of gearbox condition monitoring depends on a high precision temperature
prediction model, especially in the part of the high-temperature series. To this end, it is of great
significance to develop optimization methods for promoting prediction performance. The existing
optimization algorithms have three main aspects, including signal processing techniques [22–24],
parameters optimization techniques [25,26] and error correction techniques [27,28]. As shown in
Table 1, it is a summary of the above-mentioned and related algorithms.

In signal processing techniques, the signal decomposition method is widely used, such
as empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD),
fast ensemble empirical mode decomposition (FEEMD) and complete ensemble empirical mode
decomposition (CEEMDAN). Various literatures have proved the effectiveness of decomposition
algorithms. However, these traditional decomposition methods have some shortcomings. For example,
sometimes it is difficult to decompose multiple low-frequency components for wavelet decomposition
(WD) and wavelet packet decomposition (WPD), while other decomposition algorithms, including
EMD, EEMD, FEEMD and so on, currently lack the strict mathematical proof [29]. In order to
overcome these drawbacks, some new decomposition algorithms are adopted in time series prediction,
such as empirical wavelet transform (EWT) and variational mode decomposition (VMD). In [24],
the VMD approach is chosen to decompose the corresponding time-series signals, which avoids the
interaction between different modes. In addition to the decomposition algorithm mentioned above,
error correction is also a method to improve the performance of the prediction model [30]. In [28],
an error correction model based on ICEEMDAN and ARIMA algorithm is proposed to promote the
prediction accuracy.

In addition, there are still some deficiencies in the field of research, which need to be
further studied. First, many literatures decompose training data and testing data together [31,32],
which is not feasible in the process of real-time prediction. Regretfully, other literature does not
clearly explain the construction process of the modeling data. Second, different from the wind speed
prediction, the temperature will drop dramatically due to shutdown and other factors in the operation
of wind turbines, which will result in inaccurate prediction results.

In the study, a new hybrid forecasting method is proposed, which consists of a preliminary
temperature prediction model and an adaptive error correction model. The innovations and
contributions of the proposed hybrid model are as follows: (a) with aims to avoid the complexity
and uncertainty of multi-variable prediction model, a prediction model based on single-variable data
is proposed. In this paper, a more suitable deep learning model for time series analysis, long short
term memory (LSTM) model, is adopted, which can better learn the non-linear and non-stationary
characteristics of temperature series; (b) in view of the problem of drastic temperature drop caused
by the above mentioned downtime phenomenon, an adaptive error correction model is designed to
improve the precision of prediction model; (c) to avoid the weakness of some decomposition algorithms
mentioned above such as EMD, EEMD, FEEMD and CEMDAN, the VMD decomposition algorithm is
employed in this paper, which can effectively reduce the chaotic characteristics and non-stationary of
error series; (d) in view of the above mentioned the modeling data construction problems, a rolling
data decomposition process which can be applied in practice is proposed.

The organizational structure of the paper is as follows: (a) the framework and algorithms of the
hybrid prediction model are explained in Section 2; (b) gearbox components temperature forecasting
case studies are presented in Section 3; and (c) conclusions are drawn in Section 4.
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Table 1. A summary of existing algorithms related to the proposed hybrid model.

Methods Article Data Model

prediction
methods

statistical methods Masseran et al. [15] single-variable ARIMA-ARCH
Poggi et al. [16] single-variable AR

conventional machine
learning methods

Huang et al. [12] multi-variable PCA, NARX
Li et al. [17] single-variable ANN,RBF

Abdoos et al. [18] single-variable ELM

deep learning
methods

Wang et al. [13] multi-variable DBN
Wang et al. [19] single-variable DBN
Wang et al. [20] single-variable CNN

optimization
methods

signal processing
techniques

Liu et al. [22] single-variable WPD, FEEMD
Mi et al. [23] single-variable WPD, EMD

Naik et al. [24] single-variable VMD

parameter optimization
techniques

Meng et al. [25] single-variable crisscross optimization
Liu et al. [26] multi-variable GA

error correction
techniques

Wang et al. [27] single-variable Markov
Wang et al. [28] single-variable ICEEMDAN-ARIMA

2. Methodology

2.1. The Overall Framework of the Proposed Model

The overall framework of the hybrid model presented in this paper is shown in Figure 1.
The general process of the proposed hybrid model is described as follows:

• The original temperature series was predicted by the LSTM model to generate preliminary
prediction results. Meanwhile, error series was generated by comparing predicted values with
actual values.

