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Abstract: The nine-arm inverter integrates two modular multilevel converters (MMCs) into one
compact inverter to diminish the number of power semiconductor devices. It can be used for
dual-motor driving or connecting two AC power sources in a multi-terminal high voltage direct
current (HVDC) system, etc. Although the half-bridge based modular multilevel converter has the
fewest components, it is generally not resistant to the DC-side faults. In order to achieve a DC
fault blocking capability with high efficiency and low cost, this paper proposes a hybrid nine-arm
high-voltage inverter, which is consists of a full-bridge sub-module (FBSM) and a half-bridge
sub-module (HBSM). Firstly, the topology, operation modes, and modulation strategy of the proposed
hybrid inverter are presented. Then, by analyzing the potential short-circuit current paths between
different ports, the ability of the proposed hybrid inverter to block the DC faults is described and the
appropriate ratio of HBSM and FBSM is determined to further reduce the number of devices and
the losses of the proposed hybrid inverter. Finally, simulation results based on MATLAB/Simulink
are provided to demonstrate the effectiveness and feasibility of the proposed hybrid nine-arm
high-voltage inverter under normal operation and DC fault condition.

Keywords: DC fault blocking; modular multilevel converter; half-bridge sub-module; full-bridge
sub-module

1. Introduction

In recent years, the power system is gradually comprising more and more power sources, such as
renewable energy sources and energy storage systems. Thus, multi-terminal converters have become
increasingly attractive, as they can connect multiple distributed power sources instead of using several
individual converters [1–4]. For example, a multi-port boost converter can collect multiple low-voltage
photovoltaic outputs to achieve high-voltage output and deliver DC current to the inverter station near
the load [5,6]. Furthermore, multi-terminal converters will play an important role in the multi-terminal
HVDC grid to interconnect multiple energy sources across regions and nations [5,6]. In addition,
in order to realize further reductions in complexity and capital cost, multi-terminal inverters with
a reduced number of power semiconductor devices have been developed for the multi-motor drive
systems over the past two decades [7,8].

Among multi-port inverters, a nine-switch inverter is a typical three-port system that can
connect one DC supply to two AC loads and has the advantage of saving 25% of the number power
semiconductor devices compared to using two independent inverters [9]. However, it is limited to
low and medium power applications. A modular multilevel converter (MMC) is considered the most
attractive converter in high voltage applications due to its inherent features of high modularity and
scalability [10–13], but it has only one output port.
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The nine-arm modular multilevel converter (NA-MMC) combines the advantages of an MMC and
a nine-switch inverter [6,10], where each arm consists of sub-modules in series, rather than a single
switch. Thus, it can reduce the number of power semiconductor devices, compared to using two
separate MMCs, and can operate in high-voltage occasions. In the case shown in Figure 1 [14,15],
one NA-MMC is used to connect the DC bus, the AC bus, and an AC load which has different frequency
and/or amplitude from the nearby AC bus. Another NA-MMC is used to connect the outputs of two
different wind turbines to the DC bus. Thus, an NA-MMC can be applied in many medium/high
voltage multi-terminal systems.
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Figure 1. NA-MMC application. 

It is known that the pole-to-pole DC fault will impose major restrictions on MMC, especially for 
overhead transmission lines [16,17]. As a multi-terminal converter has more than two terminals, its 
DC-side fault phenomena is more complex than that of a traditional MMC. There are usually two 
main approaches to assist MMCs with handling DC-side faults. One is to employ a DC circuit breaker 
(CB) with relatively high let-through current to isolate the DC fault current in a short time after the 
DC side fault occurs. However, the availability of DC CBs are restricted due to their high cost and 
imperfections [18,19]. The other approach is to use sub-modules with DC fault handling capabilities 
[19–21]. For example, by replacing the half-bridge sub-module (HBSM) with the full-bridge sub-
module (FBSM) in the NA-MMC, a reverse voltage can be generated by the FBSM capacitors to block 
the short-circuit current subsequent to the DC-side fault. Obviously, if the NA-MMC is composed of 
FBSM, it will have the a DC-fault blocking capability. Nevertheless, the number of power 
semiconductor devices in FBSMs is twice that of power semiconductor devices in HBSMs [22]. This 
not only increases the cost of NA-MMC systems, but also brings larger power losses as the current 
passes two power semiconductor devices in each FBSM instead of one in each HBSM. Thus, the 
configuration scheme based on FBSM only manages the fault condition and sacrifices the cost and 
efficiency. To pursue the optimal design in terms of DC-fault blocking capability, efficiency, and cost, 
the hybrid design concept making use of HBSM and FBSM has been put forward [23]. 

