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Abstract: Renewable energy has recently gained considerable attention. In particular, the interest in
wind energy is rapidly growing globally. However, the characteristics of instability and volatility in
wind energy systems also affect power systems significantly. To address these issues, many studies
have been carried out to predict wind speed and power. Methods of predicting wind energy are divided
into four categories: physical methods, statistical methods, artificial intelligence methods, and hybrid
methods. In this study, we proposed a hybrid model using modified LSTM (Long short-term Memory)
to predict short-term wind power. The data adopted by modified LSTM use the current observation
data (wind power, wind direction, and wind speed) rather than previous data, which are prediction
factors of wind power. The performance of modified LSTM was compared among four multivariate
models, which are derived from combining the current observation data. Among multivariable
models, the proposed hybrid method showed good performance in the initial stage with Model 1
(wind power) and excellent performance in the middle to late stages with Model 3 (wind power,
wind speed) in the estimation of short-term wind power. The experiment results showed that
the proposed model is more robust and accurate in forecasting short-term wind power than the
other models.

Keywords: wind power prediction; multivariate models; hybrid model; long short-term memory

1. Introduction

Recently, renewable energy is increasingly being discussed with the aim of phasing out coal power
and nuclear power generation to address changes in the internal and external conditions, such as
new climate system, Fukushima nuclear power plant accident, increasing frequency of earthquakes,
and serious air pollution. Korea is announcing the ’Renewable Energy 3020’ implementation plan,
which aims to achieve a 20% share of renewable energy by 2030, and is expanding the capacity of wind
power facilities from 1.2 GW in 2017 to 17.7 GW in 2030. Among different sources of renewable energy,
wind energy, in which wind power is converted into electric power using a wind turbine [1], has gained
particular interest. However, the output of wind power varies through time and space due to various
factors, such as wind speed, wind direction, and temperature. Therefore, when large-scale wind power
is linked to the grid, instability of the grid arises, and effective connection of the grid becomes difficult.
In other words, the maintenance of the generator, generator shutdown plan, economic dispatch,
power supply plan (generator, transmission line, etc.), and electric power market bidding become
important factors when wind energy is the central supply and demand generator in the power system.
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For this reason, it is very important to predict the output of the wind turbine considering the stability
of the wind generator system, for which various studies have been conducted recently [2–4].

Significant amounts of research have been conducted to predict wind power in the short, medium,
or long term, and the corresponding methods can be mainly divided into three categories: physical
methods, data-driven methods (statistical and artificial intelligence methods), and hybrid methods [5].

(1) Physical methods predict wind power using mathematical modeling, considering weather
data (air pressure map, jet stream, etc.) and environmental characteristics (temperature, humidity,
topography, land use, etc.) [6]. These methods require a large amount of data because the construction
of the prediction model is complicated due to the mathematical modeling of many variables and the
accuracy of prediction increases in proportion to the amount of data. Therefore, the mathematical
structure of the predictive model is very difficult to achieve, the calculation process is complicated,
and the calculation time is lengthy. The most widely used method is the numerical weather prediction
(NWP) [7]. The NWP is suitable for long-term prediction rather than short-term and medium-term
prediction because of the large amount of computation.

(2) Data-driven methods predict the wind speed within a few hours through pattern analysis,
which is trained based on past data. They are more suitable for predicting wind speed values within a
short period of time, as the amount of past data is continuously increasing. These methods are divided
into statistical methods and artificial intelligence methods. The former can achieve high accuracy in
short-term prediction, but they have a disadvantage in that they cannot accurately predict the wind
power due to accumulation of errors in long-term prediction. For example, among statistical methods,
the auto-regression integrated moving average (ARIMA) model is a time series analysis model [8],
and various approaches have been suggested to overcome the disadvantage of ARIMA [9,10] which
cannot accurately predict wind power due to the aforementioned error accumulation. The latter
include neural network (NN) [11], fuzzy inference [12], particle swarm optimization (PSO) [13],
genetic algorithm (GA) [14], support vector machine (SVM) [15], and long short-term memory
(LSTM) [16]. The artificial intelligence method has superior performance for general purpose, but it
has a disadvantage in that the relationship between model elements cannot be accurately explained.

