
energies

Article

Applying Virtual Inertia Control Topology to SMES
System for Frequency Stability Improvement of
Low-Inertia Microgrids Driven by High Renewables

Thongchart Kerdphol 1,* , Masayuki Watanabe 1, Yasunori Mitani 1 and Veena Phunpeng 2

1 Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho,
Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan; g5414500681@gmail.com (M.W.);
m13589504@gmail.com (Y.M.)

2 Department of Mechanical Engineering, Suranaree University of Technology, 111, Maha Witthayalai Rd.,
Mueang Nakhon Ratchasima District, Nakhon Ratchasima 30000, Thailand; veenap@g.sut.ac.th

* Correspondence: kerdphol@ele.kyutech.ac.jp

Received: 4 September 2019; Accepted: 10 October 2019; Published: 15 October 2019
����������
�������

Abstract: To integrate renewable energy into microgrids with a favorable inertia property, a virtual
inertia control application is needed. Considering the inertia emulation capabilities, insufficient
emulation of inertia power due to the lower and short-term power of storage systems could
significantly cause system instability and failure. To enhance such capability, this paper applies a
virtual inertia control topology to the superconducting magnetic energy storage (SMES) technology.
The SMES-based virtual inertia control system is implemented in a microgrid with renewables to
emulate sufficient inertia power and maintain good system frequency stability. The efficacy and
control performance of the proposed control method are compared with those of the traditional
virtual inertia control system. Simulation results show that the shortage of system inertia due to
renewable penetration is properly compensated by the proposed control method, improving system
frequency stability and maintaining the robustness of system operations.

Keywords: frequency control; frequency stability; virtual inertia control; superconducting magnetic
energy storage; renewable energy

1. Introduction

Frequency stability is significant in the stable and safe operation of power systems, reflecting
the fundamental position of power systems in generation and demand. An imbalance could lead
to continual deviation of the system frequency. Nowadays, small-scale power systems known
as microgrids are quickly developed due to their main advantages, such as simple integration of
distributed renewable energy sources (RESs), feasibility, and resiliency in power system operation.
The utilization of RESs would result in critical consequences for the safety operations of microgrids.
The bulk replacement of conventional generations (based on synchronous generators) by RESs could
create new stability threats to the systems, resulting in the degradation of system performance and
stability. Firstly, RESs-based generations are connected to the microgrids via power electronic interfaces
(converters/inverters), which could not generate the inertia property, resulting in a significant reduction
of the whole system inertia. The inertia property plays a significant task in slowing down the frequency
deviations during a disturbance, which could help in controlling system frequency stability and
damping; thus, the frequency deviation and oscillatory will be critically affected [1]. An excessive
frequency deviation may occur, resulting in undesirable load-shedding, cascading outages, or even
wide-area power blackouts. Secondly, the rate of change of frequency (ROCOF) of microgrids is
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significantly increased due to high RESs integration. High ROCOF exposure makes the generation
units prone to pole-slipping, resulting in protective tripping [2].

To overcome these new stability threats, one straightforward solution is the development of
auxiliary control, usually named virtual inertia control or virtual synchronous generator (VSG), which
imitates the behavior of actual synchronous generators without using prime movers or rotating
mass, tackling stability issues [1–6]. Such control system could be established with an energy
storage system (ESS) and inverter. Consequently, the additional inertia power could be virtually
imitated to the microgrid during RESs penetration, enhancing system inertia, frequency stability, and
resiliency. Previous research achievements on virtual inertia control and its application are discussed
in References [7,8], including literature reviews. In [9,10], it was verified that virtual inertia control
applications could effectively offer uninterrupted power transfer to the grid-connected and isolated
modes during the RESs penetration, enhancing overall microgrid stability and resiliency.