Therefore, the contributions of this paper are as follows: (1) To construct a hybrid nine-arm high-
voltage inverter with HBSMs and FBSMs, (2) to analyze all types of fault current in the multi-terminal 
inverter, and (3) to obtain the optimal ratio of HBSM and FBSM in the different arms.  

The rest of this paper is organized as follows. Section 2 introduces the topology and operating 
principle of the proposed hybrid nine-arm high-voltage inverter. Section 3 analyzes all potential 
short-circuit current paths and the corresponding DC fault blocking scheme of the proposed hybrid 
inverter. Section 4 provides the simulation results to demonstrate the feasibility and effectiveness of 
the proposed hybrid inverter. Section 5 draws the conclusions. 
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It is known that the pole-to-pole DC fault will impose major restrictions on MMC, especially for
overhead transmission lines [16,17]. As a multi-terminal converter has more than two terminals,
its DC-side fault phenomena is more complex than that of a traditional MMC. There are usually
two main approaches to assist MMCs with handling DC-side faults. One is to employ a DC circuit
breaker (CB) with relatively high let-through current to isolate the DC fault current in a short time
after the DC side fault occurs. However, the availability of DC CBs are restricted due to their high
cost and imperfections [18,19]. The other approach is to use sub-modules with DC fault handling
capabilities [19–21]. For example, by replacing the half-bridge sub-module (HBSM) with the full-bridge
sub-module (FBSM) in the NA-MMC, a reverse voltage can be generated by the FBSM capacitors
to block the short-circuit current subsequent to the DC-side fault. Obviously, if the NA-MMC is
composed of FBSM, it will have the a DC-fault blocking capability. Nevertheless, the number of power
semiconductor devices in FBSMs is twice that of power semiconductor devices in HBSMs [22]. This not
only increases the cost of NA-MMC systems, but also brings larger power losses as the current passes
two power semiconductor devices in each FBSM instead of one in each HBSM. Thus, the configuration
scheme based on FBSM only manages the fault condition and sacrifices the cost and efficiency. To pursue
the optimal design in terms of DC-fault blocking capability, efficiency, and cost, the hybrid design
concept making use of HBSM and FBSM has been put forward [23].

Therefore, the contributions of this paper are as follows: (1) To construct a hybrid nine-arm
high-voltage inverter with HBSMs and FBSMs, (2) to analyze all types of fault current in the
multi-terminal inverter, and (3) to obtain the optimal ratio of HBSM and FBSM in the different arms.

The rest of this paper is organized as follows. Section 2 introduces the topology and operating
principle of the proposed hybrid nine-arm high-voltage inverter. Section 3 analyzes all potential
short-circuit current paths and the corresponding DC fault blocking scheme of the proposed hybrid
inverter. Section 4 provides the simulation results to demonstrate the feasibility and effectiveness of
the proposed hybrid inverter. Section 5 draws the conclusions.
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2. Topology and Operating Principle

2.1. Basic Configuration

Figure 2 shows one phase of the hybrid nine-arm high-voltage inverter with a DC fault blocking
capability. The upper and lower arms are composed of m HBSMs and n FBSMs, but the middle arm is
composed of (m + n) FBSMs. Every sub-module (SM) can be considered as a controlled voltage source,
for which output voltage is determined by the ON/OFF states of power switches.
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Figure 2. Single phase of the hybrid nine-arm high-voltage inverter. Figure 2. Single phase of the hybrid nine-arm high-voltage inverter.