• Faced with the non-stationary, high-frequency and chaotic characteristics of error series, the VMD
decomposition algorithm was employed to decompose it into sub-sequences of different
frequencies. In order to apply the model to the online prediction process, as shown in Figure 2,
a rolling data decomposition process was developed. In Figure 2, Ti, Ui and Ri,j represent the
original temperature series, the error series of the preliminary prediction and the frequency
component of error series decomposed by the VMD algorithm respectively, where i is a time label
and j stands for the labels of different frequency components.

• The prediction model of each frequency component was established by the error prediction
model, and the final error prediction results were reconstructed based on the adaptive error
correction algorithm.

• The final forecasting results were obtained by adding the error prediction results with the
preliminary temperature prediction results. When the predicted temperature exceeds a certain
threshold, a high-temperature warning should be carried out.
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Figure 1. The overall framework of the proposed model.

Figure 2. The construction process of modeling data for temperature prediction model.

2.2. Preliminary Prediction Model

This paper is devoted to the temperature prediction of wind turbines gearbox components so as
to better realize the condition monitoring of gearbox. To avoid the complexity and uncertainty of the
multi-variable prediction model, a single-variable prediction method is proposed. Due to the influence
of complex operational conditions, it is difficult for conventional machine learning approaches to
learn the nonlinear and non-stationary characteristics of gearbox components temperature data.
Compared with traditional machine learning methods, deep learning methods have stronger non-linear
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expression ability. LSTM is a deep learning model, which not only has stronger non-linear expression
ability, but also is more suitable for the prediction model of time series because of its memory
characteristics. Therefore, the LSTM algorithm was applied to the preliminary prediction model
of the gearbox component temperature series in this paper.

The LSTM neural network is an improved model based on a recurrent neural network (RNN) [33].
The output of LSTM depends not only on the input and weight of the current neuron, but also on the
input of the previous neuron. Therefore, the LSTM structure is usually more suitable for processing
time-series data. The basic unit structure of the LSTM model is shown in Figure 3. Four elements,
including state of each unit, input gate, forget gate and output gate, are the core of the LSTM model.
The relationship of the LSTM unit states and the three gates are expressed as Equations (1)–(5) [34,35].

ft = σ([wx f , wh f , e f ] · [Xt, ht−1, b f ]
T) (1)

it = σ([wxi, whi, ei] · [Xt, ht−1, bi]
T) (2)

ct = ft ∗ ct−1 + it ∗ tanh([wxc, whc, ec] · [Xt, ht−1, bc]
T) (3)

ot = σ([wxo, who, eo] · [Xt, ht−1, bo]
T) (4)

ht = yt = ot ∗ tanh(ct), (5)

where Xt are input vectors; it, ot and ft represent the output results of input gate, output gate and
forget gate, respectively; ct represents the activation status of each cell; ht is the output results of
memory unit. In addition, wxi, whi, wx f , wh f , wxc, whc, wxo and who are the corresponding weight
vectors; tanh and σ represent activation functions; bi, b f , bc and bo are the corresponding bias vectors;
ec, eo, ei, e f is the vectors of all 1 corresponding to bc, bo, bi, b f .

Figure 3. The basic structure of long short term memory (LSTM) network.

