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Abstract: Computation of view factors is required in several building engineering applications where
radiative exchange takes place between surfaces such as ground and vertical walls or ground and
sloping thermal or photovoltaics collectors. In this paper, view factor computations are performed
for bifacial solar photovoltaic (PV) collectors based on the finite element method (FEM) using two
programming languages known as Microsoft Excel-Visual Basic for Applications (VBA) and Python.
The aim is to determine the computer response time as well as the performance of the two languages
in terms of accuracy and convergence of the numerical solution. To run the simulations in Python,
an open source just-in-time (JIT) compiler called Numba was used and the same program was also run
as a macro in VBA. It was observed that the simulation response time significantly decreased in Python
when compared to VBA. This decrease in time was due to the increase in the total number of iterations
from 400 million to 250 billion for a given case. Results demonstrated that Python was 71–180 times
faster than VBA and, therefore, offers a better programming platform for the view factor analysis and
modelling of bifacial solar PV where computation time is a significant modelling challenge.

Keywords: building energy exchange; view factor; Python programming language; bifacial solar
photovoltaic (PV)

1. Introduction

Buildings consume a great deal of energy to maintain comfortable conditions within their
enclosures. The design of heating and cooling systems for buildings require a detailed assessment
of the temperature of the constituting envelope. Thus, the temperature of the walls, roofs, floors,
and glazing surfaces are required. Buildings within urban areas inevitably have radiative exchanges
with other buildings, sky, and ground. Radiation heat transfer has many applications within the
building services sector. Some of the building engineering applications of radiative exchange between
surfaces are:

• Ground and vertical walls or windows (Figure 1).
• A light-pipe illuminating the floor or desk spaces (Figure 2).
• Ground and sloping thermal or photovoltaic (PV) collectors.
• Canyon space in densely populated urban areas with radiative exchange between parallel walls

and/or windows.
• Radiative exchange between orthogonal walls and/or windows.
• Wet heating system’s radiator and indoor surface of the walls.
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Figure 1. Ground and vertical walls or windows. 

 

Figure 2. A light-pipe illuminating floor or desk spaces. 

In all the above applications’ computation of the radiation view factor is required. There have 

been significant research studies related to energy transfer in building applications such as 

quantification of available façade areas for installation of building integrated solar PV [1], 

determination of solar heat gain for daylighting studies [2], theoretical modelling of the view factor 

to determine the diffused components of solar irradiance [3], and predictive simulation tool to 

determine the radiance value of a façade in the street canyon [4].  

In this article, we have considered the radiative energy exchange of solar photovoltaic collectors 

such as bifacial solar photovoltaics (PV), which is gaining popularity both for the field level and 

rooftop building applications [5]. It is a promising technology that increases the production of 

electricity per square meter of the PV module using light absorption from the albedo [6]. Bifacial solar 

cells simultaneously collect photons from incident and albedo radiation reaching both the front side 

and the back side of a solar module whereas traditional monofacial solar cells only collect photons 

reaching the front side of the device. Cuevas et al. [7] showed that an increase of 50% in electric power 

generation can be obtained by simultaneously collecting direct and albedo radiation from the rooftop 

and surroundings around a module. Consequently, it was established that bifacial solar cells can 

increase the power density of PV modules compared to mono-facial cells while reducing area-related 

costs for PV systems [8]. Currently, there are two main challenges this technology is facing, which 

are (1) a lack of an adequate simulation tool that can help understand how the rear side of the PV 
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In all the above applications’ computation of the radiation view factor is required. There have been
significant research studies related to energy transfer in building applications such as quantification
of available façade areas for installation of building integrated solar PV [1], determination of solar
heat gain for daylighting studies [2], theoretical modelling of the view factor to determine the diffused
components of solar irradiance [3], and predictive simulation tool to determine the radiance value of a
façade in the street canyon [4].

