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Abstract: Based on current research into the vector control principles of the permanent magnet
synchronous motor (PMSM), a control strategy founded upon an Active Disturbances Rejection
Controller (ADRC) is proposed. This control strategy consists of an ADRC speed loop and current
controller. By studying the factors affecting the running state of a PMSM, a mathematical model
is established, and the design principle of the active disturbances rejection controller is analyzed
in order to design the ADRC speed loop. The speed loop considers errors caused by uncertain
factors, such as external disturbances, to be the disturbance amount, which is observed and then
compensated for by the ADRC, thereby improving the dynamic and static performance as well as
the anti-disturbance capability of the system. In order to achieve the strong coupling of the PMSM,
the current controller was also designed to decouple the d–q axis current. Our simulation and
experimental results demonstrate the feasibility and practicability of this control strategy.

Keywords: permanent magnet synchronous motor; vector control; active disturbance rejection
controller; feedback linearization

1. Introduction

The energy crisis and environmental issues which characterize the early 21st Century have been
generating fear and uncertainty worldwide [1]. As awareness grows that our continued reliance
upon fossil fuels is untenable, the traditional automotive industry has suffered, and electric vehicles
powered by alternative energy have emerged as an increasingly popular alternative [2]. The permanent
magnet synchronous motor (PMSM) has been widely promoted within the field of electric vehicles,
as it possesses a number of desirable characteristics, including a small torque ripple, a wide speed
range, a simple structure, a large torque inertia and low vibration noise [3–5]. As the in-depth study of
PMSM control systems has progressed, a variety of advanced control strategies have been proposed,
including a synovial deformation structure, time optimal control, adaptive control and nonlinear
proportional–integral–derivative (PID) [6,7]. However, the control effect of most strategies depends
upon the precise model of the controlled object, which is more complicated and difficult to implement.
Artificial intelligence control has become a hot topic in current research because of its strong robustness
and also remaining independent of the controlled object model. The complexity of the algorithm,
and the large amount of computation, limit its application in the actual control system. The PI controller
is widely used in the speed loop and current loop of the control system due to its simple structure and
easy implementation. But the control performance in the time-varying system is weak, and there are
problems such as overshoot, which make it difficult to achieve high-precision control [8,9].
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The Active Disturbances Rejection Controller (ADRC) was developed by the researcher Han
Jingqing of the Chinese Academy of Sciences following in-depth research into modern control
theory [10–14]. It combines PID control technology based on error feedback, using this to eliminate the
essence of error control, and thereby proposing a new, nonlinear, practical control method [10–12,15].
The ADRC suppresses overshoot by means of the Tracking Differentiator (TD) design transition process
during operation, and observes the external disturbance and parameter variation of the system through
the Extended State Observer (ESO) [13,14,16]. The ESO accounts for the defects of the PID controller
and results in the accelerated convergence of any error, as well as possessing desirable dynamic and
static characteristics [17].

This paper investigates the PMSM, and from the analysis of its topology and principles, a control
strategy based on an ADRC is proposed. Since the PMSM is a complex nonlinear system, favorable
control performance can be obtained by decoupling the coupling term in its mathematical equation.
The commonly-used PI control decoupling is difficult to meet the performance requirements in the full
speed range. Therefore, the feedback linearization theory is applied. The Lie differential operation of
the output variable is used to obtain the required coordinate transformation and nonlinear system
state feedback. The input-output feedback linearization of the PMSM is realized, and the feedback
linearization algorithm is designed. The controller implements the decoupling control of the system.
Our simulation and experimental research into the control system demonstrate that our proposed
control strategy is robust, and exhibits both stable and accurate dynamic tracking.

This paper is organized as follows: The design of ADRC is given in Section 2. In Section 3, the
current decoupling controller and the magnetic chain observer are given. Section 4 provides simulation
and experimental results. Section 5 concludes this paper.

2. The Active Disturbances Rejection Controller

Active disturbances rejection controller technology is a nonlinear control strategy. It combines
classical adjustment theory with modern control theory, and has the advantages of simple algorithm
and easy adjustment [18]. This control theory applies nonlinear feedback to the control system to
compensate for errors caused by uncertainties such as internal and external disturbances. Moreover,
the active disturbances rejection controller technology has a low dependence on the accuracy of the
mathematical model of the controlled system, so it has unique advantages in dealing with the nonlinear
control system. The active disturbances rejection controller mainly includes three parts: The tracking
differentiator (TD), extended state observer (ESO) and nonlinear state error feedback (NLSEF) [19].

