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Abstract: As one of the key technologies to solve the problem of high short-circuit current, the fault
current limiter (FCL) has become a research hotspot in China and abroad. The overvoltage and
protection measures of the FCL are the key technologies for its application. Therefore, this paper
studies the lightning intruding overvoltage and protection measures for a 500 kV FCL based on a high
coupled split reactor (HCSR). Firstly, according to the main topology of the system and the 500 kV
HCSR-FCL structure, the lightning intruding overvoltage simulation model of the 500 kV station,
including the nearby transmission lines, is established on the PSCAD (Power Systems Computer
Aided Design) program. Secondly, the lightning overvoltage of the equipment in the station and
the components of the HCSR-FCL are simulated and analyzed when the transmission lines nearby
are subjected to lightning shielding failure and back flashover. Meanwhile, the influence of the
HCSR-FCL on the lightning overvoltage of the equipment in the station are compared and analyzed
before and after the HCSR-FCL is installed. The simulation results show that the overvoltage of the
equipment in the station and the components of the HCSR-FCL is more serious when the shielding
failure occurs in the transmission lines nearby. The HCSR-FCL can reduce the lightning overvoltage
of the equipment in the station, but the maximum inter-terminal and inter-arm lightning overvoltage
of the HCSR can reach 1064 kV and 790 kV, respectively, under the current limiting state and the
current sharing state. Finally, methods of increasing the arresters on the transmission lines side
of the HCSR-FCL and shunt capacitor between each module of the HCSR-FCL are proposed to
reduce the lightning overvoltage. The lightning impulse withstand voltage of each component of
the HCSR is also proposed: The inter-terminal lightning impulse withstand voltage of HCSR is
170 kV. The inter-arm lightning impulse withstand voltage of HCSR is 200 kV. The terminal-to-ground
lightning impulse withstand voltage of the HCSR-FCL is 1550 kV.

Keywords: fault current limiter; overvoltage; high coupled split reactor; shunt capacitor; lightning
impulse withstand voltage

1. Introduction

The short-circuit fault current of the 500 kV power grid is becoming higher due to the increase of
power grid capacity and density [1,2]. Traditional current-limiting methods will reduce the security
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margin and reliability of the power grid and endanger the safe and stable operation of the power
grid [3].

As one of the effective measures to limit the short-circuit current, the fault current limiter (FCL)
has been widely considered by researchers. At present, superconducting FCL, power electronic FCL,
and economical FCL based on conventional equipment are the research hotspots [4–7]. However,
superconducting FCL is expensive [8]. Power electronics FCL need complex bypass devices and
a large space; hence, they cannot be widely used in a 500 kV AC power grid [9]. The FCL based
on a high coupled split reactor (HCSR) has become an important choice to limit the short-circuit
current in a power grid due to its high technical and economic efficiency. The HCSR consists of
two reverse coupled inductors, and the two reverse coupled inductors show low reactance when the
power grid system is in a normal operation mode, during which the HCSR is working in a current
sharing state. When a short-circuit fault occurs in the power grid system, the circuit breaker of one
arm in the HCSR breaks, and the HCSR presents a high reactance, during which the HCSR is working
in a current limiting state [10]. At present, research on HCSR is carried out on the theory, design,
insulation, and current sharing in China and abroad [11–15]. HCSR-FCL research and engineering
demonstration applications were also carried out for 220 kV power grids in China [16]. However,
as the short-circuit fault current of the 500 kV power system is much higher than that of 220kV power
system and the design structure of the 500 kV HCSR and the 220 kV HCSR are different, there are
many practical problems in 500 kV HCSR-FCLs to be solved for their application, such as current
limiting depth, insulation design, and coordination with 500 kV power grid equipment. Therefore,
as the first application of the 500 kV HCSR-FCL used in the 500 kV power grid, it is necessary to study
the influence of the HCSR-FCL on the lightning overvoltage and insulation coordination of the original
500 kV system equipment and to propose the lighting impulse withstand voltage of the HCSR-FCL.

This paper aims to study the influence on other equipment in the 500 kV power grid when
the incoming transmission lines are subjected to lightning shielding failure and back flashover after
a 500 kV HCSR-FCL connects to a 500 kV power grid. Furthermore, the lightning overvoltage of each
component of the HCSR-FCL are studied under different working conditions, and protection measures
are proposed. Finally, the lightning impulse withstand voltages of the HCSR-FCLs are proposed when
the HCSR-FCL is applied in a demonstration project.