In this article, we have considered the radiative energy exchange of solar photovoltaic collectors
such as bifacial solar photovoltaics (PV), which is gaining popularity both for the field level and rooftop
building applications [5]. It is a promising technology that increases the production of electricity
per square meter of the PV module using light absorption from the albedo [6]. Bifacial solar cells
simultaneously collect photons from incident and albedo radiation reaching both the front side and the
back side of a solar module whereas traditional monofacial solar cells only collect photons reaching
the front side of the device. Cuevas et al. [7] showed that an increase of 50% in electric power
generation can be obtained by simultaneously collecting direct and albedo radiation from the rooftop
and surroundings around a module. Consequently, it was established that bifacial solar cells can
increase the power density of PV modules compared to mono-facial cells while reducing area-related
costs for PV systems [8]. Currently, there are two main challenges this technology is facing, which are
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(1) a lack of an adequate simulation tool that can help understand how the rear side of the PV interact
with the reflected sunlight and (2) how to make the technology bankable. The success of the technology
will depend on how well the bifacial PV is understood to the research community. Therefore, it would
be easier to make the technology commercially profitable. Hence, the need for developing a simulation
tool to understand the energy yield of bifacial solar PV is inevitable. There are different simulation
approaches to determine the ground reflected radiation that is incident upon tilted bifacial solar
photovoltaics (PV) such as the view factor model, the ray tracing model, and empirical modelling [9].
There has been ongoing research by various scientific communities. For instance, National Renewable
Energy Laboratory (NREL) in collaboration with Sandia National Laboratories have developed and
compared the view factor model and the ray tracing model to evaluate the back-surface irradiance [10].
However, computation time remain an issue, which is still a modelling challenge that requires further
investigation. Conceptually, the back-surface irradiance is composed of direct irradiance, structure
reflected irradiance, sky diffused irradiance, and ground reflected irradiance. In this article, we have
followed the view factor modelling-based approach to evaluate the radiative energy transfer between
the ground (reflecting surface) and the bifacial solar PV (collecting surface).

The present research team had developed a computer code for view factor analysis using a
finite-element grid, which can handle an irregular horizon [11]. The software was developed based on
a numerical solution of the view factor integral within the Microsoft Excel-Visual Basic for Applications
(VBA) environment considering mono-facial solar PV collectors as an example. However, in this work,
an improved, simplified brute force algorithm is adopted to determine the view factor for uniform
surfaces by utilizing the finite element method (FEM). FEM is one of the most powerful tools for
analyzing energy exchange between surfaces. It can be applied for view factor (VF) evaluation. This
method is very robust and, yet, it may require excessive computer time. For finite element analysis,
the object-oriented computing environment is already proven to be efficient in various areas such
as Structural Engineering [12], Chemical Engineering, and Mathematics. In this article, we have
implemented the view factor (VF) code in VBA and the Python environment and have compared the
computation speed of the simulations in both platforms.

Python is chosen because it has already been accepted by the research community for its ease of use
and an open access user-friendly platform. Availability of the open source library has made it eligible
for numerous scientific applications such as power systems [13], energy analysis [14] mathematics,
and fluid dynamics [15]. VBA has also been deployed as a user-friendly tool in various applications
such as in heat transfer, in solar PV applications [16,17], and in the field of agriculture. For example,
a milk-producing dairy model was implemented in VBA to control the operation of the dairy farm,
which has a significant benefit to the farmers and researchers in the field. However, it takes seven days
to run the simulation [18]. Therefore, despite its effectiveness as a design tool, computation time has
always been an issue for VBA [19] whereas Python, which is a high-level, benchmark programming
language, can outperform VBA in terms of computation speed.