Since the auto-disturbance technique can be applied to an uncertain object that is affected by an
unknown disturbance, it is described by the following differential equation.{

x(n) = f (x,
.
x, · · · , x(n−1), t) + d(t) + bu(t)

y = x(t)
(1)

Where: f (x,
.
x, · · · , x(n−1), t) is an unknown function; d(t) is an unknown disturbance; y is the

system output; u(t) is the system control quantity; b is the gain of control input.
The schematic diagram of the standard active disturbances rejection controller is shown in Figure 1.

Energies 2019, 12, x FOR PEER REVIEW 2 of 19 

 

theory [10–14]. It combines PID control technology based on error feedback, using this to eliminate 
the essence of error control, and thereby proposing a new, nonlinear, practical control method 
[10–12,15]. The ADRC suppresses overshoot by means of the Tracking Differentiator (TD) design 
transition process during operation, and observes the external disturbance and parameter variation 
of the system through the Extended State Observer (ESO) [13,14,16]. The ESO accounts for the 
defects of the PID controller and results in the accelerated convergence of any error, as well as 
possessing desirable dynamic and static characteristics [17].  

This paper investigates the PMSM, and from the analysis of its topology and principles, a 
control strategy based on an ADRC is proposed. Since the PMSM is a complex nonlinear system, 
favorable control performance can be obtained by decoupling the coupling term in its mathematical 
equation. The commonly-used PI control decoupling is difficult to meet the performance 
requirements in the full speed range. Therefore, the feedback linearization theory is applied. The 
Lie differential operation of the output variable is used to obtain the required coordinate 
transformation and nonlinear system state feedback. The input-output feedback linearization of the 
PMSM is realized, and the feedback linearization algorithm is designed. The controller implements 
the decoupling control of the system. Our simulation and experimental research into the control 
system demonstrate that our proposed control strategy is robust, and exhibits both stable and 
accurate dynamic tracking. 

This paper is organized as follows: The design of ADRC is given in Section 2. In Section 3, the 
current decoupling controller and the magnetic chain observer are given. Section 4 provides 
simulation and experimental results. Section 5 concludes this paper. 

2. The Active Disturbances Rejection Controller 

Active disturbances rejection controller technology is a nonlinear control strategy. It combines 
classical adjustment theory with modern control theory, and has the advantages of simple algorithm 
and easy adjustment [18]. This control theory applies nonlinear feedback to the control system to 
compensate for errors caused by uncertainties such as internal and external disturbances. Moreover, 
the active disturbances rejection controller technology has a low dependence on the accuracy of the 
mathematical model of the controlled system, so it has unique advantages in dealing with the 
nonlinear control system. The active disturbances rejection controller mainly includes three parts: 
The tracking differentiator (TD), extended state observer (ESO) and nonlinear state error feedback 
(NLSEF) [19].  

Since the auto-disturbance technique can be applied to an uncertain object that is affected by 
an unknown disturbance, it is described by the following differential equation. 

( ) ( 1)( , , , , ) ( ) ( )
( )

n nx f x x x t d t bu t
y x t

− = ⋅ ⋅ ⋅ + +


=

  (1) 

Where: ),,,,( )1( txxxf n−  is an unknown function; d(t) is an unknown disturbance; y is the 
system output; u(t) is the system control quantity; b is the gain of control input.  

The schematic diagram of the standard active disturbances rejection controller is shown in 
Figure 1. 

 
Figure 1. Active disturbance rejection control system structure principle diagram. Figure 1. Active disturbance rejection control system structure principle diagram.



Energies 2019, 12, 3827 3 of 19

2.1. Tracking Differentiator

The tracking differentiator is the first part of the auto-disturbance controller. The tracking
transition process effectively solves the problem that the super-adjustment and rapidity of the classical
PID control technology have difficulty in coordinating in the control system, and reduces the overshoot
of the system. It enables it to track the system reference input quickly, while obtaining an approximate
differential signal according to the order of the controller [20–23]. The second order differential
equation is: { .

z1 = z2
.
z2 = f (z1, z2)

(2)

All solutions are bounded and satisfied by: lim
t→∞

z1(t) = 0

lim
t→∞

z2(t) = 0
(3)