2.3. Adaptive Error Correction Model

The temperature prediction accuracy of gearbox components greatly affects the high-temperature
monitoring performance of gearbox. Therefore, an adaptive error correction model is presented
in this paper, which can increase the accuracy of prediction by predicting error. However, due
to the non-stationary and chaotic characteristics of the error series, it is difficult to predict the
error series directly. Signal decomposition can effectively reduce the non-stationary and chaotic
characteristics of time series, and many literatures have proved the effectiveness of the signal
decomposition method. With aims to overcome the shortcomings of conventional decomposition,
algorithms such as mode mixing problem and lack of mathematical proof, a kind of state-of-art VMD
algorithm was applied in this paper. The final error value was reconstructed by predicting each
decomposition component.
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2.3.1. The VMD Algorithm

VMD, as a new signal decomposition method, has been widely used in recent years. Unlike EMD
recursive solution, VMD transforms the solution problem into a variational problem. The purpose
of the VMD algorithm is to find the inherent modal components of a specified number. To solve this
variational problem, the alternate direction method of multipliers (ADMM) is selected to solve the
modes and corresponding central frequencies. The specific algorithm process of the VMD algorithm is
as follows [36].

(1) The constructive process of variational problems

To calculate the bandwidth of each mode component, the analytical signals of each mode
component are obtained by Hilbert transform, and then the unilateral frequency spectrum is obtained
as follows.

[δ(t) +
j

πt
] ∗ uk(t), (6)

where intrinsic mode function (IMF) is defined as an amplitude modulated frequency modulated signal.
Its expression is uk(t) = Ak(t)cos(φk(t)). δ(t) is the Dirac distribution.

Then the corresponding baseband is obtained by spectrum conversion of analytic signal.

[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt. (7)

By calculating the L2-norm of the above analytical signal derivative and the bandwidth of each
mode, the constrained variational problem is constructed as follows.

min
uk ,ωk

∑
k
‖∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jωkt‖2 s.t. ∑
k

uk = f , (8)

where f is an input signal; {uk} = {u1, . . . , uK} and {ωk} = {ω1, . . . , ωK} represent different modal
components and corresponding frequency centers, respectively. In addition, ∑k uk = ∑K

k=1 uk. ∂t(·)
stands for differential symbols. K is the total number of sub-signals.

(2) The solution process of the variational problem

To solve this variational problem, the constrained variational problems of Equation (8) are
transformed into unconstrained variational problems by using Lagrange multiplier method.

L({uk}, {ωk}, λ(t)) =

(
η ∑

k
‖ ∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jωkt ‖2 + ‖ f (t)−∑
k

uk(t) ‖2

+〈λ(t), f (t)−∑
k

uk(t)〉
)

,

(9)

where η is a quadratic multiplication factor and λ(t) represents Lagrangian multipliers.
The ADMM algorithm is used to solve the above variational problems. In ADMM algorithm,

the saddle point of the Lagrangian expression can be found by alternately updating un+1
k , ωn+1

k and
λn+1. Among them, un+1

k can be updated using the following equation.

un+1
k = arg min

uk∈X
{η ‖ ∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jωkt ‖2 + ‖ f (t)−∑
i

ui(t) +
λ(t)

2
‖2} (10)

where the ωk and the ∑ ui(t) are equivalent to ωn+1
k and ∑ ui(t)n+1, respectively. n is the number

of iterations.
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By using the Parseval/Plancherel Fourier isometry transformation, Equation (10) can be converted
into a frequency domain form and solved in the frequency domain.

ûn+1
k = arg min

uk∈X
{η ‖ jω[(1 + sgn(ω + ωk))û(ω + ωk)] ‖2 + ‖ f̂ (ω)−∑

i
ûi(ω) +

λ̂(ω)

2
‖2} (11)

where ·̂ is used to represent the frequency form of the corresponding signal. sgn is sign function.
Then the ω can be updated as ω−ωk in the first part.

ûn+1
k = arg min

uk∈X
{η ‖ j(ω−ωk)[(1 + sgn(ω))ûk(ω)] ‖2 + ‖ f̂ (ω)−∑

i
ûi(ω) +

λ̂(ω)

2
‖2} (12)

The problem can be changed into a non-negative frequency interval integral form.

ûn+1
k = arg min

uk∈X
{
∫ ∞

0
4η(ω−ωk)

2 | ûk |2 +2 | f̂ (ω)−∑
k

ûk(ω) +
λ̂(ω)

2
|2 dω} (13)

Finally, the solution of the quadratic optimization problem can be obtained as follow.