2. The Topology and Parameters of the 500 kV Power System

The main topology of a 500 kV power system to be connected with a 500 kV HCSR-FCL is shown
in Figure 1, in which the HCSR-FCL will be installed on the side of the Shunde-Guangnan transmission
line near Guangnan station. Considering the future development of the power grid and the requirement
of the current limiting ratio, the inductance of one arm of each module is 4.1 mH, the coupling coefficient
is 0.977, and topology of the HCSR-FCL is shown in Figure 2. The HCSR-FCL consists of two identical
modules, and each module includes one HCSR, four voltage-equalizing capacitors, four fast switches,
and their stray capacitors to the ground. Among them, C1 is a voltage-equalizing capacitor, and C2
and C3 are stray capacitors to the ground of the fast switches. The parameters of C1, C2, and C3 are
shown in Table 1.
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Table 1. Parameters of the capacitors.

Device C1/pF C2/pF C3/pF

Capacitor 1000 40 100

The working principles of the HCSR-FCL are as follows: When the power system is in normal
operation, the eight fast switches are closed, and the HCSR-FCL is in the current sharing state;
when a fault occurs, the eight fast switches are disconnected, and the HCSR-FCL is in the current
limiting state. Therefore, it is necessary to separately analyze the lightning overvoltage of each
component of the HCSR-FCL under the states of current sharing and current limiting after the
HCSR-FCL is connected to the 500 kV power system.

3. Implementation Cost of the HCSR-FCL

The HCSR-FCL consists of two HCSRs, eight fast switches, their voltage-equalizing capacitors,
and matching equipment in its practical application. The costs of each part of the HCSR-FCL which
have been stated by the consulted equipment manufacturers are shown in Table 2. The costs of other
types of FCLs and the HCSR-FCL are shown in Table 3.
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Table 2. Cost of the HCSR-FCL.

Device Cost/$ Total Cost of Single-Phase
HCSR-FCL/$

Total Cost of Three-Phase
HCSR-FCL/$

Two HCSR 360,000
610,000 1,830,000Eight fast switches and their

voltage-equalizing capacitors
210,000

Matching equipment 40,000

Table 3. Costs of the FCLs.

Device HCSR-FCL Series-Resonant FCL Superconducting FCL

Cost/$ 1,830,000 11,400,000 over 14,300,000

Compared with other type FCLs, the cost of the HCSR-FCL is much lower. Furthermore,
one branch of the HCSR-FCL only flows through half of the short-circuit current when a short-circuit
fault occurs, so that common equipment can be adopted as maintenance equipment, and maintenance
is simple, which can also reduce the cost of the HCSR-FCL in practical engineering.

4. Modeling Methods

4.1. Lightning Parameters

4.1.1. Lightning Current Waveform

The lightning current waveform is simulated by a 2.6/50 µs double exponential wave.
The impedance of the lightning current channel is related to the magnitude of lightning current [17],
and therefore, the impedance of the lightning current channels is selected to be 300 Ω and 800 Ω,
respectively, during back flashover and shielding failure.

4.1.2. Lightning Point

It is supposed that the lightning strikes on the nearest six towers of Guangnan station. The back
flashover and shielding failure of the incoming transmission lines will cause the intruding overvoltage
to the station.

4.1.3. Lightning Current Amplitude

The lightning withstand level of back flashover and shielding failure is calculated by the
simulation, and the maximum shielding current is calculated by electrical geometry model [18]. In the
subsequent simulations, the magnitude of lightning current of back flashover and shielding failure is
considered comprehensively.

4.2. Line Model

The length of the transmission line from Guangnan station to Shunde station is 67 km.
The conductor adopts a four-split structure. The conductor type is JNRLH60X/LB14-350/35, the splitting
distance and the DC resistance of the conductor are 450 mm and 0.0818 Ω/km, respectively. The overhead
ground line is in JLB40-150 type, and the DC resistance is 0.2952 Ω/km. A frequency-dependent (phase)
model of the transmission lines is used in the PSCAD program. This paper does not consider the effect
of corona on the lightning intruding overvoltage.
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4.3. Tower Model

The tower model adopts the multi-conductor layered wave impedance model proposed by
Yamada and Hara [19,20]. The model takes into account the variation of tower parameters with height,
and also includes the propagation characteristics of wave on tower and cross-arm. In this paper,
the parameters of the tower are shown in Table 4, and the multi-wave impedance model of the tower is
shown in Figure 3.

