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Abstract: Improving the flame stability and thermal behavior of the micro-combustor (MC) are
major challenges in microscale combustion. In this paper, the micro combustions of an H2/air
premixed flame in a swirl MC with various channel diameters (Din = 2, 3, 4 mm) were analyzed
based on an established three-dimensional numerical model. The effects of hydrogen mass flow
rate, thermal conductivity of walls, and the preferential transport of species were investigated.
The results indicated that the flame type was characterized by the presence of two recirculation zones.
The flame was anchored by the recirculation zones, and the anchoring location of the flame root
was the starting position of the recirculation zones. The recirculation zones had a larger distribution
of local equivalence ratio, especially in the proximity of the flame root, indicating the formation
of a radical pool. The combustion efficiency increased with an increasing Din due to the longer
residence time of the reactants. Furthermore, the MC with Din = 2 mm obtained the highest outer wall
temperature distribution. However, the MC with Din = 4 mm had a better uniformity of outer wall
temperature and large emitter efficiency due to the larger radiation surface. An increase in thermal
conductivity boosts the thermal performance of combustion efficiency, emitter efficiency, and wall
temperature uniformity. But there is a critical point of thermal conductivity that can increase the
thermal performance. The above results can offer us significant guidance for designing MC with high
thermal performance.
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1. Introduction

With the development of micro electro-mechanical systems (MEMS), micro power generators
with high energy density and low weight are pressingly required [1–4]. The high energy density
of hydrocarbon fuels offers great potential for micro combustion-based micro power generators,
for instance, micro gas turbine [5,6], micro thermophotovoltaic [7–11], and micro thermoelectric [12–14]
systems. However, there are some challenges in obtaining a stable flame and better thermal performance
in micro-combustors (MCs). The short residence time and large heat loss on account of the small size
and large surface-area-to-volume ratio are the main challenges of micro combustion [15], which can
result in incomplete combustion and an unstable flame.

As regards micro combustion, heat recirculation is the most widely used method to stabilize the
flame. Wan et al. [16,17] found that the bluff-body in MCs markedly improves the flame stability owing
to the flow recirculation zone behand the bluff-body and the upstream heat transfer through the wall,
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and the large flame strain rate results in flame extinguishment. For the hydrogen/air premixed flame, a
study by Bagheri et al. [18] examined how bluff-body shapes affect flame characteristics. As for the
micro-flameless combustion of a methane/air mixture, Hosseini and Wahid [19] used the bluff-body
to improve micro-flameless combustion stability. A new configuration of a Swiss-roll combustor is a
favorable technique to stabilize the flame through recirculating heat from high-temperature gas [20].
The flame characteristics of Swiss-roll combustors with various channel widths were investigated
by Kim et al. [21]. They found that Swiss-roll combustors can establish self-sustaining flames where the
channel widths are less than the quenching distance. In addition, filling or partially filling the porous
media in the MC can be used to strengthen heat transfer from high-temperature gas to low-temperature
gas, leading to more heat recirculation. A planar MC partially filled with nickel foam for flame stability
was examined by Wang et al. [22]. The porous media reduces the heat loss and the flame temperature
in the MC increases on account of the heat recirculation in porous media. Li et al. [23] found that
the flame temperature and temperature non-uniformity are lowered, while the wall temperature is
increased in a porous MC. Marbach et al. [24] utilized a porous media surface to stabilize the flame in a
cylindrically recuperative MC with silicon-carbide-coated carbon foam. Mikami et al. [25] used wire
mesh for enhancing heat transfer in meso-scale tubes, and the wire mesh helped to create a stable flame.