(3) Hybrid methods employ the approach of prediction by applying statistical prediction after
acquiring weather forecast data through physical methods and combining physical and statistical
methods. In other words, existing physical methods are more suitable for long-term prediction than
local prediction because of their large scale. Data-driven methods feature high accuracy in short-term
prediction but accumulate errors in long-term prediction. Therefore, existing methods suffer from a
large amount of errors, and other research is under way to improve the prediction method [17–21].
Hybrid methods can be categorized into four types [22–24]: weight-based combined approach [25–27],
data pre-processing technique based combined approach [28–32], parameter selection and optimization
technique based combined approach [33–36], and data post-processing technique based combined
approach [37]. Firstly, the strategy of the weight-based combined approach is to assign factors to
models according to their performance. It is simple and easy to implement, suitable for a wide range
of prediction times, and has the advantage of adapting to new data. However, it does not guarantee
the best prediction along the prediction horizon, and has a disadvantage in that an additional model is
necessary for determining the weight. Secondly, the purpose of the data pre-processing technique
based combined approach is to forecast the subseries obtained by decomposition. The advantage of
this method is that the performance is better than that of the abovementioned approaches, and it is
robust against sudden changes of wind speed. However, it requires detailed mathematical knowledge
of the decomposition model and has a disadvantage of slow response time to new data. Thirdly, the
purpose of the parameter selection and optimization technique based combined approach is to optimize
the parameters of the forecasting model. The parameters adopted for predicting wind power are
meteorological factors such as temperature, humidity, precipitation, snowfall, cloud, sunshine, wind
speed, and wind direction. This method features easier determination of parameters with a relatively
basic structure than the two methods mentioned above. However, it is difficult to write and implement
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according to the knowledge of the designer. Finally, the data post-processing technique based combined
approach forecasts residual errors caused by the forecasting model. Since this method considers
residual errors from the model, it can provide more accurate predictions than the abovementioned
three methods. However, it has a disadvantage in that the calculation time is lengthy because residual
errors must be calculated.

This study adopts an approach similar to the third type of hybrid method. In other words, the
input data required for wind power prediction are classified by models, which consist of multivariate
models and the performance of each model is measured. We selected wind power, wind speed,
and wind direction among the meteorological factors that have the greatest impact on the prediction of
short-term wind power according to the characteristics of wind farms. For performance measurement,
a modified LSTM was applied to the artificial intelligence technique. We analyzed the performance of
the modified LSTM by model and then combined the superior models to predict the optimum wind
power. Experimental data for verifying the proposed model were acquired from wind farms in Jeju
Island, South Korea. The reason for selecting Jeju Island is to promote 2 GW offshore wind power for
realizing ’Carbon free island Jeju by 2030’. Moreover, Jeju Island, which has diverse winds due to Jeju
Island’s characteristics, has the best conditions for the verification test. Finally, in order to predict the
short-term wind power efficiently, LSTM was designed using MATLAB and the prediction error was
verified through root mean square error (RMSE) and mean absolute percentage error (MAPE).

The remainder of the paper is structured as follows. Section 2 describes related works on recurrent
neural network (RNN) and LSTM. Section 3 explains traditional LSTM problems and solutions,
proposing a modified LSTM as well as data sets and multivariate models. Section 4 analyzes the
experimental environment and results for wind farms A, B, and C in Jeju Island. Finally, Section 5
presents conclusions and future research scope.

2. Related Works

2.1. Recurrent Neural Network (RNN)

The existing neural network, Feed-Forward Neural Networks (FFNets), processes each input
and output independently. In other words, when data are input, operations progress sequentially
from the input layer to the hidden layer, and output is provided to the output layer. In this process,
the input data are limited in that all nodes can be executed only once. However, RNN has excellent
performance in a system that predicts the following states because the same process is repeated for all
the input data, and the current data and all previous calculation information are applied to the current
prediction result. Thus, RNN is applied to areas with outstanding performance in continuous data
processing such as speech recognition, translation, language model, video, log data, and time series
statistical data [38]. Figure 1 shows the RNN structure where the output of the hidden layer is input to
the hidden layer again. Equation (1) is the model expression used in the hidden layer.