To maintain stable and robust inertia emulation/control capabilities, the microgrid relies inevitably
on stabilizing devices (i.e., ESS). The ESS devices may not deliver enough power for a short period
of time, leading to insufficient inertia power. This effect can cause system instability, cascading
outages, and partial or complete power blackouts. Moreover, the high RESs penetration in microgrids
might have adverse effects on the virtual inertia control performance and stability. Considering such
drawbacks, the superconducting magnetic energy storage (SMES) technology is among ESS choices
due to its major advantages of fast response, high efficiency, high energy/power, and unlimited number
of charging/discharging cycles [11,12]. The main advantage of SMES is that it can discharge large
amounts of power in a short period of time. Especially, to react to the sudden changes in microgrid
dynamics, an active power source with fast-response capability such as a SMES unit is expected to
be the most effective countermeasure. The feasibility of SMES for enhancing power system dynamic
problems (voltage/frequency stability) has been reported [11,13–16]. Various works [17–20] further
used the SMES for power system transient stability improvement. Based on a literature survey in
regard to SMES technology, there were no conclusive studies on the utilization of virtual inertia control
topology using SMES technology for microgrid frequency enhancement.

In an attempt to address the aforementioned limitations, this is the first study proposing the
coordinated design of virtual inertia control topology based on SMES technology to improve microgrid
stability and resiliency. The SMES-based virtual inertia control system is implemented in the studied
microgrid with RESs to emulate sufficient inertia power and maintain robust system frequency stability,
avoiding system instability, cascading outages, and wide-area power blackouts. The simulation
studies were performed under a MATLAB/Simulink® 2019 environment. To evaluate the efficacy and
robustness of the proposed control method, the obtained results were compared with conventional
ESS-based virtual inertia control in References [2–6,21].

The main contributions of this paper over the existing virtual inertia control techniques are as
follows: (1) this is the first paper that proposes an explicit model of the SMES system that can capture
the key dynamic characteristics of virtual inertia control topology for enhancing inertia emulation
capability, improving frequency stability, and resiliency of the microgrid; (2) the dynamic effects of the
proposed SMES-based virtual inertia control are analyzed and validated by the time domain simulation,
evaluating a new trade-off between inertia response/emulation and short-term ESS power in regard to
frequency stability improvement; (3) compared with the conventional ESS-based virtual inertia control
in References [2–6,21], the proposed control strategy shows remarkable performance and stability
in terms of high energy/power and fast response, resulting in the lowest frequency deviation and
transient excursion. Thus, the lower and short-term power from the ESS could be solved, avoiding
system instability, cascading outages, and wide-area power blackouts.
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The organization of this paper is as follows. Section 2 demonstrates the system overview
including microgrid modeling for a frequency stability study. Section 3 proposes the control scheme
of SMES-based virtual inertia control for frequency stability enhancement. Section 4 describes the
simulation results and analysis based on the time-domain. Section 5 provides some conclusions in
regard to this work.

2. Study System and Modeling

2.1. Fundamental of Inertia Power Based on Frequency Stability Control

Frequency regulation/stability is a balance between generation and load demand. If there is an
excess of generation or demand, the system (microgrid) frequency will increase or decrease, respectively.
The imbalance could cause the continual deviation of system frequency. Accordingly, the well-known
swing equation of a generator, which describes the dynamics of generation-load power imbalance in
terms of frequency deviation and inertia power is expressed as follows [1,2,5,22,23]:

∆Pmc − ∆PL = 2H
d∆ f
dt

+ D∆ f (1)

where ∆PL is the load power change, ∆Pmc is the mechanical power change, H is the inertia constant of
the system, D is the load damping coefficient, and ∆f is the deviation of system frequency.

When inertia power and/or damping of the system decrease, the frequency deviation and ROCOF
are increased. In microgrids, the value of D is likely small, while H is primarily varying based on the
number of synchronous generation units. Hence, the relationship between the inertia constant of the
system and the inertia constant of the synchronous generator could be calculated as follows [1,2,5,22]:

H =
∑

i

(HSGi SSGi)/SMG (2)

where SMG is the total microgrid power, and SSG is the rated power of the synchronous generator.
Thus, when the integration of RESs increases, the system inertia essentially decreases.

