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Abstract: The accurate measurement of vitrinite reflectance (especially for mean maximum
vitrinite reflectance, MMVR) is an important issue in the fields of coal mining and processing.
However, the application of MMVR has been somewhat hampered by the subjective and the
time-consuming characteristic of manual measurements. Semi-automated methods that are
oversimplified might affect the accuracy in measuring MMVR values. To address these concerns,
we propose a novel MMVR measurement strategy based on machine learning (MMVRML).
Considering the complex nature of coal, adaptive K-means clustering is firstly employed
to automatically detect the number of clusters (i.e., maceral groups) in photomicrographs.
Furthermore, comprehensive features along with a support vector machine are utilized to intelligently
identify the regions with vitrinite. The largest region with vitrinite in each photomicrograph is gridded
for further regression analysis. Evaluations on 78 photomicrographs show that the model based on
random forest and 15 simplified grayscale features achieves the state-of-the-art root mean square error
of 0.0424. In addition, to facilitate the usage of petrologists without strong expertise in the machine
learning domain, we released the first non-commercial standalone software for estimating MMVR.

Keywords: mean maximum vitrinite reflectance; regression analysis; coal petrography;
fully automatic; vitrinite identification

1. Introduction

1.1. Background and Motivation

Vitrinite reflectance (VR), the percentage of incident light reflected from a polished vitrinite
surface, is the most definitive maturation parameter to characterize the maturation process of coal [1,2].
The mean maximum vitrinite reflectance (MMVR), one of the most important types of VR, is widely
accepted as an important and desirable means for evaluating the potential usefulness of coals in a series
of applications [3], such as determining coal blending procedures, evaluating coal’s suitability for
hydrogenation, identification of potential sites for exploration, and so on [4,5]. Although there are
a few other maturation parameters, including volatile matter, calorific value, and moisture content,
MMVR is the most commonly used one for calculating the relative amount of coalification and defining
coal rank [6–8].

Despite the advantages and obvious usefulness of MMVR, its application has been hampered
by the subjective factors and time-consuming characteristic of manual methods [6]. To measure
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vitrinite reflectance, steps including grinding, pelleting, and polishing are required to prepare the
samples [9]. Prior to the measuring, the coal sample should be placed in the desiccator for at least
15 h and the apparatus should be calibrated following strict guidelines. Then, a series of reflectance
measurements (usually more than 100) are collected from particles of vitrinite in the sample. It is
necessary to measure vitrinite reflectance at different locations by rotating the microscope stage in the
measurement process. The method for measuring MMVR of coal samples is standardized in both
Method of Determining Microscopically the Reflectance of Vitrinite (ISO 7404-5) [10] and Standard
Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal (ASTM D2798) [11],
as well as a few other national standards. In addition, significant petrographic experience is also vital
to precisely measure the MMVR. In order to avoid subjectivity and the variability arisen from different
interpretations, a few independent measurements are always repeated and the mean value is reported
as the MMVR of the sample.

The problems encountered in measuring MMVR can be categorized into three causes: human
mistakes; technical issues; and problems associated with the complicated nature of coal, especially for
inhomogeneity [12]. The frequency of human mistakes and technical problems largely depends on
the experience of the operator, whereas the third case is difficult to deal with owing to its generally
inestimable character. Determination of the MMVR of a coal requires sophisticated microscopic
instrumentation and expertise. The traditional way based on optical experiment also requires
expensive and time-consuming analytical methods. To address these concerns, an objective and
accurate analytical technique that is able to automatically estimate MMVR is highly desired for the
growing industrial demand. In this work, we propose a novel strategy based on machine learning to
intelligently estimate the vitrinite reflectance from photomicrographs. It involves image segmentation
based on adaptive K-means, vitrinite identification based on the combination of a support vector
machine and comprehensive features, as well as MMVR regression based on random forest regression.

1.2. Related Work

An MMVR estimation system should include two major components, including vitrinite
detection/identification and MMVR estimation. Both vitrinite detection and MMVR estimation
are open problems owing to the complex and heterogeneous nature of coal. Many attempts have been
made in this field, whereas, to the best of the authors’ knowledge, each of the previous works only
covers one component (i.e., vitrinite identification or MMVR estimation) in their research. There is
no systematic study that is able to automatically detect vitrinite and estimate the MMVR value
from photomicrographs.