Ht = tanh(Wx ×Xt + Wh ×Ht−1)

Yt = σ(Wx ×Ht)
(1)

In Equation (1), Ht and Yt are the state values of the hidden layer and the output values of the
output layer at time t, respectively. Wx is a weight from the input layer, and Wh is a weight for Ht−1,
which is the hidden state value of the previous time t-1. It is one of the nonlinear activation functions,
and the hyperbolic tangent function (tanh) is used to calculate Ht. Yt is calculated using the sigmoid (σ)
function for the hidden layer state value and output layer weight at time t.
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2.2. Long Short-Term Memory (LSTM)

RNN has a problem of learning data over a long period of time with a vanishing gradient,
where past learning results disappear if the time interval is large [39]. To solve these drawbacks,
Hochreiter proposed LSTM in 1997 (Figure 2) [40]. States of LSTM cells are computed as follows:

it = σ(Wi × [ht−1, Xt] + bi) (2)

ft = σ(W f × [ht−1, Xt] + b f ) (3)

Ot = σ(Wo × [ht−1, Xt] + bo) (4)
∼

Ct = tanh(Wc × [ht−1, Xt] + bc) (5)

Ct = ft ×Ct−1 + it ×
∼

Ct (6)

ht = Ot × tanh(Ct) (7)

In Equations (2)–(4), it, ft, and Ot are the input, forget, and output gates, respectively. As shown

in Equation (5),
∼

Ct is a new candidate value for cell state. The LSTM cell acts as an accumulator of
the state information, and the update of the old cell state Ct−1 into the new cell state Ct is performed
using Equation (6). Wi, W f , Wo, and Wc are weights of the input, forget, output, and current cell state,
respectively. bi, b f , bo, and bc are bias of input, forget, output, and current cell state, respectively.
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3. Proposed Method

Figure 3 shows the proposed flowchart. First, wind power, wind direction, and wind speed data
are collected and pre-processed. Second, multivariate models are combined by each model. Third, the
proposed LSTM in Section 3.2 is applied to each model, and the performance of the model is estimated.
Finally, Model 1 and Model 3, which are excellent models, are adopted and simulations are performed.
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3.1. Existing LSTM Problems and Solution

The existing LSTM uses the value of the previous prediction when forecasting the wind power
value at the time steps between predictions. As shown in Figure 4, if the predicted value is incorrect,
the forecast value of wind power continuously increases.
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predicted values.

3.2. Proposed Long Short-Term Memory

In this study, since the actual value of the time steps between predictions can be accessed, the wind
power is predicted by updating the network state using the observed value instead of the predicted
value. Specially, the modified LSTM adopted Ct−1 to the input, forget, and output gates. This is because
every time the LSTM proceeds, Ct−1 affects the input, forget, and output of the LSTM.
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3.2.1. Input Gate Layer

The input gate layer receives information from the previous hidden layer and the current input.
Then it computes the information to obtain an output with the following:

it = σ(Wi × [Ct−1, ht−1, Xt] + bi)
∼

Ct = tanh(Wc × [Ct−1, ht−1, Xt] + bc)
(8)

In Equation (8), it is the output of input gate, and Xt and ht−1 are the current input and output

of the previous hidden layer, respectively. bi and bc are the bias of the input gate, and
∼

Ct. σ is the
activation function, and the following soft function is adopted:

σso f tsign(x) =
x

1 + |x|
(9)

3.2.2. Forget Gate Layer

The output of the forget gate has a similar computation formula as the input gate with different
weights W f and bias b f as shown in Equation (10).

ft = σ(W f × [Ct−1, ht−1, Xt] + b f ) (10)

3.2.3. Cell State Update

It is a step of updating from the previous cell state (Ct−1) to the current cell state (Ct), as shown in
Equation (11).

Ct = ft ×Ct−1 + it ×
∼

Ct (11)

3.2.4. Output Gate Layer

As shown Equation (12), its results are decided by the current input and memory and output of
the previous hidden layer.

Ot = σ(Wo × [Ct, ht−1, Xt] + bo)

ht = Ot × tanh(Ct)
(12)

In Equation (12), Ot, ht, and b0 indicate the outputs of the gate, current hidden layer, and bias for
Ot, respectively.

3.2.5. Learning Options and Simulation Result

LSTM has 200 hidden layers. The initial learning rate is 0.005, and the maximum number of
iterations is fixed at 250. To prevent the gradients from exploding, set the gradient threshold to 1,
and drop the learning rate after 125 epochs by multiplying by a factor of 0.2.

As shown in Figure 5, the predictions are more accurate when updating the network state with
the observed values instead of the predicted values.
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predicted values.