For any bounded measurable signal v(t), t ∈ [0,∞] and arbitrary T > 0, differential equation is:{ .
x = x2
.
x = r2 f (x− v(t), x2

r )
(4)

The first component of the solution x1(r, t) is satisfied by:

lim
∫

T
0
|x1(r, t) − v(t)|dt = 0 (5)

Extend the above equation to the nth order system, the dynamic system is set up:

.
z1 = z2
...
.
zn−1 = zn
.
zn = f (z1, z2, · · · , zn)

(6)

Where any solution is asymptotically stable at the origin, and all solutions are satisfied by
limzi(t) = 0, i = 1, 2, · · · , n. Then, for any locally integrable signal v(t), with t ∈ [0, ∞) , and any T >

0, the new dynamic system for any bounded integrable function v(t) is:

.
x1 = x2
...
.
xn−1 = xn
.
xn = rn f (x1 − v(t), x2

r , · · · xn
rn−1 )

(7)

Solution satisfies: lim
r→∞

∫ T
0 |x1(t) − v(t)|dt = 0. As r increases, the system solution can fully

approximate a given input signal for a limited time.

2.2. Extended State Observer

The system always exchanges information with the environment during its operation. For a
dynamic system, the external variable of the system is the output variable of the system to the outside.
The device that determines the state variable inside the system according to the observation of the
external variable is the state observer, and it determines the system according to the measured system
input and system output. The extended state observer is, in a sense, a versatile and applicable
disturbance observer.
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Set the second-order linear control system as:
.
x1 = x2
.
x2 = a1x1 + a2x2 + bu
y = x1

(8)

The corresponding system state observer is:
e1 = z1 − y
.
z1 = z2 − l1e1
.
z2 = (a1z1 + a2z2) − l2e1 + bu

(9)

The error equation between the system and the original system is:
e1 = z1 − x1, e2 = z2 − x2
.
e1 = −l1e1 + e2
.
e2 = (−l2 + a1)e1 + a2e2 + bu

(10)

Select l1, l2 to make matrix
[
−l1 1
−l2 a2

]
stable; the Equation (9) is the state observer of the

Equation (8).
Nonlinear system is: 

.
x1 = x2
.
x2 = f (x1, x2) + bu
y = x1

(11)

When f (x1, x2) and b are determined, the following state observer is established:
e1 = z1 − y
.
z1 = z2 − l1e1
.
z2 = f (z1, z2) − l2e1 + bu

(12)

The error equation for the Equation (12) is:
e1 = z1 − x1, e2 = z2 − x2
.
e1 = e2 − l1e1
.
e2 = f (x1 + e1, x2 + e2) − f (x1, x2) − l2e1

(13)

Assuming that f (x1, x2) is continuously differentiable, it is linearly approximated by a
Taylor expansion: 

e1 = z1 − x1, e2 = z2 − x2
.
e1 = e2 − l1e1
.
e2 =

∂ f (x1,x2)
∂x1

e1 + ∂ f (x1,x2)
∂x2

e2 − l2e1

(14)

As long as ∂ f (x1,x2)
∂x1

and ∂ f (x1,x2)
∂x2

are bounded, l1 and l2 can always be determined, and if the error
Equation (14) is stable, Equation (12) will become the state observer of the Equation (11).

Define x3(t) = f (x1(t), x2(t)) and
.
x3(t) = w(t), then Equation (11) can be expanded into a new

linear control system: 
.
x1 = x2
.
x2 = x3 + bu
.
x3 = w(t)
y = x1

(15)
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Establish a state observer for the expanded system:
e1 = z1 − y
.
z1 = z2 − β1e1
.
z2 = z3 − β2|e1|

1
2 sign(e1) + bu

.
z3 = −β3|e1|

1
4 sign(e1)

(16)

By selecting the appropriate parameters β1, β2 and β3, the system can estimate the state variables
x1(t) and x2(t) and the real-time effect x3(t) of the expanded state. The state observer of the expanded
Equation (16) is called the state observer, and x3(t) is called the expanded state.

The extended state observer obtains the tracking signal z1(t) of the system output signal y(t) and
the derivative signal zi(t) of each order, and the system disturbance estimation signal zn+1(t) to estimate
the disturbance. Extend the external disturbance and model error to a new state variable. According to
the classical state observer principle, the following equation can be obtained:

e = z1 − y
.
z1 = z2 + g1(e)
...
.
zn−1 = f (x1, · · · , xn−1) + bu + gn−1(e)
.
zn = gn(e)

(17)

Select the appropriate function to observe the state variables and total disturbances of the system.