In this paper, we have compared the potentials of the simulation platform to develop the code
further for bifacial solar PV collectors. Two simulation platforms are used to quantify the amount
of ground reflected radiation received by the solar collectors. We focused on the modelling of
computationally intensive view factor analysis between reflecting (ground) and collecting (bifacial
solar PV) surface and determined the duration of simulation response time. The paper is organized as
follows. The concept of view factor modelling is briefly discussed in Section 2. Section 3 provides
the overview of the simulation model. The computation performance of two simulation platforms,
Python and Microsoft Excel-Visual Basic for Applications (VBA), is demonstrated in Section 4. We have
presented an application related to generation of solar PV electricity and its enhancement by using
reflective films placed near the horizon of PV modules. The object is to obtain a numerical procedure
for the radiative exchange between the foreground and PV modules. The technique can be applied to
a bifacial solar PV cell, which is an emerging technology. The novelty of this work is that we have
provided quantitative data that demonstrates faster convergence and accuracy offered by the Python
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software environment in the context of modelling bifacial solar PV’s energy yield where computation
time is a significant modelling challenge. Lastly, the paper ends with concluding remarks in Section 5.

2. View Factor Modelling Concept

In our work, we simulated the mathematical model of the radiation view factor as a discrete
model in the computing platform by applying finite element method. To understand the concept of
view factor modelling, let us consider two rectangular surfaces A1 and A2 with surface dimensions
a × b and c × b and Φ is the tilt angle between the surfaces (Figure 3a) and β = π − Φ. In radiative
heat transfer, the view factor can be defined as the proportion of irradiance, which leaves the emitting
surface A2 and strikes the receiving/collector surfaces A1 denoted by FA2−A1. From the mathematical
equation of the view factor [11], we may write:

FA2−A1 =
1
bc

∫ c

x1

∫ b

y1

∫ a

x2

∫ b

y2

x1x2 sin2β

π
[
x1

2 + x22 + 2x1x2 cosβ+ (y1 − y2)
2
]2 dy2dx2dy1dx1. (1)
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In the present work, Equation (1) has been used to compute the view factor for different geometries
of the receiving (solar collectors) and reflecting (ground) surface, which share a common edge. Both the
emitting and receiving surfaces are considered as uniform grids where all the cells within the surface
are of the same dimensions and aspect ratios (Figure 3b). The tilt angle between the two surfaces varied
from 30◦–150◦. The height of the receiving and emitting surface is denoted by ‘a’ and ‘c’, respectively,
and the common edge length is denoted by ‘b’.

One of the approaches to examine the solution of the discrete model is to observe the convergence
of the computed solution toward the analytical solution (if it exists) of the mathematical model.
This approach is known as verification. For our paper, the analytical solution provided by Feingold [20]
is considered as the benchmark solution for the purpose of verification. However, any physical
model when interpreted by a discrete model, the solution error, or computation error is an important
phenomenon that needs to be properly understood. For a uniform grid, the difference between the
analytical solution and the computed solution represents the error. In this case, we have set up the
finite element procedure to solve the problem repeatedly with uniform meshes designed to determine
the view factor and the error.

There are different adaptive finite element techniques available to estimate the error such as local
refinement or h-refinement, relocating or r-refinement, and locally varying the polynomial degree
known as p-refinement. For the purpose of verification of our model, an h-adaptive refinement
technique is applied where the h denotes the element size or resolution of the grid, which we used to
control the error. Decreasing h leads to reduction of the error. As h approaches zero, the numerical
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solution converges toward its analytical value. The error can be derived from Equation (2) where error
(Er) is a function of element size hi. VFex represents the analytical value of the view factor and VFhi is
the simulated value of the view factor at element size hi. C is an unknown constant with the leading
term hi

β and exponent β is the rate of convergence [21].

lim
hi=1,2,3,4.. →0

Er(hi) = VFex −VFhi ≈ Chi
β f or β > 0 (2)

If the condition h1
h2

= h2
h3

holds, Equation (2) can be further derived as:

VFex −VFh1

VFex −VFh2
=

hβ1
hβ2

and
VFex −VFh2

VFex −VFh3
=

hβ2
hβ3

(3)

The element size determines the number of iterations the simulation must run. The parameters
considered for view factor models are presented in Table 1 below.

Table 1. View factor modeling parameters.

