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Abstract: Compared to the load characteristics of normal working days, weekend load characteristics
have a low level of load and are sensitive to meteorological conditions, which influences the accuracy
of short-term weekend-load forecasting. To solve this problem and to improve the accuracy of
short-term weekend-load forecasting, a Semi-parametric weekend-load forecasting method based on
the interaction between meteorological and load is proposed in this paper. The main work is shown
as follows: (1) through separating weekend-load from normal-load and analyzing the correlation
between meteorological factors and daily maximum load, the meteorological factors with parameter
characteristics and non-parameter characteristics can be screened out; (2) a short-term weekend-load
forecasting model is built according to Semi-parametric regression theory which can express the
coupling relation between meteorology and load more realistically; (3) the effect of temperature
accumulation is also considered to correct the forecasting model. The proposed method is proved by
implementing short-term weekend-load forecasting on the real historical data of the Southern Power
Grid in China. The result shows that the 96-point mean load forecasting accuracy obtained by this
model can meet the requirement of power network operation.

Keywords: weekend load forecasting; meteorological information; Semi-parametric regression
theory; agglomeration effect

1. Introduction

With the expansion of the power grid scale and the increasing of load peak and valley differences,
it has become an important and arduous task for power dispatching departments to improve the
accuracy of short-term load forecasting. The accuracy of forecasting results not only affects the
competition mechanism of the power market but also plays an important role in the safe and stable
operation of the power system.

Compared to the load characteristics of normal working days, the weekend load has a low level
of load and is sensitive to meteorological conditions. With a strong coupling relationship between
meteorology and load, the impact of meteorology on load is multi-layered, showing randomness
and uncertainty. The randomness of meteorology is not just a simple linear function relation or a
set of mathematical equations that can be expressed—it needs to comprehensively take the effect of
external meteorology into account. It should not only consider the effect of the current temperature on
load but should also pay attention to the variation of load lag temperature, that is, the temperature
agglomeration effect [1,2], which also had a certain impact on weekend load. Therefore, the study
of the coupling relationship between meteorology and load is the key to improve the accuracy of
weekend load forecasting and all-weather short-term load forecasting.
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For a long time, many experts have been focusing on research on short-term load forecasting.
The forecasting methods such as the time series method [3,4], support vector machine method [5–10],
random forest models [11–14], artificial neural network method [5,15–20] and grey theory [21–23]
could be applied to general weekday scenes and obtain good results. However, the difference between
characteristics on weekend load and working days, as well as the interactive coupling relationship
with external weather information, have become the shortcoming factors that restrict the accuracy of
weekend load forecasting. At the same time, the mainstream forecasting methods mostly belong to
the category of parameter statistics, in which the dependent variable has a strong dependence on the
input variable. In this case, when the set function model is valid, the accuracy of forecasting results
is ideal; but when the function model is invalid, the fitting degree and forecasting accuracy of the
model is not satisfactory. Therefore, it is not entirely applicable to weekend load forecasting with
randomness and uncertainty. The Semi-parametric regression model contains two parts: parametric
and non-parametric, which concentrates the information on a clear relation part but does not ignore
the effect of interference factors (non-parameters part) [24]. Reference [25] suggests a Semi-parametric
approach based on generalized additive models theory to model electrical load and the methodology
has been applied with good results on the actual grid. In [26], based on the preliminary prediction
model, the temperature accumulation effect correction is considered to reduce the local error of the
load forecasting.

In this paper, the power system weekend load forecasting is considered as a whole of the mutual
coupling of meteorology and load, and then the weekend load forecasting model for multi-source
meteorological factors is established. When the load data is preprocessed, the load data is mainly
divided into three types according to the date type of the load, such as normal working day,
weekend and holiday, and each type of data has a corresponding date type. The samples modeled
by filtering all have the same date type, and the influence of date type can be approximately ignored.
The monthly standardized processing of historical load can weaken the influence of economic growth
rate on load level. Therefore, the forecasting of the weekend load is ultimately to study the effect
of external meteorological factors on the load, that is, the mutual coupling relationship between
the two. The uncontrollability of the external meteorological conditions brings challenges to load
forecasting. In this paper, by analyzing the correlation degree of each meteorological factor and
load, the meteorological factors are divided into two categories: parametric and non-parametric.
This method improves the accuracy of weekend load forecasting by optimizing the allocation of
meteorological factors.

The rest of the paper is arranged as follows: the interaction of meteorology and load is analyzed
in Section 2. The basic Semi-parametric regression model and its parameters estimation calculation
process are introduced in detail in Section 3. The proposed forecasting of the weekend load based
on Semi-parametric Regression model are described in Section 4. The explanation of temperature
accumulation effect correction is given in Section 5. The forecasting of weekend load level, the
forecasting of weekend load curve model, the forecasting and correction for 96-point weekend load
curve and the judgment basis for forecasting results are presented in Section 6. The sample load
forecasting based on semi-parametric method and the comparison and analysis of model prediction
results are provided in Section 7. Finally, conclusions are given in Section 8.