2.3. Nonlinear State Error Feedback Controller

The nonlinear structure and control parameters play a key role in the fast convergence of
the auto disturbance rejection controller to the target. “Feedback” is the essence of control theory.
The feedback mechanism can improve the performance of the system. It can change a linearly-controlled
system into a nonlinear-controlled system, and vice versa. The feedback mechanism in the negative
feedback-controlled system also has the ability to restrain small, uncertain disturbances. The most
breakthrough idea of self-disturbance control is to explore the potential of the feedback mechanism as
much as possible, and to exert its control and anti-interference ability.

The tracking differentiator and the extended state observer respectively generate tracking signals
and state variables. The nonlinear state error feedback controller uses a function to solve the control
quantity structure by using the functions of the above two parameters.

The general form is as follows:

e1 = v1 − z1
...
en = vn − zn

u0(t) = k1 f1(e1, t) + · · ·+ kn fn(en, t)
u(t) = u0(t) − zn+1(t)/b

(18)

Where: ei(i = 1,2,...,n) is the difference between the tracking signal and the state variable estimate;
fi(ei, t) is a nonlinear function; u0(t) is the system control quantity; −zn + 1(t)/b acts to compensate for
the disturbance.

3. Design of ADRC

The classic permanent magnet synchronous motor id* = 0 vector control strategy usually adopts
the double loop control structure, where the inner loop is the current loop, and the outer loop is the
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speed loop. At this time, the principle structure diagram of the vector control speed control system of
the permanent magnet synchronous motor based on id* = 0 is shown in Figure 2 [23–26].
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In order to facilitate the analysis and application, the interference of the core parameters, such as
core saturation, higher harmonics and eddy current on the motor parameters, is temporarily ignored.
The voltage equation of the PMSM in the synchronous rotating coordinate system is as follows:

ud = Rsid +
d
dt
ψd −ωeψq (19)

uq = Rsiq +
d
dt
ψq +ωeψd (20)

The flux linkage equation is:
ψd = Ldid +ψ f (21)

ψq = Lqiq (22)

Based upon the theory of magnetic field orientation, the state equation of a PMSM in a synchronous
rotating coordinate system is [27]:

.
id.
iq
.
ωe

 =


−Rs/L npωe 0
npωe −Rs/L −npψ f /L

0 1.5npψ f /J −B/J




id
iq
ωe

+


ud/Ld
uq/Lq

−TL/J

 (23)

Where ud, uq, ψd, and ψq are the stator voltage and flux linkage components in the d–q coordinate
system, respectively, and also where id and iq are the direct axis and the intersecting axis current,
respectively; Ld is the direct axis and Lq the intersecting axis inductance. Meanwhile, Rs is the stator
resistance; ψf is the rotor flux; TL is the load torque; Pn is the motor pole pair; J is the moment of inertia;
and ωe is the rotor angular velocity.

From the design of the auto-disturbance controller on the speed loop, the system state is only the
speed. Therefore, only one-order ADRC is needed for this factor, so that the extended state observer
is the second-order. In order to facilitate control and reduce the number of controlled parameters, a
linear function is used instead of a nonlinear function.

From Equation (23), we can get:

.
ωe =

3npψ f iq
2J

−
Bωe

J
−

TL

J
(24)
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Set the disturbance:
a(t) = −

B
J
ωe −

TL

J
(25)

b = 1.5
npψ f

J
(26)

Inferred:
.
ω = a(t) + biq (27)

It can be seen from the above equation that the motion damping coefficient, moment of inertia and
external disturbance of the PMSM can be represented in a(t). Consequently, the transition should be
arranged in a manner that achieves the real-time tracking of the input signal. At the same time, in order
to improve the anti-disturbance ability of the system, a(t) should be observed and compensated for.
Therefore, the specific structure of the first-order ADRC controller, designed according to the principle
of active disturbance rejection, is shown in Figure 3.
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First-order tracking differentiator:
TD: {

e1 = v1 −ω∗
.
v1 = −re1

(28)

ESO: 
e1 = z1 −ω
.
z1 = z2 − β1e2 + bu
.
z2 = −β2e2

(29)

NLSEF: 
e3 = v1 − z1

u0 = ke3

u = u0 −
z2
b

(30)

Where: ω* is the given speed variable; v1 is the tracking signal; ω is the actual motor speed; z1 is
the observed signal; z2 is the disturbance feedback.