For the application of a micro thermophotovoltaic power generator, many studies are working
to improve the thermal performance of MCs in order to further increase the energy output power
or efficiency. It is confirmed that heat recirculation is a significant method. Recuperators, such as
quartz glass cover, can reuse the exhaust gas energy, which is able to markedly improve the outer wall
temperature [26]. Tang et al. [27] designed and fabricated a heat recirculation MC for the application of
micro thermophotovoltaic power generator. Experimental data indicated that the radiation efficiency
was markedly improved due to the heat recirculation, and the blowout limit in the heat recirculation
MC was larger compared with the straight-channel MC. Alipoor and Saidi [28] developed a U-shaped
micro tube combustor inside rectangular walls. Secondary flows can better preheat the incoming cold
reactants, which enlarges the flammability limits. They have obtained an emitter efficiency of 41.1% and
total energy conversion efficiency of 6.3%. Chou et al. [29] employed the porous media to increase the
wall temperature and radiation energy in a cylindrical tube combustor. Furthermore, it is effective to
optimize the MC structures. Akhtar et al. [30] revealed that a curved channel can significantly improve
the overall energy conversion efficiency by about 7.84%, while the flame flashback is more likely to
occur. In order to acquire higher energy output, Yang et al. [31] proposed a converging–diverging
channel MC for micro thermophotovoltaic power generator. They pointed out that the flow disturbance
caused by the converging–diverging channel improves the heat transfer between the gas and the solid
wall. Parallel separating plates were employed by Tang et al. [32] in a planar MC for improving the
thermal performance, resulting in an increase in the wall temperature of more than 100 K. Moreover,
Amani et al. [33] used hydrogen addition to enhance the thermal performance of the MC combined
with baffles and bluff-bodies for a premixed methane–air flame. Hydrogen addition can also raise
the combustion reaction rate and flame stability of premixed methane/air [34]. As regards the micro
thermophotovoltaic system, Yang et al. [35] used GaSb PV cells for this system to obtain a 4.4 W electrical
power output with an overall efficiency of 3.48%. Lee et al. [36] employed an ammonia–hydrogen
mixture as fuel for the application of micro thermophotovoltaic system, and an energy output power
of 5.2 W and an overall efficiency of 2.1% were obtained. Nadimi and Jafarmadar [37] utilized the
internal micro-fin that was placed inside an MC to improve the efficiency. They found a maximum total
efficiency of 8.9% when the radiant efficiency of the MC was 58%. Gentillon et al. [38] experimentally
investigated a porous media combustion-based thermophotovoltaic system, and the electrical power
of 1 W was produced and the corresponding total efficiency was 0.071%.

Recently, we developed a swirl MC [39] fueled by hydrogen/air based on a swirl-stabilized
flame configuration, and the combustion and thermal performances under premixed modes and
non-premixed modes were compared and analyzed. Indeed, the analysis revealed that the formation of
an inner recirculation zone and corner recirculation zone in the chamber were major contributing factors
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in the flame’s stabilization. The channel diameter played a key role in the formation of the recirculation
zones in the chamber. In addition, the energy output performance of the MC was also affected by the
channel diameter. Thus, in the present work, the influence of channel diameter on combustion and
thermal performance was investigated based on three-dimensional numerical simulations. In addition,
the performance of an MC with different thermal conductivities of solid walls was also investigated.
The results of this work offer a number of valuable guidelines for the design and optimization of MCs.

2. Methodology

2.1. Physical Model

The swirl MC configuration is exhibited in Figure 1. Except for the channel diameter Din, other
structural parameters were kept the same. The thickness of the wall (δ) was 0.5 mm. The lengths of
entrance section (L1) and combustion chamber (L2) were 2 mm and 18 mm, respectively. An axial
annular swirl generator was placed at the entrance section with 6 blades, each of which had a discharge
angle of 45◦. In addition, the inner and outer diameters of the swirler had values of 0.6 mm and 1.0 mm,
respectively. Based on the swirl number calculation of the axial annular swirl generator [40], the swirl
number was approximately 0.82 in this combustor. Moreover, it should be emphasized that this exact
swirler geometry was captured in the numerical modelling and the swirl number did not vary with
the inlet mass flow rate. The combustor was made of silicon carbide, which had thermal conductivity
and emissivity values of 32.8 W/m·K and 0.9, respectively. Detailed geometrical parameters are shown
in Figure 1.
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Figure 1. Schematic of the swirl micro-combustor (MC) configuration.