Inductors LU and LL are two buffer inductors, with LU = LL. The value Udc is the DC-link
voltage and Idc is the DC-side current. The value UC is the capacitor voltage of SM and equals to
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Uc = Udc/(m + n). The values iUj, iMj, and iLj are the currents of upper arm, middle arm, and lower
arm in phase j ( j = a, b, c), respectively. The values uUj, uMj, and uLj are the voltages of upper arm,
middle arm, and lower arm in phase j, respectively. The values u j1 and u j2 are the output voltages
of the inverter upper port and lower port of phase j, while i j1 and i j2 are the corresponding output
port currents.

Based on the structure of HBSM shown in Figure 2, the output voltage of HBSM, uSMH, is decided
by the ON/OFF states of switches T1 and T2, and the driving signals of T1 and T2 are complementary.
When T1(D1) is ON, uSMH is equal to the capacitor voltage UC. When T2(D2) is ON, uSMH is equal
to 0. Similarly, the output voltage of FBSM uSMF depends on the ON/OFF states of T1(D1) to T4(D4),
which is UC, −UC, or 0.

2.2. Modulation Scheme

Like the NA-MMC, the hybrid nine-arm high-voltage inverter can also be controlled by carrier
phase-shifted pulse-width modulation (CPS-PWM), in which N triangular carriers Ci (i = 1, 2, 3 . . . , N)

are compared with two modulating references to obtain the driving signals for SMs. The triangular
carriers are shifted in an angle of 360/N, where N is the total number of SMs in each arm and N = m+ n.

Assume that the modulating references of dual AC outputs are expressed as follows:

u j1−re f = M1 sin(ω1t +ψ1 + θ) + Uo f f set1
u j2−re f = M2 sin(ω2t +ψ2 + θ) + Uo f f set2

, (1)

where ω1 and ω2 are fundamental angular frequencies of dual AC outputs uuj and ul j, M1 and M2 are
modulation ratios, ψ1 and ψ2 are relative phases, Uo f f set1 and Uo f f set2 are appropriate offsets, and θ is
0 when j = a, −2π/3 when j = b, and 2π/3 when j = c.

The hybrid nine-arm high-voltage inverter has two operating modes. When ω1 = ω2, the inverter
is working in common frequency (CF) mode. In another situation (ω1 , ω2), the inverter is
working in different frequency (DF) mode. The relationship among the upper reference, u j1−re f ,
the lower reference, u j2−re f , and carrier signal, Ci, under CF and DF modes are shown in Figure 3.
The amplitudes of u j1−re f and u j2−re f cannot exceed the range of the carrier, so then we have
−1 ≤ M1 + Uo f f set1, M2 + Uo f f set2 ≤ 1. As the upper modulating reference, u j1−re f , should always be
greater than the lower modulating reference, u j2−re f , to avoid overlap [10], M1 +Uo f f set1 ≥M2 +Uo f f set2
and−M1 +Uo f f set1 ≥ −M2 +Uo f f set2 must be satisfied in CF mode, while M1 +M2 ≤ 1 must be satisfied
in DF mode.
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Based on the CPS-PWM method for the NA-MMC [10], the gate signals for the ith SM in upper, 
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Based on the CPS-PWM method for the NA-MMC [10], the gate signals for the ith SM in upper,
middle, and lower arms (SUi, SMi and SLi) can be obtained by comparing the ith carrier signal Ci
(where i = 1, 2, . . . , N) to the reference signals u j1−re f and u j2−re f , which are shown in Figures 3 and 4.
It can be found that SUi is the positive logic value generated by Ci and u j1−re f , SLi is the negative logic
value generated by Ci and u j2−re f , and SMi is the logical exclusive OR (XOR) value of SUi and SLi, that is,
SMi = SUi ⊕ SLi.
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2.3. Basis Operation

According to Reference [10], the upper and lower AC voltages, u j1 and u j2, are determined by

u j1 =
1
2

(
uLj + uMj − uUj

)
,

u j2 =
1
2

(
uLj − uMj − uUj

)
,

(2)

where uUj, uMj, and uLj are the voltages of the upper, middle and lower arm, respectively.
The arm voltage is known to be the sum of SM output voltages on the arm. With the CPS-PWM

scheme [24], uUj, uMj, and uLj can be controlled to

uUj = Udc ·M1sin(ω1 +ψ1 + θ) + Udc ·Uo f f set1,

uMj = Udc − uUj − uLj,

uLj = Udc ·M2sin(ω2 +ψ2 + θ) + Udc ·Uo f f set2.