Maceral composition analysis and vitrinite reflectance analysis are two main petrographic
ways to evaluate coals. Maceral composition analysis is an important technique in evaluating the
economical use of a coal or the performance of coal conversion processes [13]. Over the past decades,
attempts of maceral components’ identification have shown promising results. Młynarczuk and
Skiba evaluated the ability of three machine learning methods for identifying three maceral groups
of coal (i.e., vitrinite, inertinite, and liptinite) and non-organic minerals. They selected a sequence of
regions of interest and achieved an average accuracy of 97.23% with the nearest neighbor method
based on the morphological gradients and the gray level features [14]. Wang et al. proposed a novel
maceral identification method based on image analysis. The developed maceral identification tool,
Maceral Identification strategy based on Image Segmentation and Classification (MISC), is able to
provide complete analysis of maceral components with accuracy of 90.44% [15]. In addition, there are
two automated microscopic techniques that have been successfully commercialized, including Pearson
petrography [16] and Commonwealth Scientific and Industrial Research Organisation (CSIRO) coal
grain analysis [17]. However, they do not mention the corresponding performance.

Although there are many attempts on the identification of maceral components, the studies
focusing on MMVR estimation are relatively limited. England et al. employed an image analyzer
to measure the distribution of VR [18]. Paulo et al. developed a vitrinite reflectance measurement
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tool based on image analysis, and the obtained values are highly correlated with the results from
traditional measurements [19]. Considering the principle that maceral reflectance is proportional to
the grayscale value of an image, Chen et al. established the working curve of maceral reflectance
determination [20]. However, these measurements of vitrinite reflectance based on automatic imaging
techniques were oversimplified, which may create major problems in interpreting various geological
situations. There are three commercialized softwares for measuring vitrinite reflectance, including
Pearson Petrography [16], CRAIC technologies [21], and Lim Laboratory Imaging [22]. CRAIC provided
solutions for measuring vitrinite reflectance with either a photometer, a spectrophotometer, or a digital
camera fitted to the microscope. They released a tool, namely GeoImageTM, for measuring reflectance
of coals, kerogens, and other sedimentary rock accurately and efficiently. Lim Laboratory Imaging
released a software for maceral analysis and coal reflectance measurement. However, they do not
mention the detailed technologies employed in these two tools on the corresponding websites.

Although the above-mentioned works have achieved promising performances, there are still some
issues that need to be tackled.

First and foremost, the separation of the vitrinite component from microscopic images is the basis
of vitrinite reflectance measurement. Without this step, it is unrealistic to achieve fully automatic
estimation of vitrinite reflectance. Considering the overlap of gray levels between different macerals as
well as the complexity of coal, it is difficult to distinguish vitrinite from other macerals only based on
gray levels [15,23]. In addition, according to the prior knowledge of vitrinite reflectance measurement,
the measurement based on a large area of vitrinite can promote robust estimation results. Therefore, it is
imperative to identify the vitrinite regions accurately.

Second, in previous studies, the researchers assumed that there is a linear relationship between
vitrinite reflectance and the grayscale value of a pixel or the maximum grayscale value of a region.
Vitrinite reflectance is determined by counting the distribution of its histogram from sufficient
measurements. Therefore, more grayscale features describing the characteristics of grayscale
distribution are needed for measuring vitrinite reflectance. In addition, the assumption about
the linear relationship may not hold. A powerful machine learning method can be employed to learn
this relationship from data.

Last, but not least, there is no publicly available software for the automatic measurement of
vitrinite reflectance. The traditional measurement methods require significant petrographic experience,
whereas some researchers who also attempt to understand vitrinite reflectance may not have strong
expertise in maceral analysis.

To address the above-mentioned concerns, we propose a novel framework for estimating coal mean
maximum vitrinite reflectance automatically based on machine learning (MMVRML). An adaptive
image segmentation method was adopted to separate different components in photomicrographs,
and a support vector machine (SVM) with radial basis function (RBF) kernel was employed to identify
the vitrinite regions. Finally, we adopted random forest to estimate vitrinite reflectance. The main
contributions of our proposed MMVRML lie in three folds.