2.2. Computational Models

A three-dimensional, steady-state numerical modelling was built using the computational fluid
dynamics software Fluent 15.0. It is true that the Navier–Stokes equation could be utilized for this study
in that the Knudsen number of the gas mixture was much smaller than 0.001 [41]. For the purpose of
simplifying the mathematical model, the Dufour effects, gas radiation, surface reactions, and work done
by pressure and viscous forces were neglected [42,43]. The realizable k-ε turbulence model [16,44] was
applied for solving the turbulent flow. The basic governing equations about continuity, momentum,
energy, and spaces conservation are shown below:
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where ρ,
→
ν , and p are the gas density, velocity vector, and gas static pressure, respectively; τ is the

stress tensor; E, keff, and T are the total energy, effective conductivity, and temperature, respectively; hi

and
→

Ji are the enthalpy and diffusion flux of species i, respectively; Sh is the fluid enthalpy source; ks,
ρs, and cs are the thermal conductivity, density, and specific heat of the solid phase; Yi and Ri are the
mass fraction of species i and the net rate of production of species i, respectively.

With regards to the combustion model, the detailed H2/air chemical reaction mechanism with
9 species and 19 reversible reactions [31] was implemented in this numerical modelling. The eddy
dissipation conception (EDC) model is devoted to solving the turbulence–chemistry interaction. In
addition, the Soret effect is much smaller than the Fickian diffusion, and the Soret effect has negligible
influence on the numerical results based on our previous study [39]. Accordingly, only the mass
diffusion was considered in this study. The ideal gas law was used to calculate the density of the
mixture, while the mass weighted mixing law was used for the specific heat, thermal conductivity, and
viscosity of the mixture, as shown below.

Specific heat:

cp =
∑

i

Yicp,i, with cp,i =
1
2

R
Mw,i

( fi + 2) (6)

Thermal conductivity:

k =
∑

i

Yiki, with ki =
15
4

R
Mw,i

µi

[
4

15

cp,iMw,i

R
+

1
3

]
(7)

Viscosity:

µ =
∑

i

Yiµi, with µi = 2.67× 10−6
√

MWT
σ2Ωµ

(8)

where Mw,i and fi are the molecular weight and the number of modes of energy storage (degrees of
freedom) for the species i, respectively; R is the universal gas constant; and MW is the molecular weight.

For the inlet, both velocity and composition are considered to be uniform, and the temperature of
it is 300 K. The pressure-outlet boundary condition is utilized for the outlet. The gas–solid interface
uses non-slip and zero diffusive flux species boundary conditions. The energy output Q0 from the MC
outer wall via natural convection and thermal radiation is expressed by:

Q0 = h0A(Tw − T0) + εσA(Tw
4
− T0

4) (9)

where h0 and T0 are the natural convection coefficient and ambient temperature, which are 10 W/(m2
·K)

and 300 K [45], respectively; A and Tw are the surface area and temperature of the outer wall,



Energies 2019, 12, 3821 5 of 16

respectively; ε and σ are the wall emissivity and Stephen–Boltzmann constant, which are 0.9 and
5.67 × 10−8 W/(m2

·K4).
The second order upwind scheme and the SIMPLE scheme were utilized for discretizing the

equations and the pressure–velocity coupling. The simulation results were considered to be converged
when the residual of the energy equation was not greater than 10−6 and the residuals of other equations
were not greater than 10−3. Furthermore, the grid independence was checked in a swirl MC with
Din = 2 mm under three mesh cells of 534,200; 1,245,800; and 1,748,500 cells in the case of mH2 = 2.16 g/h
and Φ = 1.0. The temperatures of the centerline and outer walls are depicted in Figure 2. As it can be
observed from the graph, the differences in the centerline wall temperature were small, at the same time,
the outer wall temperature profiles of the three cases almost overlapped. In addition, the difference in
the standard deviation of the outer wall temperature was really small. Thus, the mesh with the cell
number of 1,245,800 was selected as the preferable grid structure in this study. The numerical modelling
established in this study was the same as in the literature [37,39], of which the results were confirmed
to be accurate and effective in simulating the premixed H2/air combustion in micro-combustors.
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Figure 2. Grid independence study. Din = 2 mm, mH2 = 2.16 g/h, and Φ = 1.0.