3.3. Data Set

In this study, the learning data and testing data were tested based on the wind power, wind
direction, and wind speed data collected from wind farms in regions A, B, and C in Jeju Island in
order to predict the short-term wind power. At this time, the learning data and the test data are all
normalized data, and the collection period, collection time, learning data, test data, and total data are
shown for each region as shown in Table 1.
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Table 1. Collection period, collection time, learning and testing data of each region.

Region Collection Period Collection Time Learning Data Test Data Total Data

A 2014.01.11–25 10 min 1080 1080 2160
B 2014.01.11–20 10 min 1008 432 1440
C 2014.01.11–25 10 min 1440 720 2160

Specifications of wind turbine generators in A, B, and C regions of Jeju Island are presented in
Table 2. The turbine information in B and C regions is the same.

Table 2. Information about wind turbine generators in A, B, and C regions of Jeju Island.

Specifications
Area A B C

Model U88 U50
Output 2000 kW 750 kW

Wind speed 12 m/s 12.5 m/s
Rotor speed range 6–17.5 rpm 9–28 rpm

Voltage and frequency 690V/60 Hz 690V/60 Hz
Rotor diameter 88 m 50 m

Hub height 80 m 50 m
Power control Pitch Pitch

3.4. Multivariate Models

The predictive input variables used in the existing prediction models (ARMA, NN, etc.) apply at
least one to a maximum of 20 according to the prediction models for the prediction performance [41–43].
However, this study shows four models defined by the combination of wind, wind direction, and wind
speed that have the greatest influence on the prediction of the proposed method, as shown in Table 3.
Model 1 (M1) is a univariate model with wind power. Model 2 (M2), Model 3 (M3), and Model 4 (M4)
are multivariate models with the combination of wind power, wind direction, and wind speed.

Table 3. Multivariate Models.

Model Variables

Model 1 (M1) wind power
Model 2 (M2) wind power, wind direction
Model 3 (M3) wind power, wind speed
Model 4 (M4) wind power, wind direction, wind speed

4. Test and Discussion

4.1. Test Environments

In order to verify the proposed method, experiments were performed on a PC equipped with Intel
Xeon (R) W-2133, 3.60 GHz CPU (Intel, Santa Clara, CA, USA) and 32 GB RAM. The test operating
system was Windows 10 (64 bit) (Microsoft, Redmond, WA, USA), and the experimental program was
MATLAB R2019a (The MathWorks, Inc, Natick, MA, USA).

4.2. Performance Metrics for Evaluation

RMSE and MAPE were used to verify wind power prediction error as shown in Equations (13)
and Equation (14).

RMSE =

√√
1
n

n∑
i=1

(pi − p̂i)
2 (13)
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MAPE =
100%

n

n∑
i=1

∣∣∣∣∣∣Pi − P̂i
Pi

∣∣∣∣∣∣ (14)

where pi and p̂i are observed values and predicted values, respectively, and n is the number of
learning models.

Moreover, the complex time for evaluating the performance in this study is computation time,
it is the length of time required to perform a computational process [44].

4.3. Comparison and Analysis of Multivariate Models

Table 4 shows the results of comparison between predictive errors (using RMSE, MAPE,
and complex time) for each model in A, B, and C regions of Jeju Island and superior values are
shaded. Among the four models, M1 and M3 are superior to other models. M2 and M4 using wind
direction generally have a limitation in that they cannot predict the short-term wind power. In other
words, wind direction is not important for forecasting of the short-term wind power, but wind speed is
considered to be an important factor. In terms of computation time, M1 has excellent computation
time because it is univariate, and M2 and M3 using two variables consumed moderate time. Finally,
M4 with three variables consumed the longest calculation time.

Table 4. Comparison of results obtained using Models in A, B, and C Regions of Jeju Island.