(1) Considering the complicated characteristics of coal photomicrographs, the number of maceral
categories in one photomicrograph is uncertain. We adopted an adaptive image segmentation
method to intelligently segment an entire photomicrograph into several discrete regions,
where each region corresponds to one maceral group. The proposed method can be generalized
in different degrees of coalification.

(2) Comprehensive and discriminative features from coal photomicrographs, including texture,
grayscale, and geometric features, were employed to distinguish vitrinite from other maceral
components. We evaluated four popular machine learning classifiers along with the comprehensive
feature combination. The SVM with RBF kernel provides state-of-the-art performance with
an average accuracy of 97.10%. In the vitrinite reflectance estimation stage, we employed
15 grayscale features to reflect the gray distribution characteristics. Finally, we evaluated seven
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regression methods to estimate the MMVR value, and the best regression performance was
obtained by random forest (RF), with R-squared of 0.9839.

(3) We released a fully automatic mean maximum vitrinite reflectance estimation software,
namely MMVRML, which is able to automatically estimate MMVR from photomicrographs.
This tool integrates algorithms of adaptive image segmentation, vitrinite identification, and MMVR
estimation. The developed software is freely available for users at the following website:
https://github.com/GuyooGu/MMVRML.

2. Materials

Thirteen bituminous coal samples used in the study were randomly selected from samples
submitted to the laboratory of United States Geological Survey (USGS) from Colorado and West
Virginia [24]. The samples were well prepared after a sequence of operations, including grinding,
pelleting, and polishing according to American Society for Testing Materials (ASTM) D2797
standard [25]. The mean maximum reflectance of the vitrinite components, the ground truth of
this dataset, was strictly measured through the traditional manual measuring method, and all
measurements met the requirements of ASTM D2798 standard [11]. The MMVR was determined
microscopically by measuring the amount of light reflected from a polished surface immersed in
oil through a microscopic system, which includes an incident light microscope, a photomultiplier,
a microprocessor, and a computer. We refer the readers to the works of [10,11] for further details about
manual methods for measuring the vitrinite reflectance of coal.

A total of 78 photomicrographs containing vitrinite were captured by a Leica DFC 480 digital
camera from these 13 bituminous coal samples. The size of these photomicrographs varies from each
other, in the range of (281 – 547) × (369 – 648) px. Each pixel roughly corresponds to 2–4 µm. All these
photomicrographs were captured under incident white light in oil immersion with the same camera
exposure. The range of mean maximum vitrinite reflectance of these 78 photomicrographs is from 0.7%
to 1.79% [24]. In order to reduce the effect of subjective evaluation in the determination of vitrinite
reflectance, each bituminous coal sample was measured by 10–15 independent laboratories, and the
indicated values on the photomicrographs are the group mean result. The dataset used in this study
can be found at https://energy.usgs.gov/PhotoAtlas/?aid=14.

3. Methods

We present the flowchart of the proposed MMVRML in Figure 1, including image segmentation
based on adaptive K-mean clustering, vitrinite identification based on image classification, and MMVR
estimation based on regression. Considering that the category number of each photomicrograph is
unknown, we employed adaptive K-means clustering to segment photomicrographs into separate
regions, where each region corresponds to one maceral group. Then, 112-dimensional discriminative
features were extracted for vitrinite identification, including texture features, grayscale features,
and geometric features. Given the fact that vitrinite is relatively large, in this study, we only classified
the maceral components that were larger than 200 px. We further employed four image classification
techniques, such as RF and SVM, to classify the segmented regions. In the MMVR estimation stage,
we employed 15 simplified grayscale features to build the regression model based on 7 machine
learning methods.

https://github.com/GuyooGu/MMVRML
https://energy.usgs.gov/PhotoAtlas/?aid=14
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Figure 1. The flowchart of the proposed mean maximum vitrinite reflectance measurement based on
machine learning (MMVRML).