3. Results and Discussion

3.1. Effect of Hydrogen Mass Flow Rate

Figure 3 illustrates the distribution of the mass fraction of the H radical and velocity at the XZ
plane in the MCs with different channel diameters Din under various mH2 of 1.08, 2.16, 2.88, and
3.60 g/h where Φ = 1.0. Usually, the H radical can be used as an indicator of the flame front where
the reaction zone of the hydrogen flame is located [46]. The velocity level lines were utilized to
show the recirculation zones in the swirl MC. It is clearly seen from Figure 3 that this flame type is
characterized by the presence of two recirculation zones, where the inner recirculation zone is located
on the centerline and the corner recirculation zone is positioned downstream of the swirler exit plane
and in the proximity of the inner sidewall of the swirl MC. The flame is anchored by the recirculation
zones and the low velocity zones in the vicinity of the recirculation zone, and the anchoring location of
the flame root is the starting position of the inner recirculation zone. Indeed, the recirculation zone helps
to generate a pool of radicals for combustion reactions, which facilitates flame anchoring. In addition,
the recirculation zone increases the residence time of the combustion species, while also preventing
the flame root from being blown downstream. The effects of different mH2 and Din in the swirl MC
on the flame characteristics can also be evidently observed in Figure 3. The distribution of the H
radical is elongated, and the maximum value of H mass fraction also increases with an increase in mH2.
The combustion heat release in the same volume increases with an increasing mH2, which intensifies
the chemical reactions. The flame velocity becomes larger at a high mH2 since the inlet velocity rises.
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With regards to the flame root, almost no change was observed when increasing mH2 because the
flame root anchoring location still remained at the starting position of the inner recirculation zone.
Only the location of the flame tip moved downstream with larger mH2, which means that the flame
extended further downstream. By fixing mH2 to compare and analyze the effect of Din, did we find that
a decrease in Din stretched the H radical distribution and increased the maximum value of the H mass
fraction. At the same input heat, the small diameter MC had a larger volumetric heat. As a result, the
combustion reaction was intensified by reducing the channel diameter. To better show the recirculation
zones, Figure 4 shows the flow streamlines at the XZ plane in the swirl MC with different Din where
the mH2 was fixed at 2.16 g/h. Both the inner and corner recirculation zones were enlarged due to the
larger flow channel diameter. The inner recirculation zone extended approximately 5, 7.5, and 10 mm
in the axial direction for the MC with channel diameters of 2, 3, and 4 mm, respectively. Indeed, the
channel cross-section was larger at a large channel diameter. In terms of the law of conservation of
mass, the velocity became smaller as the channel cross-section became larger. A larger recirculation
zone is conducive to increasing the residence time of the reaction species and to form a radical pool for
anchoring the flame to the recirculation zone.
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Combustion efficiency, based on the hydrogen mass fractions at the swirl MC inlet and outlet, is
defined by:

ηc =

(
1−

ωout

ωin

)
× 100% (10)

where ηc is the combustion efficiency, ωin and ωout are the hydrogen mass fractions at the MC inlet and
outlet, respectively.