ûn+1
k =

f̂ (ω)−∑i 6=k ûi(ω) + λ̂(ω)
2

1 + 2η(ω−ωk)2 (14)

where ûn+1
k (ω) can be regarded as the Wiener filtering of the current residual. Similarly, the central

frequencies of the corresponding modes are updated as follows:

ωn+1
k =

∫ ∞
0 ω | ûk |2 dω∫ ∞

0 | ûk |2 dω
(15)

The ωn+1
k is the power spectrum center of the k-th modal component at the n+1 iteration.

The λ̂n+1(ω)can be updated as:

λ̂n+1(ω) = λ̂n(ω) + ρ[ f̂ (ω)−∑
k

ûk
n+1(ω)] (16)

where ρ is the update coefficient of λ̂n+1(ω).

2.3.2. Adaptive Error Correction Algorithm

A prediction model is needed to predict each modal component after VMD decomposition.
To simplify the complexity of the model, the LSTM model is employed to predict each
component decomposed. The input in the error prediction model is the data of the past four moments.
In the selection of the input number of the error prediction model, the grid search method is used to
search the optimal parameters in the prediction performance of the model. Finally, each prediction
component is reconstructed to get the final prediction value. However, the error prediction model has
better prediction performance for the weak volatility part of the series than for the strong volatility
part. Faced with highly volatile parts, the correction model may lead to deteriorating results. To reduce
this situation, the following adaptive error correction algorithms are proposed to further improve the
accuracy. The adaptive error correction algorithms are mainly considered in two aspects: effectiveness
of correction model and amplitude analysis of primary error series. Given d, m and c are the results
of error prediction, error series after correction and error series before correction, respectively. When
g > 0, the correction is defined as invalid. Where g is equivalent to the difference between |m| and |c|.
When g exceeds a certain threshold for continuous moments, the correction of the next time may also
be invalid. In addition, to effectively decrease the influence of worsening correction, it is necessary
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to limit the amplitude of correction errors. The adaptive error correction algorithm is described in
Algorithm 1.

Algorithm 1 The adaptive error correction algorithm.

1: set g = |m| − |c|, k = [1, 2, 3, 4]
2: for each i ∈ [2, len(g)] do
3: if (g[i− 1] > ξ) and (g[i− 2] > ξ) and (|c| < 5)] then
4: d[i] = 0
5: end if
6: end for
7: for each i ∈ [2, len(g)] do
8: if (c[i− 1] > 0) then
9: if (c[i− k] > β) then

10: d[i] = d[i]
11: else if (c[i− k] > 0) then
12: d[i] = α

13: else
14: d[i] = 0
15: end if
16: else
17: if (c[i− k] < −β) then
18: d[i] = d[i]
19: else if (c[i− k] < 0) then
20: d[i] = −α

21: else
22: d[i] = 0
23: end if
24: end if
25: end for

where ξ, α and β is defined as a threshold.
In the process of threshold setting of ξ, α and β, the magnitude of error series is analyzed,

and the threshold is set by grid search within a reasonable range. The effect of threshold setting on
the accuracy of the hybrid temperature prediction model was studied by a grid search algorithm.
In the experiment, the prediction performance of the model fluctuates slightly due to the influence of
parameter initialization. Therefore, when choosing thresholds, we choose a group of thresholds whose
prediction performance is in the middle, which can make the algorithm have better generalization
ability and robustness.

2.4. Model Performance Evaluation

In order to compare the prediction performance of different prediction models, three evaluation
indexes, including the mean square error (MSE), the mean absolute error (MAE) and the mean absolute
percentage error (MAPE), are exploited in this study. The equations of three evaluation indexes are
explained as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (17)

MAE =
1
n

n

∑
i=1
| (ŷi − yi) | (18)

MAPE =
100%

n

n

∑
i=1
| (ŷi − yi)

yi
| (19)
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where ŷi and yi are the predicted results of the model and the actual temperature values, respectively;
and n is the length of the predicted temperature series.