Region RMSE MAPE (%) Complex Time (s)

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4
A 6.3 13.2 8.1 12.7 7.9 28.0 10.5 14.0 36.6 65.8 65.2 94.5
B 6.7 35.8 6.9 11.5 5.1 41.9 3.1 30.2 32.1 57.0 55.1 78.2
C 10.6 11.8 11.4 11.6 32.6 39.5 34.8 34.7 26.3 47.0 45.3 64.4

Figures 6–8 show the results of applying the modified LSTM to models in A, B, and C regions
of Jeju Island. The prediction error is the difference between the observed value and the proposed
value for each model. Experimental results show that the prediction of M1 was superior in the early
stage, but the performance drastically decreased due to error accumulation in the tail. On the other
hand, predictions of M2, M3, and M4 showed poor performance at the beginning, but they improved
towards the latter half. The reason why wind power adopted by M1 is the smallest at initial error is
because of the high volatility, which the shorter the collected data time, the more efficient short-term
wind power prediction. The correlation between wind power and wind speed adopted by M3 is high.
That is, the higher the wind power, the larger the wind speed.
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Figure 9 shows the comparison of wind power prediction by models using the modified LSTM in
A region of Jeju Island. Figure 9a shows that the predicted value was similar to the measured value at
the beginning, but the predicted value deviated from the observed value towards the middle. Figure 9b
shows that the predicted value was higher than the observed value initially, but the predicted value
was similar to the observed value towards the middle. Finally Figure 9c,d show that the predicted
value was lower than the observed value at the beginning, but the predicted and observed values
became similar from the mid-point.

4.4. Comparison and Analysis of Hybrid Forecasting Model

We propose a hybrid forecasting model that combines M1 and M3 with the least prediction error
for each model mentioned in the previous Section 4.3. That is, M1 has the smallest initial error and M3
has the smallest error from the middle to the end. This is because wind power has the greatest impact
on short-term wind power forecasts, followed by wind power and wind speed. As shown in Figure 10,
in the learning and testing of the proposed hybrid forecasting model, M1 is used at the beginning (first
half), and M3 is applied from the middle to the end according to time.
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Table 5 presents the error metrics of wind power prediction by using the hybrid model, and Table 6
shows the performance analysis of the hybrid model with other models in A, B, and C regions of Jeju
Island. In Table 6, 4M1, 4M2, 4M3, and 4M4 are the difference between each model, and the hybrid
model and superior values are shaded. It is noteworthy that the improvement degrees on the hybrid
model are obviously larger than on other models. On average, RMSE, MAPE, and complex time of the
three regions are as follows: (1) regarding RMSE, the proposed hybrid model showed improvement
degrees at −3.6, −16.0, −4.6, and −7.7, respectively, as compared with the other models. (2) Regarding
MAPE, the proposed method showed superior error reduction at −6.7%, −28.0%, −7.6%, and −17.8%,
respectively. (3) Regarding complex time, the proposed method showed superior time reduction over
all other models, except for M1. Therefore, M2 and M4 using wind direction were found to not affect
wind power prediction.

Table 5. Error metrics of the hybrid forecasting model in A, B, and C regions of Jeju Island.

Region RMSE MAPE (%) Complex Time (s)

A 3.67 5.04 45.18
B 3.39 3.36 39.20
C 5.64 17.09 32.11

Table 6. Performance analysis of the hybrid model with other models.

Region RMSE MAPE (%) Complex Time (s)

4M1 4M2 4M3 4M4 4M1 4M2 4M3 4M4 4M1 4M2 4M3 4M4
A −2.6 −9.5 −4.4 −9.0 −2.8 −22.9 −5.4 −8.9 8.5 −20.6 −20.0 −49.3
B −3.3 −32.4 −3.5 −8.1 −1.7 −38.5 0.2 −26.8 7.1 −17.8 −15.9 −39.0
C −4.9 −6.1 −5.7 −5.9 −15.5 −22.4 −17.7 −17.6 5.8 −14.8 −13.1 −32.2

Avg. −3.6 −16.0 −4.6 −7.7 −6.7 −28.0 −7.6 −17.8 7.2 −17.8 −16.4 −40.2

Figures 11–13 depict the wind power prediction results of the hybrid model with M1 and M3.
As shown in the simulation results, the wind speed was predicted well in the early and late parts
without errors. Therefore, it is verified that the proposed hybrid forecasting model is effective at
improving the performance of wind power prediction.
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5. Conclusions

Recently, LSTM has been used extensively in time series analysis because of its superior deep
learning performance among artificial intelligence methods. Although it has excellent performance
in terms of versatility, it has a disadvantage in that it cannot explain the causal relationship between
predictive factors affecting short-term wind power. Therefore, in this study, four models were set using
LSTM, which is a deep learning, and the causality between wind power, wind direction, and wind
speed was tested. After analyzing the advantage and disadvantage of the four models, we proposed
a hybrid model. The experiment results showed that the proposed method can realize a short-term
wind power prediction system suitable for the specific characteristics of the weather and topography
in areas where wind power equipment is installed, and it can be expected to reduce the production
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cost of domestic electric energy. Future studies are as follows: (1) We will compare the performance
of the proposed method with that of the existing methods (ARIMA, persistence models, SVM, etc.)
(2) We will extend the study to domestic and overseas wind power complexes. (3) Experiments will be
conducted to the forecast of mid- to long-term wind power.