2. The Interaction of Meteorology and Load

The weekend load forecast is deeply influenced by various factors, including cultural activities,
meteorology, economic growth rate and so on. With the continuous improvement of people’s pursuit
of quality of life, people generally choose to rest or go out for activities on weekends; large user
production load and enterprise load exit, resulting in a certain reduction in the load level compared
with the working days. And commercial loads and other loads sensitive to meteorological changes
increase in weight, making the weekend loads more deeply affected by meteorological factors. From
Figure 1a, it can be seen that although the weekend load curve is similar to the general weekday load
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curve, the overall shape of the weekend load curve and the peak-valley difference of the load are
different from those of the weekday. The early peak and the late peak of the load curve decrease in
proportion to the working day. Evidently, the weekend load level is lower than that of the working day,
and the shape of the load curve is different from that of the working day. This load characteristic is
more obvious in summer weekend. In addition, taking summer as an example, by comparing the linear
fitting of maximum load to maximum temperature sensitivity in summer of 2013–2014 as shown in
Figure 1b, it can be found that the slope of sensitivity curve in summer weekend is larger than that for
a summer weekday, which means that the maximum load of summer weekend is more sensitive to the
maximum temperature than that of a summer working day, that is, when the maximum temperature
changes, the maximum load of weekend day will change more than that of working day. Therefore,
in order to improve the accuracy of all-weather weekend load forecasting, considering the difference
between weekend load changes and general working days, this paper separates weekends from the
whole, and forecasts them separately according to their correlation with influencing factors, especially
the interaction coupling relationship between weekend load and meteorology.
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Meteorological factors are closely related to social production and life and affect the shape of
the daily load curve from all aspects. Changes in temperature and rainfall have changed people’s
perception of the climate, which makes the meteorologically sensitive load such as commercial load
and domestic electricity load change significantly with the change of meteorology. In the analysis
of the historical samples, it is found that the shape of daily load curve changes with the change of
weather on the weekly time scale, and the daily load curve changes little when the weather conditions
are similar for two days.

At the same time, the weekend load will also be affected by the temperature accumulation effect.
Generally, power load increases with temperature in summer and decreases with temperature in winter.
However, the temperature accumulation effect of power load is manifested as abnormal changes of
varying degrees in the continuous high temperature (low temperature) weather condition or sudden
increase (sudden drop) of temperature. Based on the weekend forecast model, the accumulation
effect is added to consider the effect of the accumulative weather condition on the change of load and
ignoring it will cause local forecasting error.

Therefore, the load forecasting system is actually in the whole of a regular and natural state
influenced by the interaction between meteorology and load, and is coupled by the correlation between
them. When the weekend load forecasting model is established, the interactive coupling relationship
between weather and load is further analyzed by the Spearman correlation coefficient. Since the
dimensions and sizes of each sample data are different, it is necessary to standardize the sample data
to ensure the simplicity of the data. Standardization of meteorological factor data is as follows:

y∗ =
y− ymin

ymax − ymin
(1)

where y is the data of meteorological factors to be standardized; ymax and ymin are the maximum and
minimum values of corresponding meteorological factors in the total sample data. Load monthly
standardization is as follows:

PB =
1
n

n

∑
i=1

Pi P∗0 =
P0

PB
(2)

where PB is the base value of monthly load level. n is the number of days when the maximum
temperature is within the set range. Pi is the daily maximum load within the set range, P0 is the
maximum daily load to be standardized.

In addition to the common factors such as temperature, humidity, wind and rainfall, the following
four comprehensive meteorological indices are selected to study the influence of meteorological factors
on power load more comprehensively: sensible temperature, temperature and humidity index, cold
and humidity index and comfort degree. Among them:

(1) Effective temperature

Effective temperature [27,28] is the thermal sensation index produced by human body under
different temperature, humidity and wind speed. It represents the same feeling of people with
different wind speed, different relative humidity and different temperature under the condition of
static saturated atmosphere (wind speed is 0, relative humidity is 100%). The calculation formula is
as follows:

Te = 37− 37− T
0.68− 0.14Rh + 1/ (1.76 + 1.4V0.75)

− 0.29T(1− Rh) (3)

where T is the air temperature (◦C), Rh is the relative humidity (100%) and V is the wind speed (m/s).

(2) Temperature Humidity Index

Temperature Humidity Index (THI) [28,29] is another meteorological index that combines
humidity and temperature, reflecting the comprehensive sensation of human body under these two
meteorological factors. Its calculation formula is as follows:
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THI = 1.8T + 32− 0.55(1− Rh)(1.8T − 26) (4)

where T is the air temperature (◦C) and Rh is the relative humidity (100%).