3. Case Study and Contrast Analysis

3.1. Data Description

Almost all wind turbines are equipped with a SCADA system, which makes it very easy to obtain
the temperature data of the gearbox components. In this study, the data is gathered from one wind
farms in Shandong Province, China, which contains thirty-three wind turbines SCADA data at 10-min
intervals from 1 February 2014 to 27 June 2014. In this study, three wind turbine prediction cases are
provided to verify the superiority of the proposed hybrid model. The temperature data of gearbox
components, including gearbox oil temperature, gearbox input shaft temperature, and gearbox output
shaft temperature, are from SCADA system of #1, #2 and #3, where #1, #2 and #3 represent wind
turbine 1, wind turbine 2 and wind turbine 3, respectively. Each data set contains 6400 series of 10-min
data and is divided into two parts, including the first 5400 temperature series and the last 1000 series,
which were used in the training process and the testing process, respectively. Generally speaking,
in common types of wind turbines, the oil temperature early warning temperature threshold and alarm
temperature threshold of the gearbox can be set to 75◦ and 80◦ respectively. The high temperature
warning threshold of gearbox input and output shaft can be set to 80◦. In addition, this paper also
collects two sets of wind speed data of wind turbine 1 to analyze the influence of the decomposition
process for the on-line prediction model. The two datasets contain 600 and 601 observations at 10-min
intervals in time scale, respectively.

3.2. Simulation Result

3.2.1. The Case of Decompose Algorithm

To analyze the application of the decomposition algorithm in real-time time series prediction,
the above two wind speed series are decomposed by EMD and VMD algorithm. Figures 4 and 5 show
the decomposition results.

Through the analysis of Figures 4 and 5, it can be found that whether EMD or VMD decomposition
algorithm, the new data may affect the results of previous data decomposition to a certain extent,
which shows that the new data has a guiding effect on the results of the previous data decomposition.
Therefore, it is not suitable for a real-time prediction model to decompose training data and testing
data together. As shown in Figure 2, a real-time rolling data decomposition process based on VMD
algorithm is proposed, which can be better applied to real-time prediction process. In the training
data of the preliminary prediction model, the original temperature series is used to establish the
preliminary prediction model (LSTM). In the training process of LSTM model, nine temperature values
(such as T1 . . . T9) are used as input vectors (Xi) and the next temperature value (such as T10) is used
as output (yi). Then, the error series generated by comparing the predicted result with actual value.
In the training data of error prediction model, every 200 error series (such as U1 . . . U200) as a group
are decomposed by the VMD algorithm. Then the last data after decomposition (such as R200,j) is
used as the predicted value, and the four data (such as R196,j . . . R199,j) before the last data are used
as input. In the testing data of the error prediction model, the last four decomposed data (such as
R1397,j . . . R1400,j) are taken as input vectors. The final error prediction results are reconstructed by
predicting the value of each frequency component. The final prediction results are obtained by adding
the adaptive error prediction results with the preliminary temperature prediction results.
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(a) (b)
Figure 4. The decomposition results of different wind speed series by the empirical mode
decomposition (EMD) algorithm: (a) wind speed series 1; (b) wind speed series 2.

(a) (b)
Figure 5. The decomposition results of different wind speed series by variational mode decomposition
(VMD) algorithm: (a) wind speed series 1; (b) wind speed series 2.

3.2.2. The Case of Gearbox Components Temperature Prediction

The case uses gearbox components temperature data of #1, #2 and #3. Each experiment consists of
seven prediction models, including the LSTM model, the BP neural network, the ELM model, the LSTM
model with error correction (LSTM-EC), the ELM model with error correction (ELM-EC), the ELM
model with adaptive error correction (ELM-AEC) and LSTM-AEC. In the experiment of comparing
the hybrid model with other models, all models have similar parameter settings. All models are built
and simulated under Windows 10 operating system, Inter-Core i5-7500 CPU @ 3.40 GHz and RAM
of 8 GB. All the experiments are implemented through Python 3.6. The parameters α, β, ξ and the
number of input data in the adaptive error correction algorithm are set to 0.5, 1, 1 and 4, respectively.
In the preliminary temperature prediction model, nine temperature data of historical time were used
as inputs of the model. The BP neural network, containing a hidden layer with 26 neurons, is used
in the three experiments. Three experiments used ELM networks containing a hidden layer with 6,
10 and 10 neurons, respectively. In the training data selection of the LSTM model, in order to make
the model more robust, 1000–4000 observations are selected from 4000 observations, which prevents
special results from special training sets. The decomposition number of the VMD algorithm was set to
8. In addition, the learning rate was 0.6 and the Adagrad optimization algorithm was used in LSTM
and BP models.