It can be seen from the above equations that there are r, β1, β2 and k in the ADRC control system
which are need to be set. It can be seen from Equation (28) that increasing the parameter r in the
tracking differentiator can bring the tracking signal closer to a given speed. However, overshoot will
occur as r increases, so multiple tunings are required. β1, and β2 determine the performance of ESO,
which is mainly reflected in the convergence speed. β2 affects the estimation of disturbances in the
ESO system. As the value increases, the system’s load-resistance is enhanced. Therefore, the time for
the system to return to steady state after the sudden change of the load is short. However, the system
oscillation is more obvious when β2 is over-exposed, so β1 is increased to restrain the oscillation at
this time.

According to the method proposed by Gao Zhiqiang, the system bandwidth and the extended
state observer bandwidth are used to reduce the number of tuning parameters. Using the linear
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system synthesis method to perform pole assignment on Equation (29), we can derive the characteristic
equation as:

p(s) = s2 + β1s + β2 (31)

The necessary and sufficient condition for β1 and β2 is that all of the roots of Equation (18) must
be on the left plane. If a closed-loop pole is desired −p(p > 0), then:

p(s) = (s + p)2 = s2 + 2ps + p2 (32)

By using system bandwidth ωc and extended state observer bandwidth ω0, the observation poles
can be placed on top ω0:

β1 = 2ω0, β2 = ω0
2 (33)

ω0 ≈ 3∼ 5ωc (34)

Only one parameter needs to be set. The larger the tracking signal, the faster the system response.
In the experiment, the trial-and-error method was used to adjust the system parameters. In short,
the tuning of the four parameters should be coordinated and adjusted. Through the experience
and comparative analysis of each simulation, multiple attempts are made to determine the most
appropriate parameters.

The pole placement method is currently a widely-used parameter tuning method. It is simple and
easy to use, and the parameters are satisfied within a certain range.

4. Current Controller Design

The current controller mainly comprises a current decoupling controller and a flux linkage
observer. The decoupling controller applies the feedback linearization theory to decouple the complex
coupling terms in the mathematical equations of the motor. The flux observer provides the necessary
information for the decoupling controller.

4.1. Current Decoupling Controller

Because the electromagnetic torque of the three-phase permanent magnet synchronous motor is:

Te = 1.5pn(ψdiq −ψqid) (35)

Where: Te is the electromagnetic torque.
Substituting Equations (21) and (22) into Equation (31) yields:

Te = 1.5pn[ψ f iq + (Ld − Lq)idiq] (36)

Since Ld = Lq = L, Equation (32) can be simplified as:

Te = 1.5npψ f iq (37)

It can be seen from Equation (23) that the PMSM is a multi-variable system. There is a strong
nonlinear coupling relationship between id, iq and ωe, which cannot be adjusted separately. Therefore,
id and iq need to be used in order to achieve decoupling.

A rewriting of the system state Equation (23) in the d–q coordinate system to the affine nonlinear
standard form is as follows:

.
x = f (x) + g1(x)ud + g2(x)uq (38)

f (x) =


−RSid + Lqiqωe

−RSiq − Ldidωe −ωeψ f
(Te − PnTL − Bωe)/J

 (39)
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[
g1(x) g2(x)

]
=


1 0
0 1
0 0

 (40)

Before the controller can be designed, the conditions under which the feedback linearization
method is established in the direct torque control system must be discussed.[

Lg1ψd Lg2ψd
Lg1ψq Lg2ψq

]
=

 g1
∂ψd
∂x g2

∂ψd
∂x

g1
∂ψq
∂x g2

∂ψq
∂x


=

[
1 0
0 1

] (41)

The decoupling matrix is a nonsingular matrix that satisfies exact linearization conditions.
To decouple the equations, two virtual control quantities K1 and K2 are designed and defined

as follows: {
k1 =

.
y1 = L fψd + Lg1ψdud + Lg2ψduq

k2 =
.
y2 = L fψq + Lg1ψqud + Lg2ψquq

(42)

Where: y1 = ψd and y2 = ψq. They are system output variables, where Lfψd is the Li derivative of
ψd with respect to f, and the meanings of Lg1 and Lg2 are similar, and will not be described again.