(3) Chillness Humidity Index

The winter climate in South China belongs to continental monsoon climate, which is not as dry as
that in North China. Sometimes the cold wave will bring continuous rain and snow weather, making
the humidity high and even near saturation. Although the temperature is not low, it gives a cold and
gloomy feeling, that is, the so-called wet cold. Therefore, when measuring the degree of cold in the
south, we should consider not only temperature and wind speed, but also humidity. The formula for
calculating the Chillness Humidity Index (CHI) [28] for winter in South China is as follows:

Ee = (33− T)(3.3
√

V −V/3 + 20)e0.005|Rh−40%| (5)

where T is the air temperature (◦C), Rh is the relative humidity (100%) and V is the wind speed (m/s).

(4) Comfort Index

Comfort Index (CI) [28] measures the comprehensive effects of meteorological factors such as
temperature, humidity and wind on human body. In the natural environment, meteorological factors
are the main factors affecting human comfort, including human body’s physiological adaptation and
perception to temperature, humidity, wind, solar radiation, air pressure and other factors of natural
environment with their changing process. From the point of view of research and application, comfort
is a kind of biometeorological index or group sensation index. It takes meteorological environment
and its changing factors, and takes human physiological process and subjective feeling as the main
basis and research object to analyze and study the influence of external environment and its changes
on human body.

The main factors affecting human comfort are meteorological factors, among which temperature,
humidity and wind speed are the most prominent. But they are not equally important for people’s
comfort. Human comfort index is a bio-meteorological index formulated to evaluate thermal comfort
in different climatic conditions from the meteorological point of view according to the heat exchange
between human body and atmospheric environment.

The formula of Comfort Index k, which represents whether human body is comfortable or not in
atmospheric environment, is as follows:

k = 1.8T − 0.55(1.8T − 26)(1− Rh)− 3.2
√

V + 3.2 (6)

where T is the air temperature (◦C), Rh is the relative humidity (100%) and V is the wind speed (m/s).
Through the collection and calculation of meteorological data, 20 meteorological factors can be

obtained to use as load predictors. Taking a power grid in southern China as an example, the historical
maximum daily load standard value and meteorological factors for summer and winter from 2008 to
2014 are tracked in the load and meteorological big data, and the Spearman correlation analysis [30,31]
results based on SPSS statistical software platform are shown in Table 1.
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Table 1. Summer and winter holiday daily maximum load per-unit value and 20 meteorological factors
of correlation.

Meteorological Factors Summer Correlation Winter Correlation

Maximum temperature 0.7554 ** −0.6415 **
Mean temperature 0.7637 ** −0.6372 **

Minimum temperature 0.6651 ** −0.5678 **
Maximum humidity −0.3972 ** −0.1061

Mean humidity −0.5036 ** 0.0078
Minimum humidity −0.5382 ** 0.0878
Average wind speed −0.0450 0.1614 **

Rainfall −0.3607 ** 0.1039 **
Maximum temperature humidity index 0.7159 ** −0.6375 **

Mean temperature humidity index 0.6754 ** −0.6342 **
Minimum temperature humidity index 0.3520 ** −0.5797 **

Maximum effective temperature 0.7373 ** −0.6236 **
Mean effective temperature 0.7260 ** −0.6226 **

Minimum effective temperature 0.5501 ** −0.5683 **
Maximum comfort index 0.6744 ** −0.6173 **

Mean comfort index 0.6253 ** −0.6114 **
Minimum comfort index 0.3438 ** −0.5618 **

Maximum chillness humidity index −0.7569 ** 0.6321 **
Mean chillness humidity index −0.7642 ** 0.6257 **

Minimum chillness humidity index −0.6744 ** 0.5662 **

** represents that the correlation was significant at 0.01 level(two-sided).

It can be seen from Table 1, the degree of correlation between any one meteorological
variable and load is not clear. In fact, the fitting degree of curve in actual modeling is not high.
Equivalent considerations for all meteorological effects can reduce the limitations of variables, but
may also reduce the interpretation ability of the model. To reasonably distribute the coupling effect
of various meteorological loads, it is necessary to combine the information of the parametric parts
of the known partial rules with that of the nonparametric parts of the undefined function. The
Semi-parametric regression theory has obvious advantages in this field.

3. The Semi-Parametric Regression Theory

The Semi-parametric model, which is different from Support Vector Machine [32,33], can solve the
problem that is difficult to express with a simple parameter model and nonparametric model. It not
only has a strong explanatory ability, but also overcomes the adverse effects of systematic error and
excessive information defect of the nonparametric method, so it has the stronger adaptability and
superiority [34–38].

3.1. Semi-Parametric Regression Model

The type of Semi-parametric regression model was proposed by Robinson [37] and extended
to handle categorical covariates by Racine and Li [38]. Assuming yj is a dependent variable; xj is
a parameter part of the argument argument; zj is a non-parametric part of the argument; β is the
regression coefficient, that is, the parameter to be sought; g is an unknown function; εj is a random error
assuming data that is independent of each other and which obey the standard normal distribution; n is
the number of sample data, then the Semi-parametric regression model is as follows:

yj = xjβ + g
(
zj
)
+ ε j j = 1, 2, · · · , n (7)

where

• xjβ reflects the parameters part of the known part of the laws, that is, the meteorological factors
that are clearly related to the load to be predicted;
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• g(zj) + ε j reflects a non-parametric part and has no definite function relationship with the load to
be solved, i.e., the meteorological factors that is not clearly related to the load to be predicted.