2.2. Modeling of Microgrid for Frequency Stability Study

The studied system consists of a solar farm, wind farm, thermal power station, SMES unit, and
industrial/residential loads as shown in Figure 1. The power cable (solid line) is used for exchanging
the electrical power demand, and the communication system (dash line) is used for exchanging
system status and control information. The system base is 15 MW. The SMES unit is implemented
to the microgrid to emulate inertia power during the integration of solar/wind farms, improving
system frequency stability and resiliency. The thermal power station provides primary/secondary
frequency control [2,4]. To demonstrate the actual system operation, the solar/wind farms (RESs) are
not controlled to generate power into the system. The capability of such RESs generation depends on
the wind speed and solar irradiation. Thus, they could not participate in system frequency control.
Accordingly, we consider the RESs power generation and load power consumption as the disturbances
to the system. To create the drastic system condition, the studied microgrid is not connected to any
large power grid, serving as the stand-alone mode.
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Figure 1. A diagram of the microgrid with superconducting magnetic energy storage (SMES)-based
inertia control loop.

To perform the frequency response study, the dynamic model of the microgrid considering
the dynamic effects of RESs generation-load was constructed as Figure 2. The significant inherent
requirement and constraints (e.g., generation rate constraint (GRC) and governor dead-band imposed
by physical system dynamics) were applied in this study based on Reference [5]. Based on
References [1–6,13,14,21,22,24,25], the dynamic model (depicted in Figure 2) is sufficient for frequency
stability study and analysis. The main simulation parameters for the studied microgrid are given in
Table 1 [5,14]. Accordingly, the frequency deviation of the microgrid is determined as

∆ f =
1

2Hs + D
(∆Pm + ∆PW + ∆PPV + ∆PSMES_VI − ∆PL) (3)

where
∆Pm =

1
1 + sTt

∆Pg (4)

∆Pg =
1

1 + sTg

(
ACE−

1
R

∆ f
)

(5)

ACE =
Ki · β · ∆ f

s
(6)

∆PW =
1

1 + sTWT
∆Pwind (7)

∆PPV =
1

1 + sTPV
∆Psolar (8)

Here, ∆Pm is the active power change from the conventional unit, ∆Pg is the governor valve position
change, ACE is the secondary control action/signal change, ∆PW is the active power change from the
wind farm unit, ∆PPV is the active power change from the solar farm unit, ∆PL is the total load change
caused by residential/industrial loads, and ∆PSMES_VI is the virtual inertia power change from the
SMES unit, which will be described in the following section.
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Figure 2. Dynamic model of the microgrid with SMES-based inertia control loop for frequency
stability synthesis.

Table 1. Control parameters of the studied microgrid.

Parameter Value

Bias factor, β (p.u.MW/Hz) 1

Secondary control constant, Ki (s) 0.05

Governor time constant, Tg (s) 0.1

Turbine time constant, Tt (s) 0.4

Primary control constant, R (Hz/p.u.MW) 2.4

Load damping constant, D (p.u.MW/Hz) 0.015

System inertia constant, H (p.u.MW s) 0.083

Virtual inertia control constant, J (s) 0.8

Wind turbine time constant, TWT (s) 1.5

Solar system time constant, TPV (s) 1.85

Kid control gain, (kV/kA) 0.2

SMES control gain, KSMES (kV/MW) 0.6

Converter time constant, TDC (s) 10

Inductor rated current, Id0 (kA) 4.5

SMES coil, L (H) 2.65

3. Design of SMES-Based Virtual Inertia Control for Frequency Stability Enhancement

3.1. Overview of Studied SMES

The schematic diagram depicted in Figure 3 displays the basic configuration of the
thyristor-controlled SMES used in this study. The studied SMES system consists of a superconducting
magnetic inductor/coil, AC/DC thyristor-controlled bridge converter, and Wye-Delta transformer. The
power conditioning system (PCS) including the rectifier/inverter manages the power transfer between
the AC bus/system and magnetic coil. To diminish the harmonics generated on the output voltage
to the coil and AC bus, a 12-pulse converter is applied [13,14]. The converter generates negative or
positive voltage on the magnetic coil. The discharge and charge are simply regulated by changing
the firing angle (α), which controls the thyristor sequential firing [11,13,14]. If α is lower than 90◦, the
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converter is charging (rectifier mode). If α is higher than 90◦, the converter is discharging (inverter
mode). In the steady state, the SMES is not consumed any active/reactive power. Thus, the power
could be released or absorbed to the microgrid as required. The relationship between the DC voltage
of the converter and the firing angle is expressed as follows [13,14,24]:

Ed = 2Vd0 cosα− 2IdRC (9)

where Ed is the DC voltage at the inductor, Vd0 is the maximum circuit bridge voltage, Id is the current
flowing via the inductor, and RC is the equivalent commutating resistance.
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To conduct the frequency response analysis, in the dynamic model of the SMES, presented in
Figure 4 [13,14,26], the SMES is controlled based on the deviation of system frequency (∆f ) as the input
signal to generate the required power (∆PSMES) to the system. Thus, the SMES inductor/coil voltage
(Ed) is proportionally controlled using ∆f to the SMES control logic. Based on References [13,14], the
inductor current must be recovered to its nominal value rapidly after the contingency/disturbance so
that it can instantly respond to the next contingency. Therefore, the negative feedback signal (Kid) is
applied to the SMES system.
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The dynamic equations of inductor voltage deviation (∆Ed) and inductor current deviation (∆Id)
are expressed as follows [13,14,26]:

∆Ed =
KSMES

1 + sTDC
· ∆ f −Kid · ∆Id (10)

where
∆Id =

1
sL

∆Ed (11)

Here, KSMES is the control gain for SMES loop, Kid is the feedback gain for ∆Id, TDC is the converter
time constant of SMES, L is the induction coil, and Id0 is the inductor rated current of SMES.

Therefore, the active power deviation of the SMES system can be determined as

∆PSMES = ∆Ed · (Id0 + ∆Id) (12)

3.2. Modeling of SMES for Virtual Inertia Control

The concept of virtual inertia control in regard to system frequency regulation, which is based
on the derivative method, is presented in Figure 5a [2–6]. If the derivative of system frequency
is proportionally used for modifying the active power reference of a converter/inverter, the inertia
power could be imitated into the system, enhancing the inertia response of the system against the
contingencies/disturbances. The general equation for the active power of the converter/inverter (Pimitate)
can be expressed as [4]

∆Pimitate = J ·
(

d(∆ f )
dt

)
(13)

where J is the virtual inertia control constant.
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normal energy storage system (ESS)-based inverter [2–6,21].

To emulate the virtual inertia power (∆PVI) in the system, additional devices, such as the ESS
are required [1–6]. Several types of ESS technologies can be applied for this control application. The
dynamic model of the ESS-based inverter is shown in Figure 5b. Due to the major advantages of fast
response, i.e., high efficiency and high power, this work proposes the novel design of SMES-based
virtual inertia control to enhance microgrid frequency performance and resiliency during contingencies.
In this work, the time constant of the ESS (TESS) was 10 s. The ESS/SMES power capacity limit was
±0.3 p.u.

The control scheme shown in Figure 6 is proposed to imitate sufficient inertia power using the
SMES. The derivative control technique (df/dt) is applied to calculate the ROCOF to add the required
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active power to the set-point of the microgrid during the contingencies. Consequently, the active power
produced by the SMES is proportionally controlled based on the change of system frequency. Hence,
the virtual inertia power could be virtually imitated by the SMES, which contributes to improving the
whole system inertia, system frequency, and performance against the RESs integration. The dynamic
equation for emulating inertia power using the SMES (∆PSMES_VI) in regards to system frequency
deviation can be defined as

∆PSMES_VI =
J

1 + sTDC
·

(
KSMES ·

d(∆ f )
dt

−Kid · ∆Id

)
· (Id0 + ∆Id) (14)
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4. Simulation Results and Discussion

To validate the robustness and efficacy of the proposed control technique, nonlinear simulations
are established under the MATLAB®/Simulink® environment. Two contrastive severe scenarios
with different integration levels of wind/solar farms, industrial/residential load patterns, and control
parameters were performed for investigating microgrid frequency response. The results of the
proposed SMES approach were compared with traditional ESS-based virtual inertia control presented
in References [2–6,21]. To comply with the frequency operating standards (grid codes) of actual power
systems (Nordic and AEMC) [27], the acceptable ranges of frequency deviation used in this work are
applied as ±1 Hz during the generation/load event, and as ±0.5 Hz during no contingency.