Bringing Equations (37) and (38) into Equation (34) yields:[
ud
uq

]
=

[
Lg1ψd Lg2ψd
Lg1ψq Lg2ψq

]−1[
k1 − L fψd
k2 − L fψq

]
(43)

In order for the changed linear system outputs ψd, ψq to track the given signals ψd* and ψq*, the
controller is designed to:  k1 =

dψd
∗

dt − α1(ψd
∗
−ψd)

k2 =
dψq

∗

dt − α2
(
ψq
∗
−ψq

) (44)

Where: α1 and α2 are controller modulation parameters with positive values. Finished, ud and uq

can be expressed as: {
ud = −Rid +ωeLqiq − k1

uq = −Riq −ωeLdid +ωeψ f − k2{
ud = −Rid +ωeLqiq − k1

uq = −Riq −ωeLdid +ωeψ f − k2
(45)

And the flux linkage tracking error equation:
d(ψd

∗
−ψd)

dt = −α1(ψd
∗
−ψd)

d(ψq
∗
−ψq)

dt = −α2
(
ψq
∗
−ψq

) (46)

It can be seen from these equations that the system’s steady state error can be reduced to be close
to zero by making the controller modulation parameter greater than zero.

4.2. Magnetic Chain Observer

In order to facilitate the observation of the stator flux linkage, it is necessary to rewrite Equations
(19) and (20) into a form under the α–β coordinate system. The mathematical model of the permanent
magnet synchronous motor in the α–β coordinate system is:{

uα = (R + Dl)iα −ωeψ f sinθ
uβ = (R + DL)iβ +ωeψ f cosθ

(47)
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Where D is a differential operator, θ is the rotor flux point angle, and ωe is the electrical
angular velocity.

Construct extended flux linkage terms ψα1 and ψβ1:{
uα1 = ψ f cosθ
uβ1 = ψ f sinθ

(48)

The extended flux linkage term is used to represent the permanent magnet synchronous
motor model: {

uα = (R + Dl)iα + Dψα1

uβ = (R + DL)iβ + Dψβ1
(49)

Order x = ψαβ1 =
[
ψα1 ψβ1

]T
, a new equation of state is available:{ .

x = Ax + Bu
y = Cx

(50)



A = ωe J =

[
0 −ωe

ωe 0

]
B = O =

[
0 0
0 0

]
C = ωe J =

[
0 −ωe

ωe 0

] (51)

The relationship between the stator flux linkage and the extended flux linkage is:{
ψα = Liα +ψα1

ψβ = Liβ +ψβ1
(52)

The electromagnetic torque equation is:

Te = 1.5pn
[
ψα ψβ

]
JT

[
iα iβ

]T
(53)

The output y of the system can be measured, so the minimum-order state observer is designed to
observe the extended flux linkage. The observer model is:

.
x̂ = A

.
x + Bu + K[y− ŷ] (54)

Where: K is the state observer feedback matrix. The state observer is constructed according to the
state equation, and the state variable is selected as the extended flux linkage ψαβ1.{

x = ψαβ1
.
x = Dψαβ1

(55)

According to the above formula, the minimum-order state observer of the extended flux linkage is:
.
x̂ = Dψ̂αβ1

= ŷ + K(y− ŷ)
= ωe Jψ̂αβ1 + K(uαβ −Rsiαβ − LDiαβ −ωJψ̂αβ1)

ŷ = ωe Jx̂ = ωe Jψ̂αβ1

(56)
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The error equation for the state observer is:

Dψ̃αβ1 = (A−KC)(x̂− x)
= ω(1−K)J(ψ̂αβ1 −ψαβ1)

(57)

Where: ψ̃αβ1 is used to expand the observation error of the observation flux linkage.
It can be seen from the above formula that by performing pole placement on the feedback matrix

K, the state observer based on the extended flux linkage can be converged, and the convergence speed
is guaranteed to be within a reasonable range. The control block diagram of the extended flux observer
is shown in Figure 4:
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5. System Simulation Experiment

During the simulation and testing of the system, the parameters of the PMSM are shown in Table 1,
and the parameters of the controller are shown in Table 2.
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Table 1. PMSM parameters.

Parameter Value

Rated power/(kW) 1.28
Rated speed/(r/min) 2000
Rated torque/(N·m) 75

Polar logarithm 4
Moment of inertia/(kg·m2) 1.469 × 10−3

Ld, Lq/(H) 0.00334
Permanent magnet flux linkage/(Wb) 0.171

Table 2. Controller parameter.