3.2. Parameters Estimation Calculation

The key to modeling with Semi-parametric regression theory is to estimate and determine
the unknown coefficients of the parametric and non-parametric parts of the model. In this paper,
the two-stage least squares method is proposed for estimation as follows:

1. Model standardization: Set α = E(g(zj)), E(g(zj))2 < ∞, and so:

uj = g
(
zj
)
− α + ε j (8)

By substituting the Equation (8) into (7), the Semi-parametric model can be converted into a
standard linear regression model:

yj = xjβ + uj + α (9)

2. Get the fitting weight value: According to the non-parametric part (zj, yj) of the historical sample
set, the regression model is established:

yj = bzj + ε j (10)

After the b is obtained by the least-squares method, the point-by-point residuals and residual
squares can be obtained:

ε j = yj − bzj , hj = ε j × ε j (11)

The larger residuals ε j and its corresponding square value hj, the worse the regression fitting. The
fitting weight is found as follows:

Wj =
hj

n
∑

j=1
hj

j = 1, 2, · · · , n (12)

where n is the number of samples.
3. Two-stage estimation of regression coefficients: β∗ and α∗, which are the initial estimates of β and

α, can be obtained by least-squares regression analysis of the normalized regression model (9)
based on the parameter section of the historical sample set (xj, yj). Then the equation can be
converted to:

yj − xjβ
∗ − α∗ = g

(
zj
)
+ ε j (13)

g
(
zj
)
=

j−1

∑
i=1

Wi (yi − xiβ
∗ − α∗) (14)

Substituting Equation (14) into Equation (7), then

yj − g
(
zj
)
= xjβ + α + ε j (15)

By the Equation (15), β∗∗ and α∗∗, which are the final estimates of β and α, can be obtained by the
least square method again. Then the Semi-parametric regression model is shown below:

yj = xjβ
∗∗ + α∗ +

j−1

∑
i=1

Wi
(
yj − xjβ

∗ − α∗
)

(16)
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It is more realistic to describe engineering problems by using Semi-parametric model, which can
make full use of the information contained in the sample data set with high information extraction
accuracy rate. Therefore, the Semi-parametric regression model has practical significance for weekend
load and has a strong coupling relationship with meteorological information.

4. Load Forecasting of the Weekend Based on Semi-Parametric Regression

Many factors affect the weekend load change. The same date type makes the sample data have
similar characteristics, and the standardization of load weakens the influence of economic growth rate.
These make the effect of weather information on weekend load more prominent. To study the load of
the weekend, the primary task is to define the acting force of each influencing factor and to determine
the elements of the parametric and non-parametric parts of the Semi-parametric model.

The closer the correlation coefficient r is to 1, the more significant the relationship is; the negative r
indicates a negative correlation. It could be known from statistics that 0.5≤ |r| < 0.8 was considered to
be significantly correlated, while 0.3≤ |r| < 0.5 was considered to be of low correlation [39]. According
to the results of correlation analysis in Table 1, the correlation coefficient 0.5/0.6 was selected as the
demarcation point of the independent variable. Then, through the verification of the actual simulation
results, the meteorological factors of |r| ≥ 0.5 were finally selected as the independent variables of the
parameter part, while the other ones of |r| < 0.5 were the independent variables of the non-parametric
part. In this way, the meteorological factors with parametric and non-parametric characteristics can be
classified reasonably to establish a Semi-parametric regression model.

There are many kinds of meteorological factors selected. If the coupling relationship between
each meteorological factor and load is discussed, the calculation amount will be expanded invisibly.
Therefore, it is possible to use the concept of integration to set the effect of each meteorological factor on
the weekend to be predicted, and to establish an integral function to calculate the integration coefficients
of the parameter and non-parametric parts. Definition of meteorological integration function:

γ =
n

∑
i=1


∣∣∣∣∣∣∣∣

ri
n
∑

i=1
ri

∣∣∣∣∣∣∣∣ (Y
∗
0m −Y∗im)


2

(17)

where γ is the integration coefficient; Y0 is the corresponding meteorological standard for the weekend
to be predicted; Yi is the corresponding meteorological standard for the first day of the historical day.
The steps of weekend load forecasting based on Semi-parametric regression model are as follows:

1. According to the correlation analysis result of each meteorological factor and the load standard
value, the standard load of the Semi-parameter can be selected among the independent parameters
of the parametric and nonparametric part in the model.

The independent variables of the parameter part can be expressed as follows:

x = [x1, x2, x3, · · · , xm] , m = 1, 2, · · · , n

And the independent variables of the nonparametric part can be expressed as follows:

z =
[
z1, z2, z3, · · · , zp

]
, p = 1, 2, · · · , q

where n and q are the number of the parametric parts and the non-parametric parts of the
meteorological factors, respectively.