3.1. Image Segmentation Based on Adaptive K-Means Clustering

Image segmentation is a fundamental step of image analysis and interpretation, which is vital
for automatic maceral composition identification and reflectance measurement. K-means clustering
is undoubtedly the most extensively used technique for complex image segmentation, whereas it
also comes with several limitations. First and foremost, it requires users to specify the number of
clusters [26]. However, owing to the complexity of coal, it is sometimes unrealistic to know the number
of maceral types in a photomicrograph without strong expertise in maceral analysis. Second, it is
susceptible to the initial centroids and always converges at a local optimum. In addition, the clustering
results may be different in various trials [27,28]. In order to overcome above-mentioned limitations,
an adaptive strategy whose initial cluster centers were specified according to the grayscale distribution
of photomicrographs was employed to separate the regions with different maceral components.
The proposed method is able to achieve consistent segmentation results for the same image. The major
steps of the adopted adaptive K-means clustering algorithm for image segmentation are summarized
in Algorithm 1.

The segmented regions with more than 200 px were further analyzed by image classification to
detect the regions with vitrinite.

3.2. RBF SVM for Classification

SVM is one of the most popular classification methods for its attractive properties, including high
generalization capability, robustness to noise, and excellent classification performance. It is able to find
an optimal hyperplane that separates classes with minimum classification errors in higher dimensional
space [29,30]. As shown in Figure 2, the round and triangular tags represent data points belonging to
two different classes—x = (x1, x2) represents the feature vector, wTx+b =0 is the optimal hyperplane,
and the data points on the two other hyperplanes (e.g., red line and blue line) are called support
vectors. The optimization of SVM is to select a suitable w and b to maximize the margin between
the hyperplanes.
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Figure 2. A demonstration of the support vector machine (SVM) for classification.

Radial basis function (RBF) kernel is the most widely applied kernel in SVM, which is well
known for its excellent performance in pattern classification and function approximation [31]. In this
study, we obtained the optimum values of the penalty parameter c and the kernel parameter g via
grid search. Furthermore, we compared the performance of RBF SVM with that of state-of-the-art
classifiers, including K-nearest neighbor (KNN), RF, and deep forest (DF) [32], on vitrinite identification.
Furthermore, the detected regions were gridded into squares with 41 × 41 px. In order to enhance the
robustness of the proposed model, we removed the squares with more than 20 non-vitrinite pixels.
In total, there are 4133 square patches from 78 photomicrographs.

Algorithm 1. Pseudo code of the adaptive K-means clustering for image segmentation.

Algorithm: Image segmentation based on adaptive K-means clustering

Input: The photomicrograph to be clustered.
Output: Separated regions with different maceral components.

Step 1. Convert RGB (i.e., Red, Green and Blue) values of each photomicrograph into a 2-dimensional matrix,
denoted as (A)n×3, where n represents the number of pixels and each row of A contains the RGB values for
each pixel, A= [a1, a2, · · · , an]

T.
Step 2. Initialize the cluster centroid as the column-wise mean value of A, denote as c.
Step 3. Repeat the following sub-steps until A is empty or the iteration number arrives at 50:
{
Repeat until the centroid do not change any more or the iteration number arrives at 50:
{
Compute the distance between each pixel and the centroid, and save the distances in vector d:
di =|ai − c|, i = 1, 2, · · · , n
Compute the bandwidth of the cluster:
b = 0.25×max(d)
Determine which pixels belong to this cluster, save the flag in vector p:

pi =

{
1 i f di < b
0 otherwise

Update the centroid as:

c =
∑n

i=1 1{pi=1}ai∑n
i=1 1{pi=1}

}
Remove the pixels belonging to this cluster from A and save the obtained centroid in matrix U.
}
Step 4. Obtain k cluster centroids, denoted as (U)k×3. Transform cluster centroids according to the following
formula, and get (ξ)k×1:

ξk =
√∑3

j=1 U2
kj

Step 5. Sort the matrix ξ and calculate the distance between two adjacent transformed centroids, discard the
centroids less than a given threshold.
Step 6. Unmap the remaining transformed centroids in ξ, and get the final cluster centroids. Assign each pixel
to the nearest centroids.
Step 7. Create a binary mask corresponding to each cluster and obtain independent regions.
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3.3. Random Forest for Regression

Random forest is a commonly used ensemble machine learning method that gained popularity
for its advantages of robustness, easy parameterization and high accuracy. RF has been shown to be
effective and powerful in classification and regression problems [33]. As shown in Figure 3, it consists
of multiple uncorrelated regression trees, which are constructed from different bootstrap samples from
the training dataset. Each tree generates a regression result and the final output is the mean value of
regression prediction results from individual trees [34].
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Figure 3. The flowchart of random forest for regression. OOB, out of bag.