Energies 2019, 12, x FOR PEER REVIEW 5 of 18 

 
 

 

The tower model adopts the multi-conductor layered wave impedance model proposed by 
Yamada and Hara [19,20]. The model takes into account the variation of tower parameters with height, 
and also includes the propagation characteristics of wave on tower and cross-arm. In this paper, the 
parameters of the tower are shown in Table 4, and the multi-wave impedance model of the tower is 
shown in Figure 3. 

ZT1

ZT2

ZT3

ZT4

ZL1

ZL2

ZL3

ZL4

ZA2 ZA2

ZA3 ZA3

ZA4 ZA4

Rch

ZA1 ZA1

 

Figure 3. Multi-wave impedance model of transmission tower. 

Table 4. Parameters of the towers. 

Tower Number Tower Type Span/m Gap Distance/m 
#1 SJCD344-30 342 4.3 
#2 SJC343-33 289 4.3 
#3 SZC344-56 334 3.7 
#4 SZC343-36 287 3.7 
#5 SZC341-31 272 3.7 
#6 SJC341-21 242 4.3 

4.4. Insulator String Flashover Criterion 

The FXBW-500/240D insulator is used in Guangnan station. The ideal controllable switch is used 
to model the insulator. The leader propagation method is chosen as the flashover criterion of the 
insulators, and the leader velocity adopts the equation proposed by CIGRE Working Group [21]. The 
gap distance of the flashover criterion is shown in Table 4. 

4.5. Equipment Model of The Station 

Because of the high equivalent frequency of lightning intruding overvoltage, the equipment in 
the station, such as the transformers, disconnectors, circuit breakers, hybrid gas insulated switchgear 
bushings, etc., can be equivalent to the impulse capacitor [22–25]. There are distributed parameter 
lines between them. The equivalent capacitance of some equipment is shown in Table 5. The 
equivalent circuit of the station connected with the HCSR-FCL is shown in Figure 4. TR1 is main 
transformer, CVT is capacitive voltage transformer, HGIS bushing is hybrid gas insulated switchgear 
bushing, DS is disconnector, CT is current transformer, CB is circuit breaker, and MOA is metal oxide 
arrester. The arrester type near the main transformer in the station is Y20W1-420/1046 (MOA1) and 
the arrester type near the incoming line is Y20W1-444/1063 (MOA2). The single-column measured U-
I characteristics of the arresters are shown in Table 6. Appendix A shows how to study the lightning 
overvoltage and insulation design of the HCSR-FCL when the HCSR-FCL is applied to a station. 

Figure 3. Multi-wave impedance model of transmission tower.

Table 4. Parameters of the towers.

Tower Number Tower Type Span/m Gap Distance/m

#1 SJCD344-30 342 4.3
#2 SJC343-33 289 4.3
#3 SZC344-56 334 3.7
#4 SZC343-36 287 3.7
#5 SZC341-31 272 3.7
#6 SJC341-21 242 4.3

4.4. Insulator String Flashover Criterion

The FXBW-500/240D insulator is used in Guangnan station. The ideal controllable switch is
used to model the insulator. The leader propagation method is chosen as the flashover criterion of
the insulators, and the leader velocity adopts the equation proposed by CIGRE Working Group [21].
The gap distance of the flashover criterion is shown in Table 4.

4.5. Equipment Model of The Station

Because of the high equivalent frequency of lightning intruding overvoltage, the equipment in
the station, such as the transformers, disconnectors, circuit breakers, hybrid gas insulated switchgear
bushings, etc., can be equivalent to the impulse capacitor [22–25]. There are distributed parameter lines
between them. The equivalent capacitance of some equipment is shown in Table 5. The equivalent
circuit of the station connected with the HCSR-FCL is shown in Figure 4. TR1 is main transformer,
CVT is capacitive voltage transformer, HGIS bushing is hybrid gas insulated switchgear bushing,
DS is disconnector, CT is current transformer, CB is circuit breaker, and MOA is metal oxide arrester.
The arrester type near the main transformer in the station is Y20W1-420/1046 (MOA1) and the
arrester type near the incoming line is Y20W1-444/1063 (MOA2). The single-column measured U-I
characteristics of the arresters are shown in Table 6. Appendix A shows how to study the lightning
overvoltage and insulation design of the HCSR-FCL when the HCSR-FCL is applied to a station.
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Table 5. Equivalent capacitor of some equipment.