4.1. Stability Assessment under High Inertia Microgrid (Low RESs Penetration)

This scenario examines the microgrid frequency stability under the normal operating condition.
In Figure 7, the industrial and residential loads are operated at its heavy loading condition, resulting
in high load damping. The RESs (wind and solar systems) are lightly penetrated into the microgrid,
resulting in high system inertia (10% reduction from its nominal value).

Figure 8 shows the microgrid frequency response under the normal operating condition (high
system inertia). In cases of no virtual inertia control and traditional ESS-based virtual inertia control,
there are large frequency drops of −1.8 Hz and −1.2 Hz, respectively, during the sudden integration of
the industrial load (at 300 s). The amplitudes of the frequency drop exceed the allowable grid code
limit (±1 Hz or ±100 mHz), causing deregulated microgrid stability. On the contrary, the proposed
SMES-based virtual inertia control could properly compensate the sudden change, resulting in a
lower frequency drop of −0.85 Hz. The proposed control method is able to suppress the oscillation
quickly and maintain the frequency stability within the allowable grid codes. During the increasing
penetration of solar farms (renewable energy) started from 600 s, there is a larger frequency rise (dip)
of +0.32 Hz in the case of no virtual inertia control, and +0.28 Hz in the case of traditional ESS-based
virtual inertia control. Obviously, the proposed SMES-based virtual inertia control could significantly
enhance the performance of the ROCOF, resulting in the lowest frequency rise. The frequency rise
is effectively suppressed by the proposed control with the lowest value of +0.19 Hz. Nevertheless,
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traditional ESS-based virtual inertia control yields a longer stabilizing time during the sudden changes
in frequency (drop and dip) compared with the proposed control method. This scenario validates the
efficacy of the proposed control method in regulating stable and reliable microgrid operation.
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It is obvious that the transient performance of the system significantly improved in terms of peak
deviation (dip/drop) and settling time in the presence of the SMES system. Figure 9 illustrates that the
SMES-based virtual inertia control can extract more inertia power by discharging than does traditional
ESS-based virtual inertia control. Hence, the thermal unit (conventional generation) requires less
power generation owing to the proposed control method.
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4.2. Stability Assessment under Low Inertia Microgrid (High RESs Penetration)

This scenario examines the microgrid frequency stability under the severe operating condition. The
robustness of the proposed control method is also investigated with utmost penetration of renewable
energy and huge reduction of total system inertia. In Figure 10, the wind and solar systems are highly
penetrated into the microgrid, creating a huge reduction in system inertia (70% decrease from its
nominal value). To conduct a more critical scenario, the industrial and residential loads are lightly
operated at their partial demand, resulting in the critical condition of low load damping (50% decrease
from its nominal value).
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Figure 11 shows the microgrid frequency stability under the critical situation of low system inertia.
Due to the huge reduction of system inertia driven by high renewable integration, the performance of
ROCOF is critically deteriorated, resulting in higher ROCOF. Subsequently, the deviation of system
frequency in all scenarios significantly increases. In the case of no virtual inertia control, the system
frequency extremely fluctuates and loses the stabilizing effect due to the utmost renewable integration,
resulting in an unstable system and wide-area power blackout. Clearly, the SMES-based virtual inertia
control can robustly damp the frequency deviation within the allowable grid code, while the traditional
ESS-based virtual control fails to stabilize the deviation within the limit during the instantaneous
rising integration of solar energy (at 600 s). Due to the lack of/insufficient emulation of inertia power
due to low power/energy of the ESS, the conventional ESS-based virtual inertia control yields a
larger frequency dip and drop during the sudden changes of RESs/load integrations. In addition, the
stabilizing effect of SMES-based virtual inertia control is much superior to traditional virtual inertia
control. Clearly, Figure 12 confirms that applying SMES-based virtual inertia control can significantly
improve the inertia emulation capability in terms of high power/energy and fast response. Therefore,
this scenario implies that the proposed SMES-based virtual inertia control is very robust against a wide
range of microgrid operations, maintaining satisfying frequency stability even in extreme situations.
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In summary, applying virtual inertia control topology into SMES system not only improves the
inertia emulation capability but also reduces frequency oscillation and transient excursion, and shortens
the stabilizing time, effectively enhancing the overall stability and robustness of the existing microgrid.
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4.3. Stability Assessment under Low Inertia Microgrid Considering Time Delay Uncertianty