In the study, 15-dimensional grayscale features were combined as the input variables of
random forest. Seven commonly used regression learners were tested, including regression tree,
Gaussian process regression, linear regression, SVM regression, artificial neural network (ANN)
regression, restricted Boltzmann machine (RBM) regression, and RF regression.

3.4. Feature Extraction

Considering the complexity of coal’s optical characteristics, it is difficult to distinguish vitrinite
from other macerals using a single type of feature. Therefore, in this study, given a photomicrograph
of coal macerals, 112 discriminative features, including texture, grayscale, and geometric features,
were extracted for vitrinite identification [15,35].

The mean grayscale value and the statistical features describing the distribution of the gray level
were extracted to represent the grayscale features, including mean grayscale value, maximum grayscale
value, median grayscale value, mode of grayscale values, the standard deviation of grayscale value,
average contrast, smoothing degree, consistency degree, third-order moment, entropy, and grayscale
probability [35]. In order to enhance the efficiency, we merged every four adjacent gray levels in
computing the grayscale probability and, in total, 74 grayscale features were extracted.

Considering that the resolutions of photomicrographs may be different, and the maceral component
may have different sizes, we adopted gray-level invariant haralick texture features to descript the
texture information. The 21 gray-level invariant haralick texture features consist of autocorrelation,
cluster prominence, cluster shade, and 18 other features. Detailed information about these features can
be found in the work of [36].

The geometric features were used to describe the size, shape, and morphology of macerals.
We selected 17 geometric features, including the area, perimeter, arc degree, rectangle degree, length of
long axis, length of short axis, aspect ratio, eccentricity, solidity, extent, and Hu’s seven invariant
moments [37].
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Figure 4 shows the grayscale distribution of vitrinite regions with different vitrinite reflectance.
With the increase of MMVR, the grayscale values of the corresponding vitrinite region increase. In order
to describe the grayscale distribution and estimate MMVR accurately, we extracted 15 grayscale
features from candidate vitrinite squares, rather than grayscale values of specific pixels, for the close
relationship between MMVR and grayscale distributions. We list all 15 grayscale features in Table 1.
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Figure 4. Vitrinite images with different MMVR and the corresponding grayscale probability density
distribution (from left to right, the MMVR is 0.7%, 0.88%, 1.16%, and 1.79%, respectively. The second
row shows the grayscale probability density distribution of the corresponding images). (a) Vitrinite
images; (b) Grayscale probability density distribution.

Table 1. Grayscale feature space utilized in regression procedure.

Grayscale Features and Corresponding Index

x1–x10: the top 10 grayscale value sorting in quantity
x11: mean grayscale value
x12: maximum grayscale value
x13: minimum grayscale value
x14: median grayscale value
x15: mode grayscale value

3.5. Evalutation Criteria

We evaluated the performance of vitrinite identification via four performance indices,
including accuracy, precision, recall, and F1-score. Accuracy is the most intuitive and commonly used
evaluation metric for classification problems, whereas it is not sufficient for handling imbalanced
data [38]. To tackle this problem, we introduced another three evaluation metrics that are more suitable
for imbalanced problems. All of these evaluation criteria can easily be calculated from the confusion
matrix, which provides the detailed information of the number of instances between the actual and
predicted label (shown in Table 2). The equations of these performance indices are described as
Equations (1)–(4).

Table 2. The confusion matrix.

Confusion Matrix
Predicted Label

True False

True Label
True True Positive (TP) False Negative (FN)

False False Positive (FP) True Negative (TN)
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Accuracy = (TP + TN)/(TP + TN + FN + FP) (1)

Recall = TP/(TP + FN) (2)

Precision = TP/(TP + FP) (3)

F1− score = 2× Precision×Recall/(Precision + Recall) (4)

To fairly compare the regression performance, four evaluation metrics were employed, including
Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and R-squared [39]. MSE is defined as follows:

MSE =
1
n

n∑
i=1

(
∧
yi − yi)

2
, (5)

where yi represents the true value,
∧
yi is the predicted value, and n is the number of samples.