Author Contributions: All authors contributed to this research. N.S. implemented the algorithm for theory
and writing. S.Y. collected the data set and performed the analysis. J.N. supported the theorizing and review
and editing.

Funding: This article was supported by Korea Energy Technology Evaluation & Planning under the financial
resources of the government in 2018 (20182410105210, Development and demonstration of multi-use application
technology of consumer ESS).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Woori Finance Research Institute. Recent Trends in Renewable Energy Industry; Woori Finance Research
Institute: Seoul, Korea, 2019.

2. Seo, I.Y.; Ha, B.N.; Kim, S.O.; Koong, W.N.; Seo, D.W.; Kim, S.J. Short term wind power prediction using
wavelet transform and ARIMA. J. Energy Power Eng. 2012, 6, 1786–1790.

3. Hong, Y.Y.; Yu, T.H.; Liu, C.Y. Hour-Ahead wind speed and power forecasting using empirical mode
decomposition. Energies 2013, 6, 6137–6152. [CrossRef]

4. Noh, C.H.; Jang, W.H.; Kim, C.H. Recent Trends in Renewable energy Resources for Power Generation in the
Republic of Korea. Resources 2015, 4, 751–764. [CrossRef]

5. Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions.
Energy Convers. Manage. 2016, 123, 362–371. [CrossRef]

6. Sarwat, A.; Amini, M.; Domijan, A.; Damnjanovic, A.; Kaleem, F. Weather-based interruption prediction in
the smart grid utilizing chronological data. J. Mod. Power Syst. Clean Energy 2016, 4, 308–315. [CrossRef]

7. Chen, N.; Qian, Z.; Nabney, I.T.; Meng, X. Wind power forecasts using Gaussian processes and numerical
weather prediction. IEEE Trans. Power Syst. 2014, 29, 656–665. [CrossRef]

8. Jiang, Y.; Chen, X.; Yu, K.; Liao, Y. Short-term wind power forecasting using hybrid method based on
enhanced boosting algorithm. J. M. Power Syst. Clean Energy 2015, 5, 126–133. [CrossRef]

9. Fathall, A.; Timothy, M.; Siddharth, S.; Edwin, K.P. Employing ARIMA models to improve wind power
forecasts: A case study in ERCOT. In Proceedings of the 2016 North American Power Symposium (NAPS),
Denver, CO, USA, 18–20 September 2016.

10. Nury, A.H.; Hasan, K.; Alam, M.J.B. Comparative Study of Wavelet-ARIMA and Wavelet-ANN Models for
Temperature Time Series Data in Northeastern Bangladesh. J. King Saud Univ.-Sci. 2017, 29, 47–61. [CrossRef]

11. Khodayar, M.; Wang, J.; Manthouri, M. Interval Deep Generative Neural Network for Wind Speed Forecasting.
IEEE Trans. Smart Grid 2019, 10, 3974–3989. [CrossRef]

12. Kassa, Y.; Zhang, J.H.; Zheng, D.H.; Wei, D. Short term wind power prediction using ANFIS. In Proceedings
of the IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 21–23
October 2016.

13. Wang, J.; Fang, K.; Pang, W.; Sun, J. Wind power interval prediction based on improved PSO and BO neural
network. J. Electr. Eng. Tech. 2017, 12, 989–995. [CrossRef]

14. Suhan, Z. Wind Power Prediction Based on Genetic Neural Network, AIP Conference Proceedings 1834; AIP
Publishing: Melville, NY, USA, 2017.

15. Mariya, S.; Ilya, K.; Thorsten, S. Supervised Classification with Interdependent Variable to Support Targeted
Energy Efficiency Measures in the Residential Sector. Decis. Analytics 2016, 3, 1.