Surface Dimensions (m) Element Size hi (m) Φ (◦)

a = 2 m, b = 1 m, c = 2 m 0.01 30
a = 1 m, b = 1 m, c = 1 m 0.008 60

a = 0.6 m, b = 1 m, c = 0.4 m 0.004 90
a = 0.4 m, b = 1 m, c = 0.6 m 0.002 120

a = 0.4 m, b = 0.4 m, c = 0.4 m —- 150

3. Overview of the Simulation Model

The numerical view factor model has been executed both in Python and VBA environments.
The simulation utilizes one of the most efficient Python libraries for numerically intensive computing
named Numba, which can be loaded by a program as the CPython interpreter. The code is written
based on Numba just-in-time (JIT) compiler, which creates a specialized loop in the machine code.
The just-in-time or @ JIT is a decorator that is utilized as a function. When this function is called, the
decorator analyzes the argument and creates a specialized version of the function [22]. This code is run
on the ‘nopython’ mode, which compiles the code without accessing the Python C-API (application
program interface). Python version 3.7 with Spyder integrated development environment (IDE) is used
for the simulation. On the other hand, VBA adopts the run time library of the Visual Basic, which is
compiled in a Microsoft packet code and the MS-Excel works as a host application that saves the code
in a separate file such as .xlsx or .xlsm. A machine hosted by Excel run the intermediate code and the
data is saved in a text file in XML format, which is readable by the user [23]. The simulations were run
on Intel®Core™ i7-7500U CPU @ 2.7 GHz-2.9 GHz Laptop.

Python and VBA both used a Microsoft Excel worksheet as an input and output file. The user
can enter the input parameters, run the simulation, and calculate the simulation response time as
well as observe the output, which is saved in an Excel file. Different simulation parameters can be set
such as the length and height of the surfaces. For example, referred to Figure 3b, the angle between
two surfaces sharing one common edge can be selected and varied for the same element size, hi.
The simulations were run at different resolutions of the element size defined as the iteration step in
the program, which is varied as: h1 = 0.01 m, h2 = 0.008 m, h3 = 0.004 m, and h4 = 0.002 m. This
iteration step defines the number of iterations the simulation needs to run, which can be calculated
from Equation (4).

Iteration size =
c
hi
×

b
hi
×

a
hi
×

b
hi

(4)
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Thus, iteration ranges of the simulations vary from 4.00 × 108 to 2.50 × 1011. In this study, a brute
force problem-solving approach is applied within a mathematical equation of the view factor (given
by Equation (1) in Section 3), which aims to check all the possible interactions between the surfaces
using four nested loops bounded by the surface dimensions [24]. The program flow chart is presented
in Figure 4.Energies 2019, 12, x  6 of 14 
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4. Results and Discussion

The view factor simulation outputs are examined from different approaches, as explained below.

• The simulated view factor output is tested at different computation angles between collectors and
reflective surfaces to verify the numerical model with the existing analytical solution.

• The reduction in the percentage (%) error of the view factor output is evaluated with an increasing
number of iterations. An accuracy versus computation time dependency is shown in Section 4.2.

• Followed by Section 4.2, the convergence rate of the simulated output to the actual output is
examined to determine the type of convergence (linear/quadratic/cubic).

• Next, the computation time versus the number of iterations are tested for specific surface
dimensions to compare the improvement of the simulation response time in Python over VBA.

• Lastly, computation time variations with different surface dimensions are determined. Detailed
results and analysis are discussed in the following sections. All simulations parameters and
outputs are referred to Appendix A.
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4.1. View Factor at Different Computation Angles Between Two Surfaces

This section attempts to verify the proposed view factor model at different tilt angles between
the surfaces. The simulated results show a minor deviation from the existing analytical solutions.
It has been observed that view factors are considerably influenced by the angle between the surfaces,
as illustrated in Figure 5. Keeping the dimensions and iteration size constant, as the angle between two
surface increases, a significant decrease in the view factor from a 0.51 maximum value (for this study)
to the minimum value of 0.015 is observed. Parameters for this analysis are presented in Table 2 below.

Energies 2019, 12, x  7 of 14 

 

 

Figure 5. View factor at different angles between surfaces for a = 2 m, b = 1 m, and c = 1 m, and hi = 

0.01 m. 