2. Standardizing the sample sets of meteorological and load. And integrating the identified
meteorological factors that characteristics with parametric and nonparametric by Equation (17).
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3. Based on the independent variable of the parametric part, calculating regression coefficient of
standardized regression model by least squares, then β∗ and α∗ which are the initial estimates of
parameters in the Semi-parametric regression model can be obtained.

4. Based on the nonparametric part of the independent variables, establishing the regression model,
and calculating the regression coefficient by the least-squares method. The point-by-point
residual and its square can be obtained by Equation (11), and the weight W can be calculated by
Equation (12).

5. Calculate the g of the non-parametric part at this time by Equation (14).

Based on the data columns (x, y-g) and Equation (15), β∗∗ and α∗∗ which are the final estimates of
regression parameters can be obtained by the least squares method.

Utilizing the Semi-parametric regression model to predict the weekend load. The effects of
meteorological factors on load are divided into two parts with parametric and non-parametric
characteristics, that is, the information with a clear relation to meteorology is considered, and the effect
of interfering meteorological factors is not neglected.

5. Temperature Accumulation Effect Correction

The accumulation effect affects the load change in a variety of forms. The typical form is shown
as follows: if a place is in high temperature for a long time, the load in this area will be at a higher
level. In this case, even if the temperature is reduced, the extent of the load reduction is not obvious.
Conversely, when the cool weather continues for a certain period, even if the temperature suddenly
rises to a higher level, the load rise is not obvious. The phenomenon that the load lags behind the
temperature change is called the temperature accumulation effect. Generally speaking, the occurrence
of the accumulation effect of temperature needs to satisfy the condition that the daily temperature to
be predicted is in the temperature range sensitive to human perception. Moreover, the intensity of
the accumulation effect of temperature is not only affected by the predicted daily temperature but
also closely related to the difference between the predicted daily temperature and the temperature of
the previous N days. The greater the temperature difference is, the greater the accumulation effect of
temperature on the day to be predicted is; however, when the temperature difference exceeds a certain
range, the accumulation effect of temperature will gradually weaken [26].

The weekend load level, which is more sensitive to weather factors, is lower than those of normal
working days. The accumulation of high temperature or low temperature during the first few days
of the weekend will act on the forecasting weekend. Therefore, the load change to be predicted over
the weekend is not only affected by the current meteorological changes but also superimposed on the
effects of the previous day’s temperature accumulation effect. Assuming that the weekend normal
load forecasting model is accurate, the deviation between the forecasting load and the actual load
calculated by the model when the accumulation effect is significant can be considered to be mainly
caused by the accumulation effect. Therefore, the modified load modeling of the accumulation effect is
actually modeling the above load deviation, and the actual load on the weekend is the superposition
of the normal load and the load deviation caused by the accumulation effect.

The strength of the accumulation effect is different under different conditions. The strength
of accumulation effect is mainly affected by high temperature, high-temperature duration and the
temperature of the weekend to be predicted. Temperature correction is used to reflect the accumulation
effect, which can not only reflect the effect of accumulation on load but also make full use of the existing
load forecasting model. According to the significant degree of accumulation effect, taking the summer
meteorological load data as an example, the data with significant accumulation effect and the data
without significant accumulation effect are screened out to facilitate the follow-up analysis. Based on
the above analysis, the data of the day and the next day when the daily maximum temperature
is between 28 ◦C and 38 ◦C and the temperature rises or falls more than 3 ◦C are selected as the
significant data of summer accumulation effect, referred to as an accumulation day. Considering the
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establishment of the accumulation effect correction model, this paper introduces the temperature
deviations amount ∆T.

Take the establishment of a summer accumulation effect correction load model as an example:
Calculate the temperature difference value:

∆T1 = T0 − T−1 , ∆T2 = T0 − T−2 (18)

where T0 is the temperature of the day when the temperature mutates; T−1 and T−2 are the
temperatures of the day and two days before the mutation. The result of this formula, as the input
variable of the accumulation effect correction formula, reflects the deviation caused by the perceived
inertia of the temperature change.

Taking L−2 as the benchmark, L0, L−1 and L−2 can be obtained by the basic load forecasting model,
and all load deviation values are calculated as follows:

∆L = L− L′

The regression coefficients in the accumulation effect correction formula are obtained by
multivariate regression analysis of ∆L, ∆T1 and ∆T2 with the least-squares method, and the function f
(∆T1, ∆T2) which changes with the meteorological index can be obtained.

The expression for binary linear regression is as follows:

f (∆T1, ∆T2) = k1∆T1 + k2∆T2 + k3 (19)

Adding the accumulation effect of temperature on the basis of the original prediction model can
more effectively show the interaction between meteorological-loads, reflecting the real situation of
weekend load, and thus further improving the accuracy of weekend load forecasting.