(3)

Substituting (3) into (2), u j1 and u j2 are expressed as

u j1 =
1
2

Udc ·M1sin(ω1t +ψ1 + θ) +
1
2

Udc
(
1 + Uo f f set1

)
,

u j2 =
1
2

Udc ·M2sin(ω2t +ψ2 + θ) +
1
2

Udc
(
1 + Uo f f set2

)
.

(4)

2.4. Operation Under DC Fault Condition

After a pole-to-pole DC fault occurs, the DC side current is raised rapidly and the load on the AC
side will inject energy into the DC side through the hybrid inverter. If the hybrid inverter does not
provide a large enough reverse voltage to prevent the injected energy, then an AC side current will
flow directly to the DC side fault point due to the freewheeling effect of the anti-parallel diode of the
sub-module and the DC fault will turn to an AC fault.

The DC fault blocking capability of the proposed hybrid nine-arm high-voltage inverter is achieved
by inhibiting the gate signals to the SMs after the DC fault is detected. Figure 5 shows the equivalent
circuits of different arms when all insulated gate bipolar transistors (IGBTs) in SMs are turned off,
which turn out to be diodes in series with SM capacitors. If the formed series voltage is larger than the
AC side voltage, then the fault current will be interrupted within a very short time.
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Figure 5. Equivalent circuits when all IGBTs in SMs are turned OFF.

3. DC Fault Blocking Scheme

The hybrid nine-arm high-voltage inverter can connect to two AC loads with different frequencies
and amplitudes. When the DC side fault occurs, the AC sides will feed the current to the fault point
through arms. The possible fault current paths of the hybrid nine-arm high-voltage inverter are shown
in Figure 6, where a1, b1, and c1 are the upper AC ports and a2, b2, and c2 are the lower AC ports.
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Figure 6. The possible fault current paths of the hybrid nine-arm high-voltage inverter.

After the DC side fault occurs, Udc drops to zero rapidly and Idc increases sharply. When the
current is detected to be greater than the current threshold, it can be judged that there is a short circuit
fault in the system, then all the IGBTs of the inverter receive the turn-off signals to protect the SMs.
After all of the IGBTs are turned off, the short circuit current can be formed between different output
ports and the DC side. In order to reduce the fault currents, a sufficiently large reverse voltage must be
provided in the fault current flow path. All types of possible current flow paths in the hybrid nine-arm
high-voltage inverter are analyzed in order to obtain the total reverse voltage that should be provided.

3.1. Different Ports with the Middle Arm

The fault current path shown in Figure 7 is formed by the middle arm of the inverter. Although this
current path does not pass through the DC side when a short-circuit fault occurs on the DC side,
a large current will be generated between the different ports through the middle arm of the converter,
which may damage the inverter.
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Take the upper output port a1 and the lower output port a2 as the example. Assume that
ψ1 = ψ2 = 0 and θ1 = θ2 = 0. The voltage difference between two output ports is

ua1a2 = ua1 − ua2 =
1
2

Udc
[
M1sinω1t + Uo f f set1 − (M2sinω2t + Uo f f set2)

]
. (5)

According to Figure 3, we have∣∣∣M1 + Uo f f set1
∣∣∣ ≤ 1,

∣∣∣M2 + Uo f f set2
∣∣∣ ≤ 1. (6)

Then the maximum voltage between the two ports is

Ua1a2(max) =
1
2

Udc
(
M1 + M2 + Uo f f set1 −Uo f f set2

)
≤ Udc. (7)