Device TR1/pF CVT/pF DS/pF CT/pF HGIS Bushing/pF

Capacitor 5000 5000 150 1000 200

Table 6. U-I characteristics of the arresters.

Y20W1-420/1046 Y20W1-444/1063

I/kA U/kV I/kA U/kV

0.000001 596 0.000001 630
0.001 641 0.001 677

0.1 727 0.1 769
0.5 763 0.5 807
1 772 1 816
5 870 5 920
10 918 10 971
20 972 20 1027
30 1038 30 1098

Energies 2019, 12, x FOR PEER REVIEW 6 of 18 

 
 

 

Table 5. Equivalent capacitor of some equipment. 

Device TR1/pF CVT/pF DS/pF CT/pF HGIS Bushing/pF 
Capacitor 5000 5000 150 1000 200 

Table 6. U-I characteristics of the arresters. 

Y20W1-420/1046 Y20W1-444/1063 
I/kA U/kV I/kA U/kV 

0.000001 596 0.000001 630 
0.001 641 0.001 677 

0.1 727 0.1 769 
0.5 763 0.5 807 
1 772 1 816 
5 870 5 920 

10 918 10 971 
20 972 20 1027 
30 1038 30 1098 

MOA2 CVT

HGIS 
bushing

DS CT

CB

CTDS
HGIS

bushing

CVT
MOA1

TR1

16m
4m

46m 5.5m 2m 1m

1m2m5.5m36m

4m

200m

MOA2 CVT

HCSR-FCL

Station

 

#3
#2

#1

① ② 

  
Figure 4. Equivalent circuit of 500 kV Guangnan station connected with the HCSR-FCL. 

5. Simulation Results and Analysis 

According to the above modeling method, a simulation model for lightning intruding 
overvoltage of the 500 kV HCSR-FCL is established in the PSCAD/EMTDC program, and the 
simulation step is 0.002 µs. 

5.1. Back Flashover 

In order to improve the reliability of the equipment, this paper calculates the lightning intruding 
overvoltage based on the once-in-a-century lightning current. According to the cumulative 
probability distribution of lightning current amplitude and the ground lightning density in 
Guangdong Province from 2008 to 2017, the amplitude of the once-in-a-century lightning current of 
the incoming line can be calculated. The calculation method is shown in Equation (1). 

  
L

1
100

L N P× × =    (1) 

where L is the length of the incoming line, km; NL is the flashes/100 km/a; P is the cumulative 
probability distribution function of lightning current amplitude. NL and P are calculated by Equations 
(2) and (3), respectively. 

  0.6

L g
28( )

10
h dN N +=    (2) 

Figure 4. Equivalent circuit of 500 kV Guangnan station connected with the HCSR-FCL.

5. Simulation Results and Analysis

According to the above modeling method, a simulation model for lightning intruding overvoltage
of the 500 kV HCSR-FCL is established in the PSCAD/EMTDC program, and the simulation step is
0.002 µs.

5.1. Back Flashover

In order to improve the reliability of the equipment, this paper calculates the lightning intruding
overvoltage based on the once-in-a-century lightning current. According to the cumulative probability
distribution of lightning current amplitude and the ground lightning density in Guangdong Province
from 2008 to 2017, the amplitude of the once-in-a-century lightning current of the incoming line can be
calculated. The calculation method is shown in Equation (1).

L×NL × P =
1

100
(1)

where L is the length of the incoming line, km; NL is the flashes/100 km/a; P is the cumulative probability
distribution function of lightning current amplitude. NL and P are calculated by Equations (2) and
(3), respectively.

NL = Ng(
28h0.6 + d

10
) (2)

P(i ≥ I) =
1

1 + (I/a)b
(3)
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where Ng is the ground flash density (GFD), which takes 8.13 flashes/km2/a; h is the tower height,
which takes 56 m; d is the overhead ground wire (OHGW) separation distance, which takes 15 m;
a = 28.96; and b = 3.4.

From Equations (1)–(3), the lightning current amplitude of the incoming transmission lines that
may be struck once in a hundred years is 177 kA.