Table 2. View factor simulation parameters for element size hi = 0.01 m and number of iterations = 

4.0E+08. 

a (m) b (m) c (m) Element Size hi (m) Φ (°) Analytical VF Simulated VF Error (%) 

2 1 2 0.01 30 0.521308 0.513849 1.4 

2 1 2 0.01 60 0.288274 0.281650 2.3 

2 1 2 0.01 90 0.149300 0.145292 2.7 

2 1 2 0.01 120 0.063248 0.061372 3.0 

2 1 2 0.01 150 0.015415 0.014937 3.1 

Table 2 illustrates that, for element size hi = 0.01 m, the percentage error varies from a minimum 

1.4% to a maximum 3.1% depending on the value of angle Φ. The iteration size for this simulation is 

set to 4.0E+08. The next section presents, how this error can be further reduced by decreasing the 

element size hi, which, in turn, increases the number of iterations.  

4.2. Accuracy Versus the Number of Iterations 

The accuracy of the view factor output significantly increased with the number of iterations the 

simulation runs, which can be seen in Figure 6. Both Python and VBA achieved the same level of 

accuracy. For surface dimensions: a = 2 m, b = 1 m, c = 2 m, and Φ = 120°, the computation accuracy is 

97% with 4.0E+08 iterations. The numerical results approached the analytical solution at a maximum 

accuracy of 99.4% for 2.5E+11 iterations. To gain this, the iteration size is to be increased by a factor 

of 625. The simulation parameters for this study are outlined in Table 3 below. 

0

0.1

0.2

0.3

0.4

0.5

0.6

30⁰ 60⁰ 90⁰ 120⁰ 150⁰

V
ie

w
 F

ac
to

r

Angle between two surface (Φ⁰)

Analytical VF

Simulated VF

Figure 5. View factor at different angles between surfaces for a = 2 m, b = 1 m, and c = 1 m,
and hi = 0.01 m.

Table 2. View factor simulation parameters for element size hi = 0.01 m and number of
iterations = 4.0 × 108.

a (m) b (m) c (m) Element Size hi (m) Φ (◦) Analytical VF Simulated VF Error (%)

2 1 2 0.01 30 0.521308 0.513849 1.4
2 1 2 0.01 60 0.288274 0.281650 2.3
2 1 2 0.01 90 0.149300 0.145292 2.7
2 1 2 0.01 120 0.063248 0.061372 3.0
2 1 2 0.01 150 0.015415 0.014937 3.1

Table 2 illustrates that, for element size hi = 0.01 m, the percentage error varies from a minimum
1.4% to a maximum 3.1% depending on the value of angle Φ. The iteration size for this simulation is
set to 4.0 × 108. The next section presents, how this error can be further reduced by decreasing the
element size hi, which, in turn, increases the number of iterations.

4.2. Accuracy Versus the Number of Iterations

The accuracy of the view factor output significantly increased with the number of iterations the
simulation runs, which can be seen in Figure 6. Both Python and VBA achieved the same level of
accuracy. For surface dimensions: a = 2 m, b = 1 m, c = 2 m, and Φ = 120◦, the computation accuracy is
97% with 4.0 × 108 iterations. The numerical results approached the analytical solution at a maximum
accuracy of 99.4% for 2.5 × 1011 iterations. To gain this, the iteration size is to be increased by a factor
of 625. The simulation parameters for this study are outlined in Table 3 below.
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Figure 6. Accuracy versus the number of iterations for a = 2 m, b = 1 m and c = 2 m and Φ = 120◦.