It is known that the maximum voltage between the output ports a1 and a2 is smaller than Udc.
Assume that there are m HBSMs and n FBSMs in the middle arm, based on Figure 5, the voltage
formed by the capacitors in series will be (m + n)Uc when the fault current flows from a1 to a2, or nUc

when the fault current flows from a2 to a1. In order to keep the fault current under control in any case,
nUc ≥ Udc should be satisfied. Hence, there is no need to use HBSM to meet the requirement of fault
current blocking and the middle arm can be composed of FBSMs only. In order to make the number of
sub-modules the same as that of the upper and lower arms, there must be m + n FBSMs in the middle
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arm. This is the main reason why the ratio of HBSM to FBSM in the middle arm is different from the
other two arms in the proposed hybrid nine-arm high-voltage inverter.

3.2. Different Ports with the DC-Side

The fault current path shown in Figure 8 is formed by the upper output port, the DC side, and the
lower output port. When a short-circuit fault occurs on the DC side, the AC side inputs energy to the
DC side through the different arms of the inverter.Energies 2019, 12, x FOR PEER REVIEW 9 of 15 
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Figure 8. Potential flow path of short-circuit current (a1–dc side–b2).

Take the upper output port a1 and the lower output port b2 as the example. Assume that
ψ1 = ψ2 = 0, θ1 = 0 and θ2 = 2π/3, the voltage difference between two output ports is

ua1b2 = ua1 − ub2 =
1
2

Udc ·

[
M1sinω1t + Uo f f set1 −M2sin

(
ω2t +

2π
3

)
−Uo f f set2

]
. (8)

No matter if it is in CF mode (ω1 = ω2) or DF mode (ω1 , ω2), the maximum magnitude of ua1b2 is

Ua1b2(max) ≤
1
2

Udc · (M1 + M2) = Udc. (9)

That is, the maximum voltage between two AC ports of a1 and b2 is Udc. As there are 2n
FBSMs and 2m HBSMs in this path, the voltage formed by FBSMs and HBSMs on this path is
(m + 2n)Uc, according to Figure 5c,d. The total capacitor voltage (m + 2n)Uc is greater than Udc
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because Uc = Udc/(m + n). Therefore, any relationship between m and n in this case can keep the
possible fault current under control.

3.3. Same Port of the Different Phase

The fault current path shown in Figure 9 is formed by the two upper (lower) output ports and the
upper (lower) arm of the different phase. This type of fault current does not pass through the DC side,
but a large current can also be generated between the different ports through the upper or lower arms.Energies 2019, 12, x FOR PEER REVIEW 10 of 15 
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Figure 9. Potential flow path of short-circuit current (a1–b1).

Take the upper output port a1 and the other upper output port b1 as the example. Assuming that
ψ1 = ψ2 = 0, θ1 = 0, and θ2 = 2π/3, the voltage difference between these two ports is

ua1b2 =
1
2

Udc[M1sinω1t−M1sin(ω1t−
2π
3
)]. (10)

Then the maximum magnitude of ua1b1 is

Ua1b2(max) =

√
3

4
Udc. (11)

Based on Figure 5c,d, the voltage formed by SMs in this path is (m + 2n)Uc,
or (m + 2n)Udc/(m + n), since the capacitor voltage of each SM is controlled to be Uc = Udc/(m + n),
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which is absolutely larger than Ua1b2(max). In order to control the cost and to maintain the ability of DC
fault self-cleaning, n/m = 1 is the most suitable ratio for the upper and lower arms.

The characteristics of the HBSM based nine-arm inverter (HBSM based NA inverter), the FBSM
based high-voltage nine-arm inverter (FBSM based NA Inverter), and the proposed hybrid nine-arm
inverter (Hybrid NA inverter) are summarized in Table 1.

Table 1. Comparison between HBSM based NA inverter, FBSM based NA inverter, and hybrid
NA inverter.

Items HBSM Based NA Inverter FBSM Based NA Inverter Hybrid NA Inverter

Cells per arm N N N (HBSM:FBSM = 1:1)
IGBTs per phase 6 N 12 N 10 N

DC fault blocking No Yes Yes
Conduction loss Low High Medium

4. Simulation Results

To verify the operating scheme and theoretical analysis of the hybrid nine-arm high-voltage
inverter presented in this paper, a simulation model of the proposed inverter, which has the same
configuration as shown in Figure 2, was set up in MATLAB/SIMULATION. The parameters of the
simulation model are listed in Table 2.