6. Weekend Load Forecasting Model Construction

In this paper, the weekend load forecasting is divided by quantitative and qualitative analysis
into two parts: load level forecasting and load curve model forecasting. The load level includes
the maximum, minimum and mean load, taking into account the coupling relationship between
meteorological and load and the effect of meteorological accumulation. The load curve model
forecasting establishes a weather integration function basing on similar days and takes the weekend
with the minimum integration coefficient as the base load curve.

6.1. Forecasting of Weekend Load Level

k j =
Lweek
Lbase

Kj = xjβ
∗∗ + α∗ +

j−1
∑

i=1
Wi
(
k j − xjβ

∗ − α∗
)

Lweek.x = Lbase × f
(
Kj
)

j = 1, 2, · · · , n

(20)

where K is the dependent variable of the Semi-parametric regression model and Lweek.x is the initial
forecast of the total network area of the weekend adjustment load value.

To fit the coupling relationship between the weather and load, the accumulation effect correction
load model is taken into account base on normal load model, and the final actual load model is given
as follows:

L′week.x = Lweek.x × f (∆T1, ∆T2) (21)

where f (∆T1, ∆T2) is the expression function of the temperature accumulation effect.
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6.2. Forecasting of Weekend Load Curve Model

In a large amount of historical meteorological data, the meteorological information of the same
type of weekend is screened out by clustering, and the meteorological forecasting information
is collected and calculated for the weekend forecasting. After standardizing the meteorological
information, based on the principle of similar day and considering all the effects of meteorological
factors, the integrated function is established to find the same type of day with the most similar
weather forecast for the weekend. To weaken the impact of the growth rate on the load forecasting,
selecting the 7 weekends before the weekend to be predicted as the range of weather-similar days.
When the γ is minimum, that is, the weather information of the similar day is the closest to weekend
to be predicted. Then the load curve of the same kind of weekend with the most similar weather is
used as the base curve of the forecasting model. When the meteorological variation on the forecast
date is larger than the historical range, the method can be continued to trace forward, and the monthly
base load can be modified proportionally.

6.3. Forecasting and Correction for 96-Point Weekend Load Curve

The forecasting value of extreme inflection point of weekend load can be obtained using the
Semi-parametric regression model and temperature accumulation effect. The final 96-point load curve
can be obtained by the optimized correction of the same type of basic load curve obtained by using the
meteorological integrated function.

This paper holds that if the deviation of the daily maximum and minimum load of the predicted
weekend and similar weather days remain unchanged, then the initial curve Li of the weekend load
can be calculated as follows:

L′i =

{
SimLi + (Lmax − SimLmax) , t > tmin

SimLi + (Lmin − SimLmin) , t < tmin

Li = L′i ×
Lave
n
∑

i=1
L′i

(22)

Smoothing the load connection points near the minimum value to avoid burrs in the load curve.

Li = Lmin + (L08:45 − Lmin)× n
m

n = 1, 2, · · ·m + 1
(23)

where Lmax, Lave and Lmin are respectively the maximum, average and minimum load forecasting
values of the day to be forecasted; SimLi is a load curve with similar types of days; SimLmax is the
maximum load for similar day; SimLmin is the minimum load for similar day; tmin is the minimum
point of the corresponding similar daily load curve. m is the total number of load points with 15 min
increment in the period from tmin to 08:45; and n is the number of load points between Li and Lmin.

In order to understand more intuitively the process of weekend load forecasting based on
semi-parametric regression model of meteorological-load interaction coupling, the forecasting process
is listed as shown in Figure 2.
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Figure 2. The flowchart of weekend forecasting.

6.4. The Judgment Basis for Load Forecasting Results

Load forecasting is an estimation of the load of the grid in the next few days. The model cannot
be completely perfect, and the randomness of external conditions will affect the accuracy of load
forecasting. Accuracy is the degree to which the average values measured many times under certain
experimental conditions are consistent with the true values. It is used to indicate the magnitude of
system errors. Accuracy is the synthesis of systematic error and random error in measurement results,
which indicates the consistency between measurement results and true values. The accuracy of the
test results consists of accuracy and precision, that is, the accuracy of the test results is reflected by the
two indicators of accuracy and precision. Accuracy is often expressed by errors. When used for a set
of test results, it consists of random error components (precision) and systematic error components
(correctness). Combining with the engineering practice, accuracy Aj, relative error Ej , mean absolute
percentage error (MAPE) and root mean square error (RMSE) are selected as the evaluation basis for
the forecasting method:

Aj = [1−
√

1
n

n
∑

i=1
E2

j ]× 100%

Ej =
∣∣∣ LFi−LRi

LRi

∣∣∣
MAPE = 1

n

n
∑

i=1

|LRi−LFi |
LRi

× 100%

RMSE =

√
1
n

n
∑

i=1
(LRi − LFi)

2

(24)

where LFi is the load forecast value; LRi is the actual load value; n is the total number of points for
daily load forecasting.
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7. Specific Example and Results Analysis

7.1. Sample Load Forecasting Based on Semi-Parametric Method

To prove that the proposed Semi-parametric weekend load forecasting method based on the
interaction between meteorology and load can accurately predict the load value of the future power
grid, the weekend load forecasting model is simulated and tested based on the load data of a southern
power grid. Weekend load forecasting model is established based on the data of 2008–2014 as a
historical sample set, and the data of 2015 as a test set is selected to test the final results of the
forecasting. The weekend load forecasting model is as follows. Table 2 lists the forecasting relative
error results of load maximum in 2015 weekend in detail by month.