Table 3. View factor simulation parameters at various element sizes.

a (m) b (m) c (m) Φ (◦) Element Size,
hi (m) Analytical VF Simulated VF Error (%)

2 1 2 120 0.01 0.063248 0.061372 3.0
2 1 2 120 0.008 0.063248 0.061743 2.4
2 1 2 120 0.004 0.063248 0.062491 1.2
2 1 2 120 0.002 0.063248 0.062868 0.59

4.3. Convergence to an Analytical Solution

The convergence performance of the view factor simulation to the analytical solutions are studied
by comparing the output between the highest: a = 2 m, b = 1 m, c = 2 m, Φ = 120◦ and the lowest:
a = 0.4 m, b = 1 m and c = 0.4 m, Φ = 120◦ surface dimensions. For the same number of iterations,
maximum accuracy achieved for Figure 7a was up to 99.4% whereas, for Figure 7b, the accuracy was
98.79%. Comparing both simulation responses, it can be inferred that, to reach the same level of
convergence, the element size needs to be further reduced for surface dimensions: a = 0.4 m, b = 1 m,
and c = 0.4 m; Φ = 120◦. In addition, the convergence type of the model is found to be linear with
the β value of approximately 1. The rate of convergence is derived from Equation (3) considering the
element size of 0.004 m and 0.002 m. Table 4 summarizes the results.
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Table 4. Convergence of the view factor output.

Surface Dimension
(m) Analytical VF Simulated VF

hi = 0.004 m
Simulated VF
hi = 0.002 m

Convergence Rate
(β)

a = 0.4, b = 1, c=0.4 0.111512 0.108828 0.110164 0.993564
a = 0.4, b = 1, c = 0.6 0.085512 0.083668 0.084586 0.993755
a = 0.6, b = 1, c = 0.4 0.128269 0.125502 0.126879 0.993238

a = 1, b = 1, c = 1 0.086615 0.085348 0.085979 0.994318
a = 2, b = 1, c = 2 0.063248 0.062491 0.062868 0.994294

4.4. Computation Time versus Number of Iterations

The preceding sections have shown, although both Python and VBA gained the same accuracy
with an increasing number of iterations, VBA simulation took more time than Python to reach the
same level of accuracy. Figure 8 presents the computation time in seconds for both programs. We see
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that Python took 3.52 s to run 4.0 × 108 iterations whereas VBA required 454 s. For all other iterations,
Python outperformed VBA in terms of computation speed, and it was about 129–180 times faster than
VBA. Simulation parameters for these computations can be found in Table 5.
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120◦.

Table 5. Simulation parameters for computation time at different element sizes.

a (m) b (m) c (m) Φ (◦) Element Size hi (m)

2 1 2 120 0.01
2 1 2 120 0.008
2 1 2 120 0.004
2 1 2 120 0.002

4.5. Computation Time for Different Surface Dimensions

The view factor simulation response time increased with the increasing length and height of
surface dimensions. Table 6 summarizes results of computation time variations among different surface
dimensions. The results show, in VBA, the lowest computation time is 24 s for the surface dimensions:
a = 0.4 m, b = 1 m, and c = 0.4 m. This computation time increased by a factor of 19 for the maximum
dimension considered in the simulation: a = 2 m, b = 1 m, and c = 2 m. Nevertheless, Python appears
to be 71–129 times faster than VBA at a varying surface length and height.

Table 6. Computation time at different surface lengths and heights for Φ = 120◦ and hi = 0.01 m.

Surface Dimension
(m)

Element Size
(m) Analytical VF Simulated VF Time_Python

(s) Time_VBA (s)

a = 0.4, b = 1, c = 0.4 0.01 0.111512 0.104891 0.34 24
a = 0.4, b = 1, c = 0.6 0.01 0.085512 0.080957 0.41 43
a = 0.6, b = 1, c = 0.4 0.01 0.128269 0.121436 0.45 43

a = 1, b = 1, c = 1 0.01 0.087615 0.083481 0.92 222
a = 2, b = 1, c = 2 0.01 0.063248 0.061372 3.52 454

A finite element computation of the view factor is a time critical application. The present view
factor model offers a quantitative computational advantage, i.e., grid surface non-uniformity can be
handled quite easily. Other advantages offered by this work are: (a) the view factor code is much faster
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for geometries encountered in most solar energy and building energy exchange applications, and (b)
the view factor approach allows for much shorter computation time, particularly if handled in the
Python environment. Note that implementation of other alternative method for instance, ray tracing
as a modelling tool is more complex compared to the view factor concept.