The lightning voltage across the insulator was simulated and analyzed when the incoming
transmission lines caused the lightning back flashover and shielding failure, and Figure 5 shows the
typical lightning voltage across the insulator. In order to analyze the influence of the HCSR-FCL on
the overvoltage of the equipment in the station, the overvoltage of the equipment in the station were
analyzed with the HCSR-FCL connected and not connected.
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5.1.1. Without the HCSR-FCL

Table 7 shows the statistical calculation results of the maximum lightning overvoltage of
the equipment in the station when the back flashover occurs on the incoming transmission lines.
The maximum stress (voltage, current, energy) of the CVT arrester is 934 kV/6.33 kA/16 kJ, which is
within the rating value of the arrester.

Table 7. Voltage of the equipment.

Tower Number CVT/kV HGIS Bushing/kV TR1/kV

#1 1019 1186 968
#2 998 1139 917
#3 1140 1223 798
#4 1060 1008 808
#5 1048 990 800
#6 943 1095 910

5.1.2. With the HCSR-FCL

The configurations and equipment in the station are kept unchanged, and the lightning overvoltage
of the HCSR-FCL under two working conditions of current limiting and current sharing are simulated
and calculated respectively.
(1) The HCSR-FCL works in the current sharing state

Eight fast switches are closed when the HCSR-FCL works in the current sharing state, and the
voltage-equalizing capacitor (C1) and the fast switching capacitor (C2 and C3) are approximately
short-circuited to the ground. As a result, both arms of the HCSR coils can pass lightning current,
and the lightning currents passed by the two arms are basically equal. Figure 6 shows the voltage of
inter-terminal and inter-arm overvoltage of the HCSR during the back flashover of the transmission
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lines. Table 8 shows the overvoltage calculation results of each equipment in the station and the
components of the HCSR.
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Figure 6. Inter-terminal and inter-arm overvoltage of the HCSR.

Table 8. Overvoltage of the equipment in current sharing state.

Tower
Number

Station HCSR

CVT/kV HGIS
Bushing/kV TR1/kV Inter-Terminal/

kV
Inter-Arm/

kV
Terminal-to-
Ground/kV

#1 824 789 867 577 577 955
#2 824 855 857 548 548 1045
#3 788 863 810 537 537 1073
#4 789 842 825 536 536 1008
#5 787 755 833 536 536 1006
#6 828 842 864 533 533 944

Figure 6 shows that the inter-terminal and inter-arm overvoltage of HCSR is generally attenuated
when the lightning overvoltage spreads to the HCSR. Table 8 shows that the maximum overvoltage of
the equipment in the station is 867 kV, which is lower than the lightning impulse withstand voltage
of the equipment considering a 1.25 times insulation margin [21]. The inter-terminal and inter-arm
overvoltage of the HCSR is equal, and the maximum terminal-to-ground overvoltage of the HCSR is
1073 kV. The maximum stress of the arrester at the incoming terminal of the HCSR-FCL is 931 kV/6.051
kA/3 kJ, which is within its rated values.
(2) The HCSR-FCL works in the current limiting state

When the HCSR-FCL works in the current limiting state, the eight fast switches are disconnected,
and the voltage-equalizing capacitors are connected in series with one arm inductor. The topology of
the HCSR-FCL circuit is changed, resulting in the different overvoltage between the inter-terminal and
inter-arm overvoltage of the HCSR. Figure 7 shows the overvoltage simulation results when lightning
strikes on tower #3. Table 9 shows the overvoltage of each part of the equipment in the station and the
components of the HCSR.
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Table 9. Overvoltage of the equipment in current limiting state.

Tower
Number

Station HCSR

CVT/kV HGIS
Bushing/kV TR1/kV Inter-Terminal/

kV
Inter-Arm/

kV
Terminal-to-
Ground/ kV

#1 630 640 696 657 629 1077
#2 673 678 687 620 598 1239
#3 787 755 660 817 586 1189
#4 625 585 630 628 586 1063
#5 628 587 649 821 586 1059
#6 737 724 756 607 582 1030

Figure 7 shows that the inter-terminal and inter-arm overvoltages of HCSR are different.
The maximum inter-terminal voltage appears at 13 µs and then attenuates rapidly. The maximum
inter-arm voltage appears at the initial moment of the lightning intrusion and attenuates rapidly.
Table 9 shows that the maximum overvoltage of the equipment in the station is 787 kV, which is lower
than the lightning impulse withstand voltage of the equipment. However, the maximum inter-terminal
overvoltage, the maximum inter-arm overvoltage, and the maximum terminal-to-ground overvoltage
of HCSR are up to 821 kV, 629 kV, and 1239 kV, respectively, and the high voltage will increase the
manufacturing difficulties for HCSRs. The maximum stress of the arrester at the incoming transmission
lines side of the HCSR-FCL is 938 kV/6.769 kA/4 kJ, which is within its protection level.