Weekend load forecasting model:

Kj = −0.4403xj + 0.9916 +
j−1
∑

i=1
Wi
(
k j + 0.4399xj − 0.9917

)
Lweek.x = Lbase × f

(
Kj
)

Lbase × f
(
Kj
)

j = 1, 2, · · · , n
L′week.x = Lweek.x − 7.6154∆T1 − 55.1568∆T2 − 116.9302

Table 2. Relative Error of Load Maximum Forecasting Results in 2015 Weekend.

Month January February March April
Ej 0.0274 0.0293 0.0268 0.0214

Month May June July August
Ej 0.0259 0.0287 0.0293 0.0264

Month September October November December
Ej 0.0153 0.0229 0.0296 0.0197

The weekend load forecasting method proposed in this paper can also maintain the stability of
weekend load forecasting on continuous dates. To prove this advantage, the weekends of September
and October of 2015 were selected for verification. Table 3 shows the specific results of continuous
weekend load forecasting, in which the Amark, the prediction results of the quadratic regression
prediction model, is selected as the benchmark to verify the superiority of the Semi-parametric model;
the correlation coefficient r is 0.6 to verify the rationality of the selection of independent variable
boundary points; and the accuracy of Abefore and Aafter of the 96-point load curve before and after the
accumulation effect correction are compared. Also, Figure 3 series diagrams show the actual load
tracking and forecasting values of the weekend.

Table 3. Weekend Load Curve Forecast Results in 2015.

Date
Actual Value Forecasting Value Amark Abefore-0.6 Abefore-0.5 Aafter-0.5

Max Mean Min Max Mean Min

9/5 13,002 10,797 7973 12,832 10,727 8202 96.26% 96.99% 96.81% 97.85%
9/6 14,014 11,556 8371 14,463 11,605 8569 95.95% 96.98% 97.11% 98.20%

9/12 12,875 10,986 8959 12,557 10,713 8692 95.23% 96.71% 96.50% 97.81%
9/13 12,373 10,227 7918 12,351 10,592 8179 95.38% 95.99% 97.10% 98.32%
9/19 14,133 11,885 9018 14,190 12,108 9281 95.61% 96.92% 97.01% 98.04%
9/20 12,774 10,997 9204 12,558 10,704 8978 96.81% 96.58% 96.64% 98.23%
10/10 12,614 9755 7152 12,401 9706 7324 94.32% 95.91% 97.11% 98.11%
10/11 12,019 9535 6977 12,240 9826 7247 96.30% 96.88% 97.39% 98.37%
10/17 12,789 10,354 7716 12,875 10,722 7969 95.51% 96.84% 97.64% 97.87%
10/18 12,480 10,175 7571 12,740 10,478 7782 96.33% 97.04% 97.26% 98.03%
10/24 13,344 10,768 8025 12,877 10,207 7798 97.06% 97.31% 97.12% 98.57%
10/25 13,046 10,661 8016 12,840 10,665 8105 96.53% 96.98% 97.05% 98.36%
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(a) 2015/9/5 Load curve forecasting result
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(b) 2015/9/6 Load curve forecasting result
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(c) 2015/10/24 Load curve forecasting result
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(d) 2015/10/25 Load curve forecasting result

Figure 3. Forecasting curves compared with the actual load curve in 2015 weekend.

As can be seen from Table 2 the annual error rate of the maximum load on the weekend of 2015 is
0.0252. The average accuracy of the 9–10-month continuous weekend 96-point load curve selected
from Table 3 shows that the weekend load forecasting curve obtained by the Semi-parametric model
used in this paper is closer to the actual value load curve than the regression model. The correlation
coefficient selection 0.5 with an average accuracy of 97.06% is more advantageous than 0.6 with an
average accuracy of 96.76% as a whole, and the forecasting accuracy after the accumulation effect
correction is improved obviously, the accuracy was 97.06% before correction, and can reach 98.15%
after the correction. Figure 3 also shows that the continuous weekend load forecasting curve can well
track the actual value, which proves that the proposed weekend load forecasting method has strong
stability. It can be concluded that the proposed Semi-parametric weekend load forecasting method
based on weather-load interaction can meet the requirements of load forecasting accuracy of the power
grid and meet the actual operation needs of the power grid.

7.2. Comparison and Analysis of Model Prediction Results

To verify the effect of the proposed Semi-parametric weekend-load forecasting method based on
the interaction between meteorological and load, the Long Short-Term Memory (LSTM) model [40],
the traditional Support Vector Regression (SVR) model [41], the Gradient Boosting Regression Tree
(GBRT) model [42] and the Auto-Regressive eXogenous (ARX) model [43] are selected for comparison,
predicting the load values in the same 12 weekend days. The comparison of forecasting results, the
relative error and the boxplot of relative error for different models are shown in Figures 4–6 respectively.