RMSE is the square root of MSE, which indicates the concentration level of data around the
best-fitting line. It is defined as follows:

RMSE =

√√
1
n

n∑
i=1

(
∧
yi − yi)

2
. (6)

MAE is calculated as the average of absolute differences between the predicted values and true
values. It is defined as follows:

MAE =
1
n

n∑
i=1

∣∣∣∣∧yi − yi

∣∣∣∣. (7)

R-squared (i.e., the coefficient of determination) is a statistical measure indicating how close
the regression predictions are to the real values. The higher R-squared value represents the better
regression performance. R-squared is defined as follows:

R−squared = 1−

n∑
i=1

(
∧
yi − yi)

2

n∑
i=1

(y− yi)
2

, (8)

where y represents the average value of total true values.

4. Experimental Results and Discussion

4.1. Image Segmenation Results

Adaptive K-means clustering segmented images based on the grayscale distribution characteristics
of each image. As can be seen from Figure 5, the leftmost photomicrograph in the first row only contains
the vitrinite component, and the algorithm clustered all the pixels into one cluster. Similarly, the pixels
of the rightmost photomicrograph were clustered into four clusters when the photomicrograph
contained four components (binder, vitrinite, liptinite, and inertinite). We employed a label matrix as
a mask to create a binary image from the cluster results, and the image was multiplied with the label
matrix corresponding to each cluster. Finally, the pixels belonging to a given cluster can be separated
from these pixels belonging to other clusters for further analysis.
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Figure 5. The results of adaptive K-means clustering (the first row consists of four original
photomicrographs and the second row consists of the segmentation results of the corresponding
photomicrographs in the first row. From left to right, the number of clusters is 1, 2, 3, and 4,
respectively). (a) Original photomicrographs; (b) Segmentation results of each corresponding
photomicrograph in the first row.

4.2. Vitrinite Identification Results

Each photomicrograph was segmented into a sequence of discrete regions (i.e., macerals groups).
Then, we extracted texture, grayscale, and geometric features from each region, and created
a 112-dimensional feature vector for each region. We compared the identification performance
of RBF-SVM with the other three popular classification methods via a 10-fold cross validation. Table 3
summarizes the classification results on the 898 regions (175 vitrinite regions, 723 non-vitrinite regions)
obtained by image segmentation. The RBF-SVM yields the highest accuracy of 97.10%, precision of
94.08%, recall of 90.86%, and F1-score of 92.44%, outperforming the other classifiers. To the best of
our knowledge, it should be regarded as the state-of-the-art performance in classifying vitrinite from
complete photomicrographs. The identification results are solely based on the features from the sample
images, rather than the prior knowledge. It also suggests the high potential of the maceral analysis
based on machine learning along with selected petrographic features of coal.

Table 3. Quantitative assessment of vitrinite identification methods *.

Accuracy Precision Recall F1-Score

KNN 95.88% 93.14% 85.14% 88.96%
Deep Forest 96.10% 91.67% 88.00% 89.79%

Random Forest 95.59% 92.17% 87.43% 89.73%
RBF SVM 97.10% 94.08% 90.86% 92.44%

* The optimal parameters of each method are set as follows: the number of nearest neighbors K = 1 in K-nearest
neighbor (KNN); n_estimators = 10, max_depth = 5 in deep forest; the number of trees = 500, m_try = the square
root of the number of features in random forest; cost c = 1 and gamma = 0.0078 in radial basis function support
vector machine (RBF-SVM).

4.3. Vitrinite Reflectance Regression Results

Inspired by the traditional way to measure MMVR, we selected the largest vitrinite region
of each photomicrograph for further analysis, and split that region into squares with a fixed
size (e.g., 41 × 41 px). Seven regression models were constructed to predict the MMVR of
each coal sample, including regression tree, Gaussian process regression, linear regression,
SVM regression, ANN regression, RBM regression, and random forest regression. The prediction
performance was evaluated through five-fold cross-validation in square-wise and coal sample-wise,
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respectively. As shown in Table 4, random forest regression achieved the best performance in
both square-wise and coal sample-wise regression with an R-squared of 0.9125 and 0.9839,
respectively. The difference between the performance of square-wise and coal sample-wise regression
also suggests that it is more robust to estimate MMVR from various parts of the vitrinite.