Figure 5 shows the effect of Din on the combustion efficiency under various mH2. It is clear that
combustion efficiency decreased with an increase in mH2 due to the increase of inlet velocity, which
resulted in a short residence time of reactants. Meanwhile, a large Din can obviously increase the
combustion efficiency. For instance, the combustion efficiency increased from 94.77% to 98.17% when
Din rose from 2 mm to 4 mm at mH2 = 3.60 g/h. This can be ascribed to the larger recirculation zone,
which increased the residence time of reactants. On the other hand, the combustion efficiency in the
swirl MC with a large Din is less susceptible to the changes in mH2, as shown in Figure 5. For example,
when mH2 increased from 1.08 g/h to 3.60 g/h, the combustion efficiency of Din = 2 mm decreased by
4.56%, while the combustion efficiency of Din = 4 mm only decreased by 1.49%.
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As for the outer wall temperature distributions, they are depicted in Figure 6 under different Din

and mH2. At the case of mH2 = 1.08 g/h, Din = 2 mm had the highest wall temperature distribution
along the entire wall. However, with the increase of mH2, the outer wall temperature near the inlet
of the swirl MC with Din = 2 mm was obviously lower than the swirl MC with Din = 4 mm. This is
because there was a corner recirculation zone near the swirler plane and the inner wall of the chamber.
The corner recirculation zone was enlarged with an increasing Din, which enhanced heat transfer. Thus,
the wall temperature near the inlet increased with a rise in Din.

Figure 7 demonstrates the effect of Din on the average outer wall temperature and standard
deviation at different mH2. Here, the uniformity of wall temperature was assessed by the standard
deviation. As for the standard deviation σT, it is calculated as:

σT =

√√∑N
i = 1 Ai(Tw,i − Tave)

2∑N
i = 1 Ai

(11)

Tave =

∑N
i = 1 Tw,iAi∑N

i = 1 Ai
(12)

where Tw,i and Ai are the outer wall temperature and area of element surface i, respectively; and Tave is
the average wall temperature.
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and mH2.

As shown in Figure 7, the MC with Din = 2 mm had the largest value of average wall temperature,
which is in conformity with the temperature distributions (Figure 6). When mH2 increased from 1.08 g/h
to 3.60 g/h, the average wall temperature of the swirl MC with Din = 2 mm was 116.2 K, 82.2 K, 61.5 K,
and 40.1 K higher than the swirl MC with Din = 4 mm, respectively. Nevertheless, the channel diameter
Din of 4 mm obtained a very uniform temperature distribution due to the lowest temperature standard
deviation. For example, the temperature standard deviations of the swirl MC with Din = 2, 3, and 4 mm
were 147.8 K, 72.1 K, and 44.3 K, respectively, where mH2 = 3.60 g/h.

The energy output of the MC is of great significance for the micro thermophotovoltaic power
generator. The emitter efficiency ηe is calculated by ηe = (Q0/mH2QLHV) × 100%, where QLHV is
the lower heating value of hydrogen which is 119.96 MJ/kg. Figure 8 shows the emitter efficiency of
the MC with various Din at different mH2. As mH2 becomes larger, the emitter efficiency decreases.
The reason is that in the process of increasing mH2, the heat loss of high-temperature exhaust gas is
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larger and the combustion efficiency becomes lower. In addition, the swirl MC with Din = 4 mm had
the highest emitter efficiency of 65.5% at mH2 = 1.08 g/h, while the emitter efficiency of Din = 2 mm was
only 57.3% at mH2 = 1.08 g/h. This is because the radiation surface increased with an increase in Din.
When mH2 increased from 1.08 g/h to 3.60 g/h, the emitter efficiency of the swirl MC with Din = 4 mm
rose by 14.1%, 30.4%, 38.1%, and 45.4%, respectively, compared to the swirl MC with Din = 2 mm.
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3.2. Effect of Thermal Conductivity

It is recognized that the thermal conductivity of solid walls is considerably related to the flame
characteristics of micro combustion [42,47]. For the purpose of investigating the effect of thermal
conductivity, in this section, the density, specific heat, emissivity of solid walls were fixed, just like the
silicon carbide. Only the thermal conductivity changed and the values of 0.1, 1.05, 10, 32.8, 50, 100, and
150 were selected to investigate this effect on the combustion and thermal performances. Moreover,
mH2 and Φ were fixed at 2.88 g/h and 1.0, respectively.