The temperature of three gearbox components, including gearbox oil temperature, gearbox
input shaft temperature, and gearbox output shaft temperature, is predicted by the proposed hybrid
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model. Tables 2–4 and Figures 6–14 show the prediction results of different models. In Figures 6–14,
model A–H represents real value, LSTM-EC, LSTM-AEC, LSTM, ELM, ELM-AEC, ELM-EC and BP
respectively. From the above prediction case, it can be concluded that:

(a) By comparing the predictive performance of LSTM, ELM, and BP, the forecasting accuracy of
the LSTM model was higher than other prediction models under the same conditions. Take
the prediction results of wind turbine one gearbox oil temperature as an example in Table 2,
promoting of the MSE of the BP and ELM model by the LSTM model are 0.7129 and 0.4046,
respectively. Thus, it can be seen that the LSTM model can learn more about the non-stationary
and non-linear characteristics of temperature data to a certain extent.

(b) The prediction model with error correction has higher accuracy than the single prediction model
in general. There are some prediction results, such as ELM and ELM-EC prediction results of the
gearbox input shaft temperature in Table 3, which can prove this point. However, there are some
special cases with opposite results, which contains three LSTM and LSTM-EC prediction results
of the gearbox output shaft temperature and so on in Table 4. Therefore, it can be seen that some
residual series will lead to worsening correction results.

(c) Whether with ELM or LSTM, the accuracy of the prediction model with adaptive error correction
can be improved. For example, in the prediction results of gearbox oil temperature in Table 2,
promoting of the MSE of the LSTM model by the LSTM-AEC model are 0.2317, 0.0654 and 0.0819,
respectively.

(d) In all the prediction models involved, the proposed hybrid model has the best forecasting
performance than other comparative models. From Figures 6–14, it can be seen that the predicted
value of the proposed hybrid model in the high-temperature part is very accurate, which
provides a guarantee for high-temperature warning of gearbox components. As shown in
Figures 12 and 14, the temperature of the gearbox output shaft exceeds the high-temperature
warning threshold at several points in #1 and #3 respectively, such as the high-temperature series
starting from time points 45, 218, 629 and 938 in #1.

Table 2. Performance evaluations of different models for gearbox oil temperature prediction.

Model
Wind Turbine One Wind Turbine Two Wind Turbine Three

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

BP 1.5008 0.9053 1.6086 1.5409 0.9932 1.8618 1.7483 1.0916 1.7954
ELM 1.1925 0.8580 1.4192 0.7639 0.6582 1.2515 1.8713 1.1128 1.7849

LSTM 0.7879 0.6476 1.0912 0.7425 0.6000 1.1564 0.7419 0.6194 1.0679
ELM-EC 0.8974 0.5929 1.0725 0.9790 0.6494 1.2663 0.9749 0.6270 1.1342

LSTM-EC 0.7373 0.5228 0.9471 0.8368 0.5815 1.1278 0.8096 0.5618 1.0225
ELM-AEC 0.6858 0.5438 0.9686 0.7066 0.5819 1.1310 0.7355 0.5911 1.0601

LSTM-AEC 0.5562 0.4902 0.8728 0.6771 0.5343 1.0401 0.6600 0.5426 0.9691

Table 3. Performance evaluations of different models for gearbox input shaft temperature prediction.

