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Abstract: The energy embodied in construction services (EECS) to increase industrial production
capacity, contributes to total primary energy consumption (TPEC) in developing countries like China.
Forecasting EECS is important for creating energy policies, but has not received enough attention.
There are some defects in the main two methods of EECS forecasting: the static hybrid input-output
(HI/O) model and the dynamic HI/O model. The former cannot identify the quantity of construction
services, whereas the latter is unstable for EECS forecasting. To tackle these problems, we propose a
new model, which is a combination of the static and dynamic hybrid input-output model (CSDHI/O
model), for EECS forecasting. Taking China as a case study, we forecast the EECS and TPEC of China
until 2020 and analyze the sensitivities of four influencing factors. The results show that the EECS of
China will reach 1.79 billion tons of coal equivalent in 2020. The improvement of fabrication level is
identified as the most important factor for conserving both TPEC and EECS. A sudden drop in gross
domestic product (GDP) growth rate and decreasing the investment in the service industry can also
restrict EECS growth.

Keywords: embodied energy; forecasting; fixed assets investment; hybrid input-output model;
construction services

1. Introduction

The notion of reducing greenhouse gas emissions to mitigate climate change has been accepted by
many economies and scholars. Conserving fossil energy consumption is an important way to reduce
such emissions. In addition to increasing the proportion of renewable energy, reducing the demand for
energy services is another major measure to conserve fossil energy. Forecasting the demand for energy
services is a basic task in reducing the demand for energy services, which has received much attention
by many countries and research institutions.

The demand for energy services can be divided into two categories: construction services and
operation services [1]. During economic development, some energy is consumed by construction
services for increasing the production capacity of various sectors. Correspondingly, the energy
consumed by operation services is used to maintain the current production capacity. For rapidly
developing economies like China, the energy embodied in construction services (EECS) can be quite
large. In 2007, the EECS, as estimated by the energy embodied in the fixed assets investments (FAI),
consumed one-third of the total energy in China [2]. A recent study [3] also showed that EECS was the
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top final consumer of embodied energy in Beijing in 2010. Therefore, for economies experiencing rapid
development, it is important to forecast EECS and analyze its influencing factors in order to control
energy consumption and related emissions.

However, in the energy consumption forecasting literature [4–31], few studies separate EECS
from total primary energy consumption (TPEC). Most previous studies on EECS [2,3,32] are historical
analyses and estimate EECS using the energy embodied in FAI. In both forecasting studies and historical
analyses, the hybrid input-output model (HI/O model) is widely adopted [2,4–9,32–47] because it
is based on the inherent law of energy-economics and clearly explains the internal mechanism for
economic growth by the change in sectoral product demand, to the change in energy consumption.
More importantly, the HI/O model is the main method used to extract EECS from TPEC.

The difficulty in forecasting EECS is mainly due to the limitation of existing HI/O models, which
can be classified as static models and dynamic models. Although static HI/O models are more stable
in TPEC forecasting, the quantity of FAI is an exogenous variable and so cannot respond to changes
in sectoral product demand. The dynamic HI/O models can decompose EECS by establishing the
quantitative relationship between FAI and the output increment of various sectors, but the forecast
is unstable because of the singularity of the natural capital coefficient matrix and the inability to
decompose the direct input coefficient matrix. Thus, a combination of static and dynamic HI/O
models can create a better method that is both stable and functional for EECS forecasting, an idea
which deserves further study.

The aim of this paper was to develop a method of EECS forecasting, called the CSDHI/O model,
based on the combination of static and dynamic hybrid input-output models. The CSDHI/O model
forecasts TPEC using static methods based on gross domestic product (GDP) prediction, and estimates
the EECS along with the economic prediction using dynamic methods. Thus, by combining the
advantages of static HI/O methods and dynamic HI/O methods, we can better forecast and analyze
EECS. The establishment of the CSDHI/O model includes five steps. First, we build HI/O tables
based on historical data to prepare the basic energy and economic data for our forecast. Second,
we predict the final demand of each sector. Third, the output and TPEC of the economy is forecast by
applying static methods in the HI/O model. Fourth, we estimate EECS, which is essential for meeting
the product demands of various sectors using dynamic methods. Finally, we conduct sensitivity
analysis of various influencing factors of EECS forecasting and TPEC forecasting. To demonstrate the
CSDHI/O model, the forecast of TPEC and EECS of China until 2020 is used as a case study, because
China is a rapidly developing economy with the largest energy consumption and carbon emissions in
the world.