Figure 9 demonstrates the combustion efficiency in the swirl MC with various Din and thermal
conductivities. The combustion efficiency can be significantly improved by increasing thermal
conductivity when the thermal conductivity was less than approximately 10 W/m·K. When the thermal
conductivity was between 10 W/m·K and 150 W/m·K, the combustion efficiency was almost the
same. This phenomenon can be attributed to two reasons. Firstly, as the thermal conductivity rises,
the recirculation zone is enlarged, resulting in increasing residence times of reactants. Secondly,
a high thermal conductivity enhances both the axial and transversal heat transfers of solid walls in
the MC, leading to a better preheating of the incoming fresh reactants. These two reasons can be
observed in detail in Figures 10 and 11. The colored contours of mass fraction of the H radical with
overlaid flow streamlines (black line) under various thermal conductivities at the XZ plane in the
swirl MC with different channel diameters are depicted in Figure 10. It can be clearly observed that
increasing thermal conductivity can increase the length of the inner recirculation zone. This is due to
the stronger volumetric expansion effect of the gas caused by the better preheating at larger thermal
conductivity [47]. These larger recirculation zones increase the residence time of burned gas and the
convection time between high-temperature gas and solid walls. In terms of the H radical, the maximum
value of the H radical increases with the increase of thermal conductivity, and the reactive zone is
slightly elongated, which means that increasing the thermal conductivity of solid walls can intensify
combustion chemical reactions. This is because upstream fresh reactants are preferably preheated by
downstream high-temperature combustion products with higher thermal conductivity as a result of
better heat recirculation caused by solid walls. As shown by the temperature contours in Figure 11,
the high-temperature region moved upstream with an increasing thermal conductivity. This means
that the chemical reaction zone moved toward the combustor inlet. Moreover, the temperature of
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the entrance section with high thermal conductivity was obviously greater. Higher temperatures can
increase the temperature of incoming fresh reactants, which in turn raises the chemical reaction rates.
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Figure 12 illustrates the temperature distributions, average wall temperature, and temperature
standard deviation of the outer wall, as well as the emitter efficiency of the MC under various thermal
conductivities. As a result of the suppressed heat transfer of walls with high thermal resistance, it
is known from Figure 12a that the MC with the thermal conductivity of 0.1 W/m·K obtained the
lowest wall temperature. In addition, the outer wall temperature near the inlet obviously increased
with an increasing thermal conductivity, which is beneficial for preheating the upstream reactants.
Raising the thermal conductivity makes the outer wall temperature more uniform, which is beneficial
for the micro thermophotovoltaic power generators. Figure 12b,c demonstrate the mean value and
standard deviation of the outer wall temperature with different thermal conductivities. The average
temperature of the outer wall was remarkably improved by increasing thermal conductivity when the
thermal conductivity was less than approximately 32.8 W/m·K. When thermal conductivity increased
from 32.8 W/m·K to 150 W/m·K, the change in mean outer wall temperature was almost negligible.
This means that there is a critical point of thermal conductivity that can increase the wall temperature.
When thermal conductivity exceeds the critical point, continuing to increase the thermal conductivity
has a negligible effect on the wall temperature level. Nevertheless, the temperature standard deviation
was decreasing with increasing thermal conductivity, as presented in Figure 12c. For example,
when thermal conductivity rises from 0.1 W/m·K to 150 W/m·K, the temperature standard deviation of
Din = 2 mm is reduced from 292.8 K to 47.9 K, and the temperature standard deviation of Din = 4 mm
is reduced from 169.7 K to 15.1 K. Moreover, the difference in temperature standard deviation of MC
with different Din is small at a large thermal conductivity. The effect of thermal conductivity on emitter
efficiency is illustrated in Figure 12d. Just like the mean outer wall temperature, an increase in thermal
conductivity results in a significant rise in emitter efficiency when the thermal conductivity is less than
approximately 10 W/m·K. Whereas, when thermal conductivity exceeds approximately 10 W/m·K,
increasing it does not increase the emitter efficiency. For instance, in the case of mH2 = 2.88 g/h,
the maximum emitter efficiencies of the MCs with Din = 2, 3, and 4 mm were about 34.0%, 41.3%,
and 46.9%, respectively, when only the thermal conductivity was changed.
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Figure 12. Effect of thermal conductivity on (a) temperature distributions of the outer wall, (b) mean
temperature of the outer wall, (c) temperature standard deviation, and (d) emitter efficiency.