In real practice, rapid response and changing components of frequency are almost unobservable
according to several filters and delays involved in the secondary control or load frequency control
(LFC) process. Any signal filtering and processing introduces delays that should be considered [23].
This issue also complies with the European Network of Transmission System Operators for Electricity
(ENTSO-E) recommendations. Thus, communication delays in LFC analysis are becoming more
important challenges due to the expanding, restricting of functionality, physical setups, and complexity
of the existing microgrids. Such a delay effect could significantly lead to the degradation of microgrid
stability and performance, especially under the situations of low inertia.

The time delays in secondary control mainly exist in the communication channels between the
microgrid control center and operating stations, specifically on the measured frequency from the remote
terminal units (RTUs) to the microgrid control center, and on the generated signal from the microgrid
control center to individual generation units. The delay system is expressed by an exponential function
e−st, where t is the communication delay time. These delay systems are constructed as indicated in
Figure 13 and modified to the dynamic model of the microgrid in Figure 2.
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To investigate the robustness of the proposed SMES-based virtual inertia control approach, the
severe operating conditions similar to Scenario 4.2 (i.e., high RESs and low loads) are implemented
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in this scenario while considering the communication delay effect. Typical filters and ACE signal
use about 2 s or more for the data decision and acquisition cycles of the LFC [23]. Thus, in this
study, a communication delay time (t) of 3 s is applied to evaluate the robustness of the proposed
control approach.

Figures 14 and 15 show the microgrid response under the severe situation of low system inertia
with the time delay effect. Clearly, the introduction of time delays significantly reduces the efficacy and
robustness of the microgrid frequency in all cases. Larger frequency transients and deviations could be
evidently observed. In the case of no virtual inertia control, the system frequency completely leads
to an unstable condition, resulting in system collapse and wide-area power blackouts. Traditional
ESS-based virtual inertia control also fails to stabilize the system frequency, leading to system collapse
and power blackouts. It is confirmed that the microgrid frequency stability and performance are
reduced when time delay is applied. On the contrary, the proposed SMES-based virtual inertia control
could provide remarkable performance and maintain frequency stability within the permittable limit
of ±0.1 Hz, due to its high power with fast response. This implies the security and robustness of the
proposed control approach. Figure 16 reveals the virtual inertia power response under the severe
situation of low system inertia with time delay. Under the time delay effect, it is obvious that the inertia
power in the case of traditional ESS-based virtual inertia control is in the critical unstable condition,
reaching the ESS power capacity limit of ±0.3 p.u. This implies severe system instability, leading to
system collapse. In the case of the proposed SMES-based virtual inertia control, more inertia power is
required during the implementation of time delay to maintain the stable/robust frequency stability and
performance within the permittable limit. Thus, it is confirmed that the effect of time delay can be
suppressed by the proposed SMES-based virtual inertia control.
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5. Conclusions

Considering inertia emulation capabilities, insufficient emulation of inertia power due to the lower
and short-term power of storage systems could significantly lead to microgrid instability, cascading
outages, and partial or complete power blackouts. To improve such capability, this paper applies a
virtual inertia control topology to SMES technology. The study results indicate that SMES-based virtual
inertia control provides better frequency performance and stability in terms of transient/peak deviation
and settling time than traditional ESS-based virtual inertia control. This work shows the positive role
of SMES in the improvement of inertia emulation and control against the high integration of RESs. It is
obvious that applying virtual inertia control topology to SMES system not only improves the inertia
emulation capability but also reduces frequency oscillation and transient excursion, and shortens the
stabilizing time, effectively enhancing the overall stability and robustness of the existing microgrid.
Hence, the proposed model and control technique will be important and useful for further analysis and
studies of frequency stability/control with respect to virtual inertia emulation-based SMES capabilities.
Additionally, the proposed collaboration technique can be expected as the smart stabilizing system in
regard to inertia emulation for existing and future microgrids. This technique could be applied to any
type of power systems with different characteristics, size, and complexity.
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