Table 4. Quantitative assessment of different MMVR regression models *. MSE, mean squared
error; RMSE, root mean square error; MAE, mean absolute error; ANN, artificial neural network;
RBM, restricted Boltzmann machine; SVM, support vector machine.

Methods MSE RMSE MAE R-Squared

Square-wise

Regression Tree 0.0171 0.1308 0.0932 0.8661
Gaussian Process Regression 0.0121 0.1100 0.0828 0.9030

Linear Regression 0.0140 0.1182 0.0926 0.8898
SVM Regression 0.0139 0.1179 0.0944 0.8857
ANN Regression 0.0183 0.1354 0.1051 0.8462
RBM Regression 0.0255 0.1596 0.1213 0.8398

Random Forest Regression 0.0110 0.1047 0.0760 0.9125

Coal
Sample-wise

Regression Tree 0.0022 0.0472 0.0398 0.9792
Gaussian Process Regression 0.0019 0.0430 0.0367 0.9832

Linear Regression 0.0021 0.0463 0.0412 0.9797
SVM Regression 0.0025 0.0498 0.0441 0.9765
ANN Regression 0.0044 0.0662 0.0541 0.9567
RBM Regression 0.0037 0.0611 0.0526 0.9709

Random Forest Regression 0.0018 0.0424 0.0362 0.9839

* The optimal configuration of each method is set as follows: minimum leaf size = 4 in regression tree; nonparametric
Gaussian process regression; multiple linear regression; linear kernel SVM regression; the network structure is
64-32-1 in the ANN regression; the network structure is 10-10-1 in the restricted Boltzmann machines for regression;
the number of trees = 200 in random forest regression.

Unlike the other machine learning methods, RF has an inherent procedure of providing measures of
feature importance. The relative importance of features, which reflects the corresponding contribution
to regression, is estimated based on the change of the regression performance if a given feature was
permuted randomly. In order to better understand which features are more correlated with vitrinite
reflectance, we plotted histograms of features’ importance. As can be seen from Figure 6, in accordance
with the traditional manual way to measure the MMVR, the maximum grayscale value of a region
is the most important impact factor. In addition, the minimum grayscale value is another important
feature that has a strong influence on the MMVR estimation.
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It was demonstrated that the generalization error of random forest always converges with the
increase of the number of trees in the forest. However, with the increase of forest size, the computational
time for constructing the forest will be improved. In this study, we evaluated the out of bag (OOB)
mean square error with the increase of the number of trees from 1 to 300. As shown in Figure 7,
in general, the estimation performance improves with the increase of forest size, especially when the
number of trees is smaller than 100. However, the improvement decreases as the number of trees in
the forest increases from 100. Considering the tradeoff between the regression performance of the
developed model and the computational efficiency, in this study, we set the number of regression trees
to be 200.
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To graphically observe the difference between the estimated value and the reference values,
we showed the correlation chart corresponding to 13 coal samples in Figure 8. The true MMVR ranges
from 0.7% to 1.79%. As we have multiple photomicrographs for each coal sample, we report the mean
of these estimations as the estimated MMVR. As can be seen from Figure 8, the predicted MMVR is
highly correlated with the MMVR measured by the traditional method. This suggests that the proposed
machine learning-based MMVR estimation method is an effective alternative to the traditional MMVR
measurement method.Energies 2019, 9, x FOR PEER REVIEW 13 of 17 
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4.4. The Platform of Automatic Vitrinite Reflectance Measurement