The main contributions of this paper include: (1) we develop a CSDHI/O model to forecast the
EECS of an economy based on the GDP prediction, which reveals the dynamic relationship between
economic development and EECS. This is an early attempt of methodology development to forecast
the EECS in the process of economic development. The CSDHI/O model originally combines the
forecasting stability of the static HI/O model and the dynamic characteristics of FAI, growing with
product demands in the dynamic HI/O model. (2) In applying the CSDHI/O model, we forecast
the EECS of China until 2020 and analyze its influencing factors. Through sensitivity analysis of the
CSDHI/O model, we deepen our understanding of the influencing factors of EECS forecasting, and
find effective measures to conserve EECS and TPEC. Based on the results, we draw policy implications
for the conservation of EECS and TPEC in China.

The paper is organized as follows: related literature is reviewed in Section 2. Section 3 introduces
the methodology and data preparation. Section 4 presents the results and sensitivity analysis. Section 5
summarizes the conclusions and provides policy implications.
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2. Literature Review

Energy consumption forecasting is a basic task in creating energy policies. Many organizations,
such as BP [10,11], the International Energy Agency [12], the Chinese Academy of Engineering [13],
and Chinese Energy Research Institute [14] have regularly published energy consumption forecasts
for various countries and regions around the world. Energy consumption forecasting has always
been a popular issue in academic research. Many scholars have studied various methods of energy
consumption forecasting, which can be classified into three categories: (1) artificial intelligence
forecasting models, including genetic algorithms [15,16], artificial neural networks [17–20], and swarm
intelligence optimization [15,16,21]; (2) grey forecasting models [22–25]; and (3) econometric
models, such as the HI/O model [2,4–9], the integrated MARKAL-EFOM system model [26],
the macroeconomic Bayesian vector autoregression model [27], the autoregressive integrated moving
average model [28–30], and other econometric models [31].

Most of these studies focused on TPEC forecasting and analyzed the influencing factors of
TPEC, including economic development (GDP growth rate, per capita GDP), economic structure
(consumption structure change, industrial structure change), and technological change (substitution,
fabrication level). However, little attention has been paid to forecasting EECS caused by economic
development and the influencing factors.

EECS indicates the energy embodied in construction services-related fixed assets investment
(CSFAI), which accounts for the majority of the total FAI [48]. Embodied energy analysis of various final
demand products in an economy, including FAI or CSFAI, is mostly based on the HIO model, which
has been transformed from the traditional input-output model [49]. Most studies on embodied
energy analysis estimated primary energy embodied in products and services, or in the trade
between economies, such as the energy embodied in the global production system [33], the energy
requirements of Sydney households [34], the primary energy and greenhouse gas embodied in
Australian final consumption [35], the energy requirements of Brazil households [36], energy-related
carbon emission of Irish construction sector [32], the embodied energy of industrial sectors of China [37],
the energy embodied in international trade of China [38,39]. A few researchers estimated the energy
embodied in FAI, which was taken as EECS, based on historical data analysis. Fu et al. [2] estimated
the EECS of China and concluded that EECS accounted for one-third of the TPEC of China in 2007.
Li et al. [3] estimated the EECS of Beijing and confirmed that EECS was the largest type of embodied
energy of Beijing in 2010. Acquaye et al. [32] estimated the energy-related carbon emission of Irish
construction sector, which is highly correlated with TPEC. The results showed that the energy-related
carbon emission of construction sector accounted for 11% of the total domestically arising CO2

emissions of Ireland in 2005. In EECS-related studies, the HI/O model was the most popular method
applied. However, few studies involved EECS forecasting. The lack of research on EECS forecasting is
speculated to be partly due to insufficient attention paid by scholars to EECS in rapidly developing
economies, and partly to the limitation of existing HI/O models.

The HI/O model can be divided into two categories, which are static HI/O models and dynamic
HI/O models, but each category has limitations for EECS forecasting. The static HI/O models
can forecast the TPEC of the economy based on GDP prediction, but does not accurately simulate
the dynamic changes in FAI. For example, Zheng et al. [8] forecasted China’s TPEC and carbon
emissions embodied in the final demand products of various sectors. Zhang et al. [40] proposed a
static hybrid input-output model of nine pieces to forecast the energy demand of Jiangsu Province.
Hamilton et al. [41] developed a multi-regional input-output model for Africa to estimate the primary
energy supply and energy-related carbon emissions along with the economic growth, and forecasted
the primary energy supply and he energy-related carbon emissions of sub-Saharan Africa in 2030.
Dejuán et al. [42] also built an input-output model, which can reflect the impact of fuel prices on energy
demand in various sectors, to forecast the energy demand of Spain. However, due to the limitations of
the static HI/O model, the FAI volume is an exogenous variable, which results in a mismatch between



Energies 2019, 12, 300 4 of 26

the quantity of FAI forecasted by the static HI/O model and the economic development. Thus,
although the forecasting was stable, EECS cannot be forecasted by a static HI/O model.