The above simulation results show that the maximum overvoltage of the equipment in the station
is lower than the lightning impulse withstand voltage when the incoming transmission line is subjected
to lightning back flashover, no matter if the HCSR-FCL is connected to the system or not. However,
the inter-terminal overvoltage and inter-arm overvoltage of the HCSR are higher, i.e., 821 kV and
629 kV, respectively. In order to reduce the design difficulty of the HCSR, it is necessary to take restraint
measures to reduce the lightning overvoltage of the components in the HCSR and thus reduce the
insulation requirements.

5.2. Shielding Failure

The maximum shielding failure current can be calculated by the electrical geometry model (EGM)
of each tower on the incoming side of the station [17], and the lightning withstand level of each tower
can be simulated and calculated. The calculation results are shown in Table 10.
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Table 10. The maximum shielding failure current and the lightning withstand level of each tower.

Tower Number The Maximum Shielding
Failure Current/kA

The Lightning Withstand
Level/kA

#1 26 40
#2 28 21
#3 48 15
#4 30 14
#5 21 14
#6 11 19

When the lightning withstand level is greater than the maximum shielding failure current,
the maximum shielding failure current is adopted in the simulation; otherwise, the maximum shielding
failure current and the lightning withstand level are both adopted. The maximum overvoltage of each
part of the equipment during lightning shielding failure on each tower are recorded and analyzed.

5.2.1. Without the HCSR-FCL

The maximum overvoltage of the equipment in the station is shown in Table 11, in which the
lightning shielding failure occurs and the HCSR-FCL is not connected in the station.

Table 11. Simulation results of the maximum voltage on the equipment.

Tower Number CVT/kV HGIS
Bushing/kV TR1/kV Lightning Impulse

Withstand Voltage/kV

#1 1110 1421 1107 1550
#2 1222 1642 1109 1550
#3 1275 1886 1091 1550
#4 1130 1787 1093 1550
#5 1046 1290 1053 1550
#6 932 1010 955 1550

Table 11 shows that the lightning overvoltage of some equipment exceeds the lightning impulse
withstand voltage, and it is necessary to increase the arresters near the incoming transmission lines of
the station to reduce the overvoltage. Therefore, two-column arresters are added to the CVT in the
simulation, and Table 12 shows the maximum overvoltage of the equipment. The simulation results
show that the overvoltage is apparently decreased, and the equipment can work in a safe condition.

Table 12. Maximum voltage of the equipment when the two-column arrester is added.

Tower Number CVT/kV HGIS
Bushing/kV TR1/kV Lightning Impulse

Withstand Voltage/kV

#1 1002 1127 983 1550
#2 1007 1119 983 1550
#3 1049 1152 947 1550
#4 1009 1235 938 1550
#5 1034 1091 942 1550
#6 904 973 874 1550

5.2.2. With the HCSR-FCL

(1) The HCSR-FCL works in the current sharing state
The overvoltage of the HCSR is shown in Figure 8 when the 48 kA lightning current strikes on

the transmission line near tower #3. Figure 8 shows that the maximum inter-terminal and inter-arm
overvoltages of the HCSR appear at 9 µs, and the overvoltage is generally attenuated. Table 13 shows
the detailed simulation results.
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Table 13. Overvoltage of the equipment in current sharing state.

Tower
Number

Station HCSR

CVT/kV HGIS
Bushing/kV TR1/kV Inter-Terminal/

kV
Inter-Arm/

kV
Terminal-to-
Ground/kV

#1 935 1030 901 198 198 1129
#2 915 971 896 420 420 1280
#3 921 949 895 530 530 1343
#4 898 930 895 623 623 1157
#5 912 925 896 627 627 1040
#6 884 890 894 119 119 984

Table 13 shows that the maximum overvoltage of the equipment in the station is 1030 kV,
which is lower than the insulation level of the equipment. However, both the maximum inter-terminal
overvoltage of the HCSR and the maximum inter-arm overvoltage of the HCSR are 627 kV, and the
maximum terminal-to-ground overvoltage of the HCSR is 1343 kV. The maximum stress of the arrester
near the incoming transmission line side of the HCSR-FCL is 1075 kV/26.756 kA/28 kJ, which is beyond
its rated values. Hence, further lightning protection measures are needed.