16. Renani, E.; Elias, M.; Rahim, N.A. Using Data-driven Approach for Wind Power Prediction: A Comparative
Study. Energy Convers. Manag. 2016, 118, 193–203. [CrossRef]

17. Ministry of Trade, Industry and Energy. An Empirical Study for 2.5GW Offshore Wind Power in the Southwest
Sea; Ministry of Trade, Industry and Energy: Sejong City, Korea, 2014.

18. Kim, H.G.; Lee, Y.S.; Jang, M.S. Cluster Analysis and Meteor-Statistical Model Test to Develop a Daily
Forecasting Model for Jejudo Wind Power Generation. J. Environ. Sci. Int. 2010, 19, 1229–1235. [CrossRef]

http://dx.doi.org/10.3390/en6126137
http://dx.doi.org/10.3390/resources4040751
http://dx.doi.org/10.1016/j.enconman.2016.06.053
http://dx.doi.org/10.1007/s40565-015-0120-4
http://dx.doi.org/10.1109/TPWRS.2013.2282366
http://dx.doi.org/10.1007/s40565-015-0171-6
http://dx.doi.org/10.1016/j.jksus.2015.12.002
http://dx.doi.org/10.1109/TSG.2018.2847223
http://dx.doi.org/10.5370/JEET.2017.12.3.989
http://dx.doi.org/10.1016/j.enconman.2016.03.078
http://dx.doi.org/10.5322/JES.2010.19.10.1229


Energies 2019, 12, 3901 16 of 17

19. Botterud, A.; Miranda, V.; Wang, J.; Monteiro, C. Wind Power Forecasting and Electricity Market Operations.
In Proceedings of the CPES Annual Conference, Blacksburg, VA, USA, 5–7 April 2009.

20. Zack, J.W. Overviw of the Current Status and Future Prospects of Wind Power Production Forecasting for the
ERCOT System. In Proceedings of the Wind Workshop III ERCOT Workshop, Austin, TX, USA, 26 June 2009.

21. Cellura, M.; Cirrincione, G.; Marvuglia, A.; Miraoui, A. Wind Speed Spatial Estimation for Energy Planning
in Sicily: Introduction and Statistical Analysis. Renew. Energy 2008, 33, 1237–1250. [CrossRef]

22. Wang, J.; Liu, L.D.; Wang, Z.Y. The Status and Development of the Combination Forecast Method. Forecast
1997, 6, 37–45.

23. Lei, M.; Shiyan, L.; Chuanwen, J.; Hongling, L.; Yan, Z. A Review on the Forecasting of Wind Speed and
Generated Power. Renew. Sustain. Energy Rev. 2009, 13, 15–35. [CrossRef]

24. Esen, H.; Inalli, M.; Sengur, A.; Esen, M. Modeling a Ground-coupled Heat Pump System by a Support Vector
Machine. Renew. Energy 2008, 33, 1814–1837. [CrossRef]

25. Chen, H. The Validity of the Theory and its Application of Combination Forecast Methods; Beijing Science Press:
Beijing, China, 2008.

26. Zhao, W.; Wang, J.; Lu, H. Combining Forecasts of Electricity Consumption in China with Time-varying
Weights Updated by a High-order Markov Chain. Omega 2014, 45, 80–91. [CrossRef]

27. Tascikaraoglu, A.; Uzunoglu, M. A Review of Combined Approaches for Prediction of Short-term Wind
Speed and Power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [CrossRef]

28. Bouzgou, H.; Benoudjit, N. Multiple Architecture System for Wind Speed Prediction. Appl. Energy 2011, 88,
2463–2471. [CrossRef]

29. Lei, C.; Ran, L. Short-term Wind Speed Forecasting Model for Wind Farm based on Wavelet Decomposition.
In Proceedings of the Third International Conference on Electric Utility Deregulation and Restructuring and
Power Technologies (DRPT), Nanjing, China, 6–9 April 2008; pp. 2525–2529.

30. Guo, Z.; Zhao, W.; Lu, H.; Wang, J. Multi-step Forecasting for Wind Speed using a Modified EMD-based
Artificial Neural Network Model. Renew. Energy 2012, 37, 241–249. [CrossRef]

31. Zhou, H.; Jiang, J.; Huang, M. Short-term Wind Power Prediction based on Statistical Clustering. In
Proceedings of the IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011;
pp. 1–7.