The computing performance not only depends on the type of computer used but also on the
simulation algorithm and its implementation platform, i.e., programming language. Though short
response time is one of the benchmark criteria of the performance efficiency, there are additional
performance matrixes, which can be achieved with fast computation speed. These include high
throughput, minimum utilization of resources [25], higher reliability [26], low power consumption,
scalability, and opportunity of performance tuning. For our study, one downside of VBA was that it
took about five consecutive days to run 250 billion iterations, which can have substantial damage on
computer health. Moreover, utilization of computer resources has been very high, which required lots
of power consumption. In addition to this, the scope of performance tuning in VBA is also limited,
which reduces the scalability of the number of iterations the simulation can run. In all these aspects,
Python can outperform VBA, which make it a suitable option for present day scientific and numeric
computing. The existing work demonstrates the benefits of using Python for view factor analysis for
solar PV applications, which is an improvement over our previous work where we used VBA for such
an analysis.

5. Conclusions

In this paper, we have computed the value of the radiation view factor to determine the reflected
solar irradiance reaching the rear side of the bifacial solar PV. We have verified the results with the
existing analytical solutions. In this scenario, we focus on the computing performance to examine the
improvement in computation speed of Python as compared to VBA. It has been shown that, Python
can be used more effectively than VBA for radiation view factor analysis between two surfaces. With
the utilization of an appropriate mathematical library, computation time was significantly reduced by
71–180 times for Python when compared with VBA. This improvement in computation speed not only
saves time, but also provides an optimized design tool for the research. An important finding of the
view factor simulation is that, as the element size of the finite element grid decreased, the computed
output converged to the analytical view factor value. Thus, the simulation accuracy could be achieved
up to 99.4% for the maximum number of iterations considered for this paper, i.e., 250 billion and
the response time of the simulation in Python and VBA was 1628.51 s and 292,714 s, respectively.
The application presently considered in this article are for relatively small areas of the reflecting
and the receiving surfaces. In an actual industrial environment where the designer will deal with
multi-gigawatt solar PV farms, that may employ enhanced reflections near the horizon. In that case, to
model such large-scale systems, the number of iterations the computer simulations have to run will
increase to the order of a few quadrillion or more. Therefore, the importance of faster code written in a
computation environment such as Python will be of great benefit to the PV system designers. Hence,
it is concluded that, Python can be utilized as a reliable simulation tool to develop the code further for
bifacial solar PV research.
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Appendix A View Factor Calculation Tables at Different Element Sizes

Table A1. View factor simulation data for element size hi = 0.01 m.

a (m) b (m) c (m) Φ (◦) Iteration Analytical
VF

Simulated
VF

Error
(%)

Time_VBA
(s)

Time_Python
(s)

2 1 2 30 4.0 × 108 0.521308 0.513849 1.4 415 2.77
2 1 2 60 4.0 × 108 0.288274 0.281650 2.3 410 2.75
2 1 2 90 4.0 × 108 0.149300 0.145292 2.7 408 2.87
2 1 2 120 4.0 × 108 0.063248 0.061372 3.0 454 2.74
2 1 2 150 4.0 × 108 0.015415 0.014937 3.1 410 2.80
1 1 1 90 1.0 × 108 0.200044 0.193529 3.3 143 0.87

0.4 1 0.4 120 1.6 × 107 0.111512 0.104891 5.9 24 0.34
1 1 1 120 1.0 × 108 0.087615 0.083481 3.6 222 0.92

0.6 1 0.4 120 2.4 × 107 0.128269 0.121436 5.3 43 0.45
0.4 1 0.6 120 2.4 × 107 0.085512 0.080957 5.3 43 0.41
0.4 1 0.6 30 2.4 × 107 0.518407 0.508234 2.0 44 0.38
0.6 1 0.4 30 2.4 × 107 0.777610 0.762351 2.0 35 0.39

Table A2. View factor simulation data for element size hi = 0.008 m.

a (m) b (m) c (m) Φ (◦) Iteration Analytical
VF

Simulated
VF

Error
(%)