Table 2. Simulation parameters.

Items Values

Udc 1 kV
m 2
n 2

N = m + n 4
ua1−re f 0.9 sin(100πt)
ub1−re f 0.8 sin(100πt) − 0.1

fc 2 kHz

Some key waveforms of the proposed hybrid nine-arm high-voltage inverter are shown in
Figure 10. Figure 10a,c shows the line-to-line voltages of the upper and lower output ports, respectively.
Figure 10b shows the three-phase current of the upper output port and Figure 10d shows the DC side
voltage of the proposed inverter.
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Figure 12. Arm current without fault blocking: (a) 𝑖௎௔ and (b) 𝑖௅௕. 

Figure 10. Simulation results of the hybrid nine-arm high-voltage inverter under normal condition.
(a) Upper line voltage (ua1 − ub1); (b) Upper output current ia1, ib1, ic1; (c) Lower line voltage (ua2 − ub2);
and (d) DC side voltage Udc.

In order to prove the above three fault current paths and verify the ability to clear DC fault,
the hybrid nine-arm high-voltage inverter is tested by momentarily changing the DC-side voltage to
zero. After the DC fault occurs, the hybrid nine-arm high-voltage inverter takes no actions and keeps
operation as normal state.

Assuming that the hybrid nine-arm high-voltage inverter is in normal operation before 0.1s and
the DC fault occurs at 0.1s, Figure 11 shows the current of middle arm, of which the direction is the
same as in Figure 7. Figure 12 shows the current waveforms of the upper arm and lower arm when
the fault current path in Figure 8 is generated. Figure 13 shows the current waveforms of different
upper arms when the fault current flows in the path shown in Figure 9. It can be seen from these
figures that the fault current increases at a very high speed after the DC fault occurs and the AC side
continuously delivers energy to the inverter. The large fault current will damage the inverter if no
protective measures are taken after 0.1 s.
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When the DC fault happens, the DC side voltage Udc drops to 0 immediately, as shown in
Figure 14a. The proposed hybrid nine-arm high-voltage inverter still maintains the operating state
as before at the first several milliseconds, the energy from the AC side and capacitors feed back to
the DC side, then both the DC side and AC side currents increase, as shown in Figure 14b. The fault
current flows through the capacitors in the FBSMs and causes its voltage to increase slightly, as seen
in Figure 14c. Assume that all the IGBTs of the proposed hybrid inverter are turned off at 0.102 s.
Since the total series voltage formed by the SM capacitors in the fault current flow path is greater than
the AC voltage, the arm current quickly reduces to zero, then there is no energy exchange between the
DC side and the AC side. After the DC fault is cleared, no current flows through the capacitors and the
capacitor voltage remains unchanged.
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Figure 15 shows the upper arm currents of phase a and phase c with the peak values 197 A and 157 A,
respectively. In fact, the fault current will not exceed the preset current threshold. Obviously, the above
simulation results prove that the proposed hybrid nine-arm high-voltage inverter has the DC fault
blocking capability.Energies 2019, 12, x FOR PEER REVIEW 14 of 15 
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5. Conclusions

This paper proposes a hybrid nine-arm high-voltage inverter configuration consisting of FBSMs
and HBSMs, in which FBSM is utilized to suppress the DC fault current and HBSM is used to reduce
the device number and power consumption. As a result, the hybrid nine-arm high-voltage inverter
has inherent DC fault reverse-blocking capability. By analyzing the magnitude of AC voltage between
the different output ports after the DC-side short circuit fault occurs, the most economical ratio
between HBSM and FBSM can be obtained. From simulation results, the proposed hybrid inverter
can successfully prevent energy transfer from the AC side to the DC side and clear the DC side fault
shortly after a fault occurs on the DC side. The fault analysis method of the proposed hybrid nine-arm
high-voltage inverter can be extended to multi-port converters with more ports.
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