Model
Wind Turbine One Wind Turbine Two Wind Turbine Three

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

BP 2.5913 1.0706 1.8015 1.9533 0.9144 1.6179 2.6841 1.0255 1.6514
ELM 1.6284 1.0104 1.5815 1.3447 0.7964 1.3750 2.3209 1.1940 1.8400

LSTM 1.1318 0.7194 1.2076 1.1029 0.5708 1.0103 1.6469 0.7458 1.1956
ELM-EC 1.4474 0.7071 1.1817 1.4839 0.7152 1.2518 2.3193 0.8454 1.3877

LSTM-EC 1.2412 0.6557 1.0925 1.2526 0.6527 1.1379 1.9056 0.7704 1.2582
ELM-AEC 1.1376 0.6430 1.0502 1.2871 0.6593 1.1627 1.6162 0.7207 1.1668

LSTM-AEC 1.0052 0.5630 0.9349 1.0691 0.5704 0.9981 1.5309 0.6614 1.0809
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Table 4. Performance evaluations of different models for gearbox output shaft temperature prediction.

Model
Wind Turbine One Wind Turbine Two Wind Turbine Three

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

BP 3.9916 1.2172 2.0092 3.1086 1.1294 1.9873 3.5203 1.2143 1.9511
ELM 3.1493 1.3990 2.1770 2.0997 0.9992 1.7154 3.4253 1.4656 2.2725

LSTM 2.2322 0.9961 1.7227 1.7538 0.8150 1.4096 2.3699 0.9408 1.5193
ELM-EC 3.1834 1.0349 1.7282 2.4298 0.9219 1.5838 3.4413 1.0565 1.7332

LSTM-EC 2.7991 0.9691 1.6238 2.1177 0.8580 1.4753 3.0108 0.9840 1.6220
ELM-AEC 2.2232 0.8794 1.4491 2.0220 0.8294 1.4387 2.4348 0.9101 1.4894

LSTM-AEC 2.0654 0.8140 1.3872 1.6990 0.7347 1.2785 2.2739 0.8257 1.3676

Figure 6. The comparison of different models for gearbox oil temperature prediction in #1.

In practical application, the training process of the model is completed off-line. Once the
model training is completed, the model can be used for real-time temperature prediction, which
is guaranteed by the rolling data decomposition process proposed in this paper. In our forecasting case,
it’s like simulating the whole process, including model training and real-time forecasting. In addition,
the experimental time was measured. The training time of this hybrid model was about 325.1167 s,
but it should be noted that the training of the model was completed off-line. At the same
time, 1000 temperature values were predicted, which took 49.8446 s. The average prediction
time of each temperature was 0.0498 s, which fully satisfied the demand for 10-minute interval
temperature prediction.
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Figure 7. The comparison of different models for gearbox oil temperature prediction in wind #2.

Figure 8. The comparison of different models for gearbox oil temperature prediction in #3.

Figure 9. The comparison of different models for gearbox input shaft temperature prediction in #1.
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Figure 10. The comparison of different models for gearbox input shaft temperature prediction in #2.

Figure 11. The comparison of different models for gearbox input shaft temperature prediction in #3.

Figure 12. The comparison of different models for gearbox output shaft temperature prediction in #1.
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Figure 13. The comparison of different models for gearbox output shaft temperature prediction in #2.

Figure 14. The comparison of different models for gearbox output shaft temperature prediction in #3.

4. Conclusions

The accuracy of the prediction model directly affects the high-temperature warning performance
of the wind turbines gearbox components. In order to achieve higher forecasting accuracy, a novel
hybrid model, named the LSTM-AEC, is proposed in the study, which consists of the LSTM
preliminary prediction model and adaptive error correction algorithm based on the VMD method.
Besides, the dynamic and real-time data decomposition process of the VMD algorithm ensures that the
proposed model can be used in the online process. To demonstrate the effectiveness and superiority
of the proposed hybrid model, three wind turbine prediction experiments are given in this paper.
The prediction models for performance comparison include the hybrid model (LSTM-AEC), BP, ELM,
LSTM, ELM-EC, LSTM-EC, and ELM-AEC. Based on the comparative analysis of the prediction
performance of different models, the following conclusions can be drawn. (a) By comparing LSTM
with ELM and BP algorithms, it can be found that LSTM is superior to other models to some extent;
(b) by comparing the two sets of models which contains ELM, ELM-EC, ELM-AEC, LSTM, LSTM-EC
and LSTM-AEC, it is found that the adaptive error correction algorithm can optimize the preliminary
prediction results to a certain extent; (c) according to the prediction results of three wind turbines,
the proposed hybrid model has better performance than other comparative models. Moreover,
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the prediction accuracy of the proposed hybrid model in the high-temperature series part is high, which
lays a solid foundation for the high-temperature warning of the wind turbines gearbox components.