(2) The HCSR-FCL works in the current limiting state
Figure 9 shows the inter-terminal and inter-arm overvoltages of the HCSR when the lightning

current with an amplitude of 21 kA strikes on the conductor of tower #5. Figure 9 shows that the
maximum inter-terminal overvoltages of the HCSR appears at 22 µs and the maximum inter-arm
voltage appears at 8 µs when the lightning overvoltage spreads to the HCSR. This is due to the different
topology of the two arms of the HCSR. The voltage-equalizing capacitors and stray capacitors to the
ground of the fast switches in the current limiting state affect the high frequency transient process of
lightning current spreading to the HCSR. Table 14 shows the lightning overvoltage of each part of the
equipment in the station and the components of the HCSR.
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Table 14. Overvoltage of the equipment in current limiting state.

Tower
Number

Station HCSR

CVT/kV HGIS
Bushing/kV TR1/kV Inter-Terminal/

kV
Inter-Arm/

kV
Terminal-to-
Ground/kV

#1 844 885 804 556 197 1227
#2 760 777 760 928 543 1247
#3 845 862 788 914 712 1475
#4 815 853 787 1064 633 1262
#5 901 853 787 1041 567 1253
#6 810 837 783 413 126 993

Table 14 shows that the maximum overvoltage of the equipment in the station is 901 kV,
which is lower than the lightning impulse withstand voltage of the equipment. However, the maximum
inter-terminal overvoltage, the maximum inter-arm overvoltage, and the maximum terminal-to-ground
overvoltage of HCSR are up to 1064 kV, 712 kV, and 1475 kV respectively. The maximum stress of the
arrester near the incoming side of the HCSR-FCL is 1075 kV/26.756 kA/28 kJ, which is beyond its rated
values. So further lightning protection measures are needed.

The above simulation results show that the maximum overvoltage of the equipment in the station
is lower than the lightning impulse withstand voltage when the incoming transmission line is subjected
to lightning shielding failure, no matter if the HCSR-FCL is connected to the system or not. However,
the inter-terminal and inter-arm overvoltage of the HCSR is very high, and the maximum stress of
the arrester near the incoming side of the HCSR-FCL is beyond its rated value. In order to reduce the
design difficulty of the HCSR and the residual voltage of the arrester, it is necessary to take effective
measures to reduce the lightning overvoltage and thus reduce the insulation requirements.

6. Protection Measures and the Lightning Impulse Withstand Overvoltage of HCSR-FCL

The above simulation analysis shows that the lightning overvoltage of equipment in the station
under shielding failure is more serious than that under back flashover of the incoming transmission
lines, and the maximum stress of the arrester near the incoming side of the HCSR-FCL is beyond its
rated value.
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This section studies lightning overvoltage protection measures for the HCSR-FCL. Based on the
lightning overvoltage protection measures for the FCLs, such as adding an arrester across the FCL,
adding a ground capacitor in the terminals of the FCL, adding a shunt capacitor across of the FCL,
etc. [26–28], three protection measures for the HCSR-FCL are proposed and shown in Figures 10–12.
When the capacitor takes 1200 nF, the maximum inter-terminal and inter-arm overvoltage of the HCSR
in the first protection measures are 512 kV and 205 kV, the maximum inter-terminal and inter-arm
overvoltage of the HCSR in the second protection measures are 354 kV and 185 kV, and the maximum
inter-terminal and inter-arm overvoltage of the HCSR in the third protection measures are 123 kV and
147 kV. Comparing the three protection measures, the overvoltage of the third protection measure
shown in Figure 12 is much lower. Therefore, the third protection measures are proposed. The proposed
protection measures include increasing the two-column arrester MOA2 on the incoming side and
adding a shunt capacitor C4 across each module of HCSR at the same time. The topology of the
HCSR-FCL with the proposed protection measures is shown in Figure 12, and the simulation results
under these measures are shown in Tables 15 and 16.
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After two modules of the HCSR-FCL are both connected with a same shunt capacitor (C4),
the equivalent impedance of the shunt capacitor is much lower. Therefore, most lightning current flows
from the shunt capacitor, so the amplitude and steepness of the lightning current flowing through the
HCSR decrease, resulting in reducing the amplitude and steepness of the inter-terminal and inter-arm
overvoltage of HCSR greatly. Table 15 shows the lightning overvoltage of the equipment in the station
when the HCSR-FCL is working in current sharing state, and Table 16 shows the lightning overvoltage
when the HCSR-FCL is working in current limiting state.
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Table 15. Maximum overvoltage of the equipment with the HCSR-FCL working in current sharing state.