Energies 2019, 12, 3820 15 of 19

6500

7500

8500

9500

10500

11500

12500

13500

14500

15500

16500

17500

0 200 400 600 800 1000 1200

L
o
a
d

 v
a
lu

e 
(M

W
)

Time Index (in increments of 15 minutes)

Actual value
SVR
GBRT
LSTM
ARX
Semi-parametric Regression

(a) Comparison for the weekends of September and October 2015
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Figure 4. The comparison of forecasting result.



Energies 2019, 12, 3820 16 of 19

11000

12000

13000

14000

15000

16000

40 140 240

L
o
a
d

 v
a
lu

e 
(M

W
)

Time Index (in increments of 15 minutes)

Actual value
SVR
GBRT
LSTM
ARX
Semi-parametric Regression

(a) Upper peak points

5500

6000

6500

7000

7500

8000

8500

9000

9500

780 880 980

L
o
a
d

 v
a
lu

e 
(M

W
)

Time Index (in increments of 15 minutes)

Actual value
SVR
GBRT
LSTM
ARX
Semi-parametric Regression

(b) Lower peak points

Figure 5. The comparison of forecasting result.

For the weekends of September and October 2015 data set, The fitting results of the forecasting
curves for each model are presented in Figure 4a,b. Obviously, the forecasting curve of the
Semi-parametric Regression model fits best. As can be seen from Figure 4c, for the samples, the
Semi-parametric Regression model improves the prediction accuracy at most of sharp points. The local
details for sharp points in Figure 4a are enlarged and are shown in Figure 5a,b respectively. From the
enlarged figure, the proposed Semi-parametric weekend-load forecasting method is superior to other
models on the upper and lower peak points, not only in terms of the fitting degree but also in terms of
the trend shape.

(a) The boxplot of relative error (b) The boxplot of RMSE

Figure 6. The boxplot of relative error and root mean square error (RMSE) for different models.

The boxplot in Figure 6 shows the four statistics of the relative error and RMSE of each forecasting
model that is the minimum, first quartile, the median, third quartile and the maximum. It indicates
that the relative error distribution range of the proposed Semi-parametric Regression model is always
the smallest compared with other models, and so is the RMSE. As shown in Table 4, the mean absolute
percentage errors (MAPE) for the 15 min load of each forecasting day of the Semi-parametric Regression
model are the most stable and reliable. It is proved that the Semi-parametric Regression model
proposed in this paper can achieve good prediction effect in weekend load short-term forecasting.
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Table 4. Mean absolute percentage errors (MAPE) of Weekend Load Curve Forecast Results of
September and October in 2015.

Date SVR GBRT LSTM ARX Semi-Parametric
Regression

5 September 2015 6.01% 4.92% 5.31% 3.22% 1.84%
6 September 2015 6.88% 4.58% 7.44% 4.44% 1.54%

12 September 2015 6.70% 4.74% 5.59% 2.39% 1.21%
13 September 2015 5.93% 4.13% 4.88% 4.43% 1.40%
19 September 2015 1.91% 1.39% 2.92% 3.52% 1.53%
20 September 2015 7.78% 4.87% 6.37% 2.79% 1.62%

10 October 2015 1.57% 1.88% 1.60% 10.26% 1.59%
11 October 2015 1.57% 2.71% 2.01% 5.23% 1.41%
17 October 2015 1.11% 1.82% 1.68% 3.71% 1.76%
18 October 2015 1.37% 2.54% 1.73% 3.35% 1.68%
24 October 2015 1.36% 1.04% 1.58% 2.98% 1.22%
25 October 2015 1.18% 2.02% 1.20% 2.28% 1.40%

8. Conclusions

This paper proposes a Semi-parametric weekend load forecasting method, which uses the
interaction between meteorology and load to effectively improve the accuracy of weekend load
forecasting. Its innovations are as follows:

1. Applying the Semi-parametric forecasting model to short-term load forecasting. Many
meteorological factors are divided into two categories with parametric characteristics and
non-parametric characteristics. In this way, information that has a clear relationship with meteorology
is considered without ignoring the effects of interfering meteorological factors.

2. This paper presents the concept of integration in which the effect of meteorological factors on the
forecasting weekend is expressed by establishing the integration function to calculate the integration
coefficient of the parametric part and non-parameter part. Also, the method of normalization is
proposed to fuzzify the meteorology and screen out the interference of the meteorological numerical
difference on the meteorological similarity search, to guarantee the validity of the meteorological
integrated function to a great extent.

The proposed weekend load forecasting method has certain applicability to the regional power
network of China and does not take the regional characteristics into account for special treatment.
However, national holidays and typhoon days are excluded in the actual modeling, so it is necessary
to further study the effect of multi-date type overlapping and typhoon destruction on power grid load
to improve the accuracy of all-weather load forecasting.
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