Although the current research shows that the hybrid model has better prediction performance in
temperature prediction of gearbox components, there are still some limitations of the model which need
further study. The influence of model parameter initialization results in the fluctuation of prediction
performance. Although this fluctuation does not affect the conclusions drawn in this paper, it shows
that the hybrid model proposed in this paper has the possibility of further improvement. In addition,
the hybrid model proposed in this paper only predicts the temperature of gearbox components in one
step, but in practical applications, the multi-step prediction is more greatly needed, which can provide
more maintenance time. In future work, the problem of parameter initialization will be studied to
further improve the performance and robustness of the prediction model, and the development of
multi-step temperature prediction model is needed, which makes the prediction model more practical.
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Abbreviations

The following abbreviations are used in this manuscript:

LSTM Long short term memory neural network
VMD Variational mode decomposition
LSTM-EC Combination of long short term memory neural network and

Error correction
LSTM-AEC Combination of long short term memory neural network and

Adaptive error correction
SCADA Supervisory control and data acquisition
PCA Principal component analysis
DBN Deep belief network
ARIMA Autoregressive integrated moving average
ARIMA-ARCH Combination of autoregressive integrated moving Average and

autoregressive conditional heteroskedasticity
ANN Artificial neural network
SVM Support vector machine
ELM Extreme learning machine
WT Wavelet transform
AR Autoregressive
WPD Wavelet packet decomposition
FEEMD Fast ensemble empirical mode decomposition
WD Wavelet decomposition
EMD Empirical mode decomposition
EEMD Ensemble empirical mode decomposition
CEEMDAN Complete ensemble empirical mode decomposition
EWT Empirical wavelet transform
RNN Recurrent neural network
ADMM Alternate direction method
IMF Intrinsic mode function
MAPE Mean absolute percentage error



Energies 2019, 12, 3920 18 of 20

MAE Mean absolute error
MSE Mean square error
BP Back Propagation
ELM-EC Combination of extreme learning machine and error correction
ELM-AEC Combination of extreme learning machine and adaptive error correction
GA Genetic algorithm
RBF Radial basis function
ICEEMDAN Improved complementary ensemble empirical mode decomposition with

adaptive noise
Variables Parameters
Xt Input vectors of LSTM neural network
yt Output of LSTM neural network
it The output results of LSTM input gate
ft The output results of LSTM forget gate
ot The output results of LSTM output gate
ct The activation state of each cell
ht The output results of memory unit
wxi, whi, wx f , wh f The corresponding weight vectors
wxc, whc, wxo, who The corresponding weight vectors
bi, b f , bc, bo The corresponding bias vectors
ei, e f , ec, eo Vectors of all 1 corresponding to bi, b f , bc, bo

[·]T Transposition operation
δ(t) Dirac distribution
uk(t) Intrinsic mode function
ωk Center frequencies of corresponding modes
K Total number of modal components
f The decomposed original signal
η Quadratic multiplication factor
λ(t) Lagrangian multipliers
‖ · ‖ The L2-norm symbol
n The number of iterations
ˆ(·) The frequency form of the corresponding signal

sgn Sign function
ρ Update coefficient of λn+1(ω)

d Result of error prediction
m Error series after correction
c Error series before correction
| · | The absolute value symbol
g Difference between |m| and |c|
ξ, α, β Threshold of Algorithm 1
Ti The original temperature series
Ui The error series of the preliminary prediction
Ri,j The frequency component decomposed by the VMD algorithm
#1, #2, #3 wind tubine one, wind turbine two and wind turbine three
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