The proposed MMVR estimation method, MMVRML, based on adaptive clustering,
image classification, and regression, makes it possible to estimate the MMVR automatically and
intelligently. In order to facilitate the usage of petrologists without strong expertise in the machine
learning domain, we released a standalone software that is freely available at the following website:
https://github.com/GuyooGu/MMVRML. This software integrates the adaptive image segmentation,
vitrinite identification, and MMVR estimation algorithms mentioned in this paper. Users can submit
their own photomicrograph of coal and the software will automatically detect regions with vitrinite
in that image and estimate MMVR. The software outputs the segmentation results in subfigure (b),
the detected largest vitrinite region as well as the non-vitrinite regions marked in black color in
subfigure (c), and the estimated vitrinite reflectance values of the squares in the detected vitrinite
as well as the estimated MMVR of this coal sample (d). It should be noted that the acquisition of
microscopic images of coal should follow the Standard Test Method for Microscopical Determination
of the Vitrinite Reflectance of Coal (ASTM D2798). Figure 9 is the screen snapshot of the MMVRML
software. Compared with the traditional measuring method, whose results may be affected by
subjective factors, the proposed machine learning based method provides an objective alternative to
estimate MMVR. This software can be used to assist coal petrologists to determine the value of the
mean maximum vitrinite reflectance. Along with other maturation parameters, such as carbon content
and calorific value, the estimated MMVR can be used for determining the degree of coal maturity.
In addition, the segmentation results provide the detailed shape information of individual maceral,
which can facilitate the training of junior petrologists in recognizing maceral components. To the best
of our knowledge, it is the first non-commercial software for estimating MMVR, which is demonstrated
to be an efficient and effective tool.Energies 2019, 9, x FOR PEER REVIEW 14 of 17 
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4.5. Discussion

Despite the satisfying performance, there is still substantial room to further improve the robustness
and the accuracy of the estimations, especially in many special cases. First, the developed software
was based on 78 photomicrographs with MMVR ranging from 0.7% to 1.79%. More training data
with a wider range of MMVR are required to ensure the robustness of the developed model in the

https://github.com/GuyooGu/MMVRML
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case that the MMVR to estimate is not in this range. Secondly, the proposed method assumed that
the vitrinite region was larger than 200 px. Although this assumption always holds, the proposed
method does not work if the vitrinite to analyze is smaller than 200 px. Fortunately, this is rarely the
case because vitrinite is the largest component of coal macerals. We plan to improve the current work
from three aspects: (1) construct and evaluate the machine learning models based on more samples
with a wider range of MMVR; (2) enhance the robustness of the proposed method on samples with
small vitrinites; and (3) investigate the reflectance of other macerals, such as the liptinite reflectance
and the inertinite reflectance.

The proposed strategy provides a systematic and intelligent way to automatically detect the
vitrinite and estimate the mean maximum reflectance of vitrinite in the coal sample. Although there
are some limitations, to the best of our knowledge, the proposed method is the first study aiming to
estimate MMVR from original photomicrographs, rather than simply mapping the grayscale values
of vitrinite to MMVR. In addition, the developed software is the first non-commercial software for
estimating MMVR, which is demonstrated to be an efficient and effective tool.

5. Conclusions

Mean maximum reflectance of vitrinite has been widely applied in coal mining and coal-related
fields. It is always employed as one indicator of coal rank and reflects coal’s characteristics as
feedstock for the processes of coal combustion, carbonization, liquefaction, and gasification [5,6].
Inspired by the way that petrologists measure vitrinite reflectance, an automatic framework to estimate
MMVR is presented in this study. The MMVR estimation system includes three major procedures,
including image segmentation, vitrinite identification, and MMVR regression. We employed adaptive
K-means clustering to automatically search the optimal number of clusters (i.e., maceral groups) in
each photomicrograph; therefore, the users do not need to specify the number of maceral groups in
each photomicrograph. Furthermore, inspired by the way that petrologists examine photomicrographs
and considering the complicated nature of coal, we investigated four popular classification methods to
identify the regions with vitrinite. On the basis of RBF-SVM along with 112 discriminative features,
the proposed strategy is able to classify vitrinite properly in over 97.10% cases. For the purpose of
enhancing the robustness and reliability of the proposed method, the largest vitrinite within each
photomicrograph was selected for estimating MMVR. We split the selected vitrinite region into grid
squares with the size of 41 × 41 px. A total of 15 simplified grayscale features were employed to
estimate MMVR values based on seven intelligent regression models. The random forest provides the
most optimal results, with an R-squared of 0.9839. Our results suggest that machine learning-based
maceral analysis will be a promising direction in geology.
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