3.3. Effect of Preferential Transport

It is recognized that the local equivalence ratio near the flame front can be changed by the different
mass diffusivities of reactant species, known as preferential transport effect [46,48,49]. The local
equivalence ratio φlocal is calculated from the fuel/oxygen atom balance, using eight major species from
the detailed H2/air chemical reaction mechanism (H2, O2, O, H, OH, H2O, HO2, and H2O2).

φlocal =
0.5(XH2 + XH2O + XH2O2) + 0.25(XH + XOH + XHO2)

0.5(XO + XOH + XH2O) + (XO2 + XH2O2 + XHO2)
(13)

where X is the mole fraction of species.
Figures 13 and 14 demonstrate the contours of φlocal −φinlet and flow streamlines at the XZ plane

in the swirl MC. Figure 13a shows the effect of the hydrogen mass flow rate where the channel diameter
of the swirl MC is 2 mm; Figure 13b shows the effect of thermal conductivity where the channel
diameter of the swirl MC was 2 mm and the hydrogen mass flow rate was 2.88 g/h; Figure 14 is given
to compare the effect of the channel diameter on the local equivalence ratio, where the hydrogen mass
flow rate was 2.88 g/h. As depicted in Figure 13, increases in the hydrogen mass flow rate and thermal
conductivity extended the inner recirculation zone; this can result in an increase in the proportion of the
larger local equivalence ratio area in the recirculation zone. It is shown in Figure 14 that the region with
a larger local equivalence ratio still remains the starting location of recirculation zone when the channel
diameter of the swirl MC changes. It can obviously be seen that the larger local equivalence ratio is
located in the inner and corner recirculation zones, where the flame root anchors. There is a peak local
equivalence ratio on both sides of the swirler exit, mainly due to the sudden expansion at the swirler
exit resulting in sharp velocity gradients. Katta and Roquemore [50] confirmed that sharp velocity
gradients contribute to the preferential diffusion effect. The region with a large local equivalence ratio
due to the preferential diffusion effect is beneficial to the chemical reaction and flame stability.
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4. Conclusions

The effects of channel diameter on the combustion and thermal behavior under various H2/air
mass flow rates and thermal conductivities in a swirl MC were examined numerically. We established
a three-dimensional numerical model with a detailed hydrogen/air chemical reaction mechanism to
analyze these characteristics. The main conclusions are summarized as follows:

(1) The formation of inner and corner recirculation zones with low local velocities in the swirl MC
was due to the swirling flow facilitating flame anchoring;

(2) The local equivalence ratio was larger in the recirculation zones, which confirms that the
recirculation zones helped to create a radical pool, thereby anchoring the flame to there;

(3) Although parameters such as channel diameter, inlet mass flow rate, and thermal conductivity
of the solid wall changed, the flame root was firmly anchored to the starting position of the
recirculation zones;

(4) The combustion intensity was stronger in the MC with a small Din of 2 mm, which had a higher
wall temperature. But, a more uniform wall temperature and a larger emitter efficiency was
obtained in the MC with Din = 4 mm;

(5) Increasing the thermal conductivity enhanced the thermal performance of the combustion
efficiency and emitter efficiency when the thermal conductivity was no greater than approximately
10 W/m·K because of the better preheating and heat transfer performances;

(6) There was a critical point of thermal conductivity (approximately between 10 and 30 W/m·K)
that can increase the thermal performance of an MC. When thermal conductivity exceeds the
critical thermal conductivity, continuing to increase thermal conductivity has a negligible impact
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on thermal performance. Nevertheless, the wall temperature standard deviation decreases with
increasing thermal conductivity.
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