Parameter Value

r 2 × 106

ω0 1400
β1 2800
β2 1.69 × 106

k 0.6
b 698.4
α1 4720
α2 1910

The simulation experiment is carried out under ideal conditions, it mainly includes speed loop
and current loop.

Simulation of the speed loop:
(a) When the speed is n = 1000 r/min, the no-load starts and no disturbance is recorded during the

entire process.
Figure 6 reveals that the speed waveform has obvious overshoot when using the PI controller.

Additionally, oscillation is significant during the initial stage of the motor starting, and the transition
time is long; meanwhile the ADRC controller has no overshoot, a short transition time, and quick
response. In short, the motor starts smoothly.

(b) When the speed n = 1000 r/min, the no-load starts, and the torque rises to 2 N·m when t = 30 ms.
(c) When the speed n = 1000 r/min, the torque drop of the 2 N·m torque start at t = 30ms is equal
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The simulation of the anti-disturbance performance of the ADRC and PI controller are recorded
in Figures 7 and 8. As shown, when the load is applied or reduced after the motor is running in a
stable manner, the dynamic effect of the ADRC controller speed waveform is superior to that of the PI
controller. The advantage is in the fact that the ADRC is shorter than the PI following the disturbance
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to the steady state, meaning that the change in the rotational speed caused by the sudden alteration of
the load is small, resulting in stronger anti-disturbance capabilities.
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(d) When the rotational speed n = 1000 r/min, the electromagnetic torque waveform is shown in
Figure 9. It can be seen from the figure that its starting torque overshoot is smaller, and the transition is
faster when the load is suddenly applied.

Current loop simulation:
Load simulation, at 1000 r/min, 2 N·m at 0.2 s, and 2 N·m at 0.4 s, the current loop q–axis current

response waveform controlled by the current controller and the PI is shown in Figure 10. In the
dynamic process of load disturbance, the current overshoot of the current controller is significantly
smaller than that of the PI controller, and it can enter a stable operation state in a short time in the face
of load changes.
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6. Experimental Verification

The system experiment platform is mainly composed of the PMSM motor, motor controller and
host computer. The experimental platform can complete the collection of important information such
as torque, rotation, voltage and current curve and power of the motor. The experimental platform of
the motor drive control system is shown in Figure 11.
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In order to verify that the control system has no overshooting response, the motor is unloaded
and started at 1000 r/min. The results are shown in Figure 12, which reveals that under the same
conditions the ADRC control quickly reaches the desired speed without causing the system overshoot.
The overshoot of the PI controller is more obvious, and it will stabilize in 300 ms.
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In order to verify the accuracy of our load changes, the initial load torque was zero, and became 2
N·m at 700 ms. Then uninstall to 0 N·m. The image of the PMSM speed is shown in Figures 13 and 14.
Comparing the these figures, it can be observed that under the ADRC controller that the speed of
the system recovered more quickly following a disturbance, and the speed suffered less of a drop-off.
The PI controller takes about 600 ms to recover, and the ADRC can be recovered in less than 300 ms.
The experimental results are basically consistent with the simulation results. The current response
curves of the q–axis during loading and unloading are shown in Figures 15 and 16. The current
overshoot of the q–axis is smaller and the recovery time is faster. When loading, the PI controller takes
about 8 ms to stabilize, and the current controller only needs about 4 ms to stabilize. The peak voltage
of the PI controller is 1.5 A larger than the current controller. The overall result is generally consistent
with the simulation. Therefore, the ADRC has a more desirable control effect on the PMSM.
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The motor starting torque under the two control methods is shown in Figure 17. When the
ADRC control strategy is used, the torque waveform is a triangular wave, which is different from the
phenomenon that the PI controller is saturated. This is the result of the TD affecting the transition process.
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7. Conclusions

This paper proposes an active disturbances rejection control technology as the PMSM speed loop
controller. It does not fully depend on the controlled object model. The variation of moment of inertia,
stator resistance and other unknown disturbances are measured and compensated for by the ADRC
speed loop, making the system strong against system parameter changes and external disturbances.

In order to achieve decoupling the complex coupling term of the PMSM, the feedback linearization
algorithm is used to optimize the controller, and the decoupling control of the system is realized.
The simulation and experimental research on the control system show that the control strategy has
strong robustness, and the dynamic tracking performance is stable and accurate.
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