Time_VBA
(s)

Time_Python
(s)

2 1 2 30 9.76 × 108 0.521308 0.515332 1.1 779 7.98
2 1 2 60 9.76 × 108 0.288274 0.282965 1.8 780 7.35
2 1 2 90 9.76 × 108 0.149300 0.146086 2.2 891 7.67
2 1 2 120 9.76 × 108 0.063248 0.061743 2.4 773 7.35
2 1 2 150 9.76 × 108 0.015415 0.015026 2.5 790 7.40
1 1 1 90 2.44 × 108 0.200044 0.194818 2.6 428 1.98

0.4 1 0.4 120 3.96 × 107 0.111512 0.106192 4.8 55 0.48
1 1 1 120 2.44 × 108 0.087615 0.084099 2.9 429 1.95

0.6 1 0.4 120 5.86 × 107 0.128269 0.122781 4.3 90 0.61
0.4 1 0.6 120 5.86 × 107 0.085512 0.081854 4.3 91 0.61
0.4 1 0.6 30 5.86 × 107 0.518407 0.510242 1.6 92 0.60
0.6 1 0.4 30 5.86 × 107 0.777610 0.765363 1.6 77 1.17

Table A3. View factor for element size hi = 0.004 m.

a (m) b (m) c (m) Φ (◦) Iteration Analytical
VF

Simulated
VF

Error
(%)

Time_VBA
(s)

Time_Python
(s)

2 1 2 30 1.56 × 1010 0.521308 0.518310 0.58 18971 111.14
2 1 2 60 1.56 × 1010 0.288274 0.285609 0.92 17010 110.85
2 1 2 90 1.56 × 1010 0.149300 0.147685 1.08 14997 110.8
2 1 2 120 1.56 × 1010 0.063248 0.062491 1.20 19407 110.78
2 1 2 150 1.56 × 1010 0.015415 0.015219 1.27 17493 110.79
1 1 1 90 3.90 × 109 0.200044 0.197415 1.31 7180 27.74

0.4 1 0.4 120 6.25 × 108 0.111512 0.108828 2.41 1120 4.55
1 1 1 120 3.90 × 109 0.087615 0.085348 1.46 4649 27.74

0.6 1 0.4 120 9.37 × 108 0.128269 0.125502 2.16 737 6.66
0.4 1 0.6 120 9.37 × 108 0.085512 0.083668 2.16 738 6.71
0.4 1 0.6 30 9.37 × 108 0.518407 0.514296 0.79 751 6.65
0.6 1 0.4 30 9.37 × 108 0.777610 0.771444 0.79 818 6.71
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Table A4. View factor for element size hi = 0.002 m.

a (m) b (m) c (m) Φ (◦) Iteration Analytical
VF

Simulated
VF

Error
(%)

Time_VBA
(s)

Time_Python
(s)

2 1 2 30 2.50 × 1011 0.521308 0.519806 0.28 322099 1732.83
2 1 2 60 2.50 × 1011 0.288274 0.286939 0.46 257484 1726.24
2 1 2 90 2.50 × 1011 0.149300 0.148490 0.54 270788 1632.94
2 1 2 120 2.50 × 1011 0.063248 0.062868 0.59 292714 1628.51
2 1 2 150 2.50 × 1011 0.015415 0.015317 0.63 309316 1627.28
1 1 1 90 6.25 × 1010 0.200044 0.198725 0.65 74904 405.54

0.4 1 0.4 120 1.10 × 1010 0.111512 0.110164 1.20 23990 65.5
1 1 1 120 6.25 × 1010 0.087615 0.085979 0.73 78338 407.8

0.6 1 0.4 120 1.50 × 1010 0.128269 0.126879 1.08 73302 103.16
0.4 1 0.6 120 1.50 × 1010 0.085512 0.084586 1.082 70983 102.52
0.4 1 0.6 30 1.50 × 1010 0.518407 0.516343 0.39 45392 103.33
0.6 1 0.4 30 1.50 × 1010 0.777610 0.774515 0.39 31975 103.42
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