Shunt
Capacitor/nF

Station HCSR

CVT/kV HGIS
Bushing/kV TR1/kV Inter-Terminal/

kV
Inter-Arm/

kV
Terminal-to-
Ground/kV

400 1080 1120 956 99 99 1171
800 1081 1133 960 93 93 1168
1200 1079 1136 961 72 72 1163

Table 16. Maximum overvoltage of the equipment with the HCSR-FCL working in current limiting state.

Shunt
Capacitor/nF

Station HCSR

CVT/kV HGIS
Bushing/kV TR1/kV Inter-Terminal/

kV
Inter-Arm/

kV
Terminal-to-
Ground/kV

400 1074 1131 959 151 157 1170
800 1082 1127 961 129 151 1156
1200 1082 1127 962 123 147 1164

Comparing Tables 13 and 14 to Tables 15 and 16, it can be seen that the overvoltage of the
equipment in the station increases to some extent. This is because the lightning current that flows into
the station increases by passing the shunt capacitors, but the lightning overvoltage is still lower than
the lightning impulse withstand voltage of the equipment in the station. However, the inter-terminal
and inter-arm overvoltage of the HCSR decreases greatly, and the larger the shunt capacitor, the smaller
the lightning overvoltage between terminals and arms of HCSR.

In summary, after adding two-column arresters and two shunt capacitors, the overvoltage of the
equipment in the station and the HCSR are both decreased to reasonable values. The lightning impulse
withstand voltage of each component of HCSR is also proposed, that is, the inter-terminal lightning
impulse withstand voltage of HCSR is 170 kV, the inter-arm lightning impulse withstand voltage of
HCSR is 200 kV, and the terminal-to-ground lightning impulse withstand voltage of HCSR is 1550 kV.

7. Conclusions

In this paper, the lightning intruding overvoltage of a 500 kV AC power station with or without
an HCSR-FCL is simulated and analyzed, and the lightning protection measures of the HCSR-FCL and
lightning impulse withstand voltage of the HCSR are proposed. The main conclusions are as follows:

(1) The simulation model of the lightning intruding overvoltage of the 500 kV AC station with or
without an HCSR-FCL is established.

(2) The simulation results show that the lightning overvoltage of the equipment in the station is
decreased by connecting an HCSR-FCL, but the overvoltage of the HCSR-FCL is very high
because of the high impedance of the HCSR, and the inter-arm and inter-terminal voltages also
need to be decreased. The lightning intruding overvoltage is higher in shielding failure than the
back flashover of the incoming transmission lines.

(3) The inter-terminal overvoltage of the HCSR is the same as the inter-arm overvoltage of the HCSR
when it works in the current sharing state, while the inter-terminal overvoltage of the HCSR is
lower than the inter-arm overvoltage of the HCSR when it works in the current limiting state.

(4) Protection measures of adding arresters and shunt capacitors are proposed, and the simulation
results show that the measures are effective. Moreover, it is proposed that each shunt capacitor is
1200 nF, the inter-terminal lightning impulse withstand voltage of the HCSR is 170 kV, the inter-arm
lightning impulse withstand voltage of the HCSR is 200 kV, and the terminal-to-ground lightning
impulse withstand voltage of the HCSR is 1550 kV.
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(5) The high frequency equivalent models of the equipment in the station are classical, but the high
frequency equivalent model of the HCSR-FCL is unique, and it will be validated by the lighting
impulse experiments after the HCSR-FCL is constructed.
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Abbreviations

HCSR High Coupled Split Reactor
HCSR-FCL Fault Current Limiter based on High Coupled Split Reactor
TR Transformer
CVT Capacitive Voltage Transformer
HGIS Hybrid Gas Insulated Switchgear
DS Disconnector
CT Current Transformer
CB Circuit Breaker
MOA Metal Oxide Arrester
GFD Ground Flash Density
OHGW Overhead Ground Wire

Appendix A

When a station needs to install the HCSR-FCL, the lightning overvoltage of the HCSR-FCL can be calculated
by using the method shown in Figure A1.
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