32. Kani, S.P.; Ardehali, M.M. Very Short-term Wind Speed Prediction: A New Artificial Neural Network-Markov
Chain Model. Energy Convers. Manag. 2011, 52, 738–745. [CrossRef]

33. Li, X.; Liu, Y.; Xin, W. Wind Speed Prediction based on Genetic Neural Network. In Proceedings of the 4th
IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009; pp. 2448–2451.

34. Su, Z.; Wang, J.; Lu, H.; Zhao, G. A New Hybrid Model Optimized by an Intelligent Optimization Algorithm
for Wind Speed Forecasting. Energy Convers. Manag. 2014, 85, 443–452. [CrossRef]

35. Hui, T.; Niu, D. Combining Simulate Anneal Algorithm with Support Vector Regression to Forecast Wind
Speed. In Proceedings of the Second IITA International Conference on Geoscience and Remote Sensing
(IITA-GRS), Qingdao, China, 28–31 August 2010; pp. 92–94.

36. Qu, X.; Kang, X.; Zhang, C.; Jiang, S.; Ma, X. Short-term Prediction of Wind Power based on Deep Long
Short-term Memory. In Proceedings of the 2016 IEEE PES Asia-Pacific IEEE, Power and Energy Engineering
Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 1148–1152.

37. Louka, P.; Galanis, G.; Siebert, N.; Kariniotakis, G.; Katsafados, P.; Pytharoulis, I. Improvements in Wind
Speed Forecasts for Wind Power Prediction Purposes using Kalman Filtering. J. Wind Eng. Ind. Aerodyn.
2008, 96, 2348–2362. [CrossRef]

38. Hochreiter, S.; Schmidhuber, J. LSTM can Solve Hard Long Time Lag Problems. In Proceedings of the
Advances in Neural Information Processing Systems, Denver, CO, USA, 2–5 December 1996; pp. 473–479.

39. Patterson, J.; Gibson, A. Deep Learning. A Practitioner’s Approach; O’Reilly Media, Inc.: Sebastopol, CA, USA,
2017; pp. 150–158.

40. Colah.github.io. Understanding LSTM Networks—Colah’s Blog. Available online: http://colah.github.io/

posts/2015-08-Understanding-LSTMs (accessed on 12 October 2019).
41. Negnevitsky, M.; Potter, C.W. Innovative short-term wind generation prediction techniques. IEEE Power Syst.

Conf. Expo. 2006, 60–65.
42. Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind

power generation. Renew. Energy 2012, 37, 1–8. [CrossRef]

http://dx.doi.org/10.1016/j.renene.2007.08.012
http://dx.doi.org/10.1016/j.rser.2008.02.002
http://dx.doi.org/10.1016/j.renene.2007.09.025
http://dx.doi.org/10.1016/j.omega.2014.01.002
http://dx.doi.org/10.1016/j.rser.2014.03.033
http://dx.doi.org/10.1016/j.apenergy.2011.01.037
http://dx.doi.org/10.1016/j.renene.2011.06.023
http://dx.doi.org/10.1016/j.enconman.2010.07.053
http://dx.doi.org/10.1016/j.enconman.2014.05.058
http://dx.doi.org/10.1016/j.jweia.2008.03.013
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://dx.doi.org/10.1016/j.renene.2011.05.033


Energies 2019, 12, 3901 17 of 17

43. Lee, Y.S.; Kim, J.; Jang, M.S.; Kim, H.G. A study on comparing short-term wind power prediction models in
Gunsan wind farm. J. Korean Data Inf. Sci. Soc. 2013, 24, 585–592.

44. Computation Time. Available online: http://mathworld.wolfram.com/ComputationTime.html (accessed on
12 October 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://mathworld.wolfram.com/ComputationTime.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Recurrent Neural Network (RNN) 
	Long Short-Term Memory (LSTM) 

	Proposed Method 
	Existing LSTM Problems and Solution 
	Proposed Long Short-Term Memory 
	Input Gate Layer 
	Forget Gate Layer 
	Cell State Update 
	Output Gate Layer 
	Learning Options and Simulation Result 

	Data Set 
	Multivariate Models 

	Test and Discussion 
	Test Environments 
	Performance Metrics for Evaluation 
	Comparison and Analysis of Multivariate Models 
	Comparison and Analysis of Hybrid Forecasting Model 

	Conclusions 
	References