Although the dynamic HI/O model has inherent advantages in estimating EECS, there are also
some drawbacks in forecasting EECS with this model. For simulating the dynamic growth of FAI
with the output increase of various sectors, the dynamic input-output model was developed by
Leontief [43]. Compared to static input-output model, the dynamic input-output model contains
a “capital coefficient”, which is defined as the ratio of FAI invested by one sector to the increase
of its total output. With this coefficient, the FAI has changed into an endogenous variable of the
model, and is considered to be the construction services caused by the change of the total output
of each sector. The dynamic input-output model was introduced into the energy field in 1978 by
Rhoten [44], who developed the dynamic energy-economy HI/O model. Penner [45] developed a
partially dynamic input-output model of the United States economy, and examined the net energy
costs of constructing and operating the energy-supply system. Recently, the dynamic HI/O model
has been applied to forecast TPEC and energy-related carbon emissions under various optimization
objectives [4–7], or be improved to analyze and estimate renewable energy [46] and bioenergy [47]
with economic development. However, few studies have forecasted EECS or distinguished EECS from
TPEC forecast. There are two main issues in EECS forecasting with the dynamic HI/O model: (1) The
forecasts are based on the prediction of various sectors’ final demand, except FAI, and more specifically,
excluding for CSFAI. However, most studies on energy consumption forecasting did not distinguish
between FAI and CSFAI. Furthermore, it is difficult to separately predict the final demand without the
CSFAI of each sector. (2) Forecasting with the dynamic HI/O model is very sensitive to the capital
coefficient matrix and the direct input coefficient matrix. However, the capital coefficient matrix of an
HI/O model is always a singular matrix with huge differences between the elements of various sectors.
This characteristic of the capital coefficient matrix and the inability of the direct input coefficient matrix
to be decomposed always leads to instability in solving the dynamic HI/O model [50,51]. This restricts
the application of dynamic HI/O models to energy consumption forecasting. Therefore, dynamic
HI/O models can be used for TPEC and EECS estimation and forecasting, but the forecast function is
not stable.

Both the static HI/O model and the dynamic HI/O model have been applied to forecast
TPEC, but they have some issues when EECS forecasting. Therefore, an EECS forecasting method
should be developed by combining the two categories of HI/O models, which may overcome their
respective defects.

3. Methodology and Data Preparation

In this section, we first introduce the establishment of the CSHI/O model, and then describe the
preparation of data for the case study.

3.1. CSDHI/O Model

We attempted to combine the advantages of the static HI/O model and the dynamic HI/O model
to build a new model, called the CSDHI/O model, to forecast EECS based on GDP prediction and
analyze the influencing factors using sensitivity analysis. Specifically, we applied the static method in
the HI/O model to forecast TPEC caused by the final demand increase of various sectors. We used the
dynamic method in the HI/O model to estimate the EECS necessary for an economy to develop as
predicted. Developing the CSDHI/O model involved five steps, as shown in Figure 1:
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Figure 1. The combination of static and dynamic hybrid input-output (CSDHI/O) model.

1. The first step (Step 1, the orange box in the middle of Figure 1) was to establish the HI/O tables
and prepare data for forecasting, which can be considered establishing an HI/O model. Several
coefficient matrices needed for forecasting were estimated based on historical data.

2. The second step (Step 2, the red box in Figure 1) was to predict the economic development.
Specifically, we predicted the final demand of each sector, which was the basis for the EECS
forecasting. The economic prediction was the input of the CSDHI/O model.

3. The third step (Step 3, the blue part in Figure 1) was to forecast the output of various sectors
according to the economic prediction by applying the static method in the HI/O model.

4. The fourth step (Step 4, the yellow part in Figure 1) involved estimating the EECS caused by
the output increase of various sectors by applying the dynamic method in the HI/O model.
The output increase of various sectors forecasted by Step 3 was the input of Step 4.

5. The last step (Step 5, the green part in Figure 1) involved conducting sensitivity analysis of the
various influencing factors of EECS and TPEC to identify the impact of each factor on EECS and
TPEC growth. The GDP growth rate, proportion of final demand of each sector, fabrication level,
and the positive capital coefficient are recommended for the sensitivity analysis.

3.1.1. Establishment of HI/O Tables

The energy-economic HI/O model is operated based on energy-economic HI/O tables, which
were created by replacing the economic value of the energy sector in the conventional economic
input-output table with the physical quantity of various types of energy. The typical energy-economic
HI/O table of an economy with n intermediate sectors, of which m is the energy sector, is shown in
Table 1.
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Table 1. A typical energy-economic hybrid input-output table year t, where * represents the physical
quantity of energy.

Intermediate Sector Final Demand

Output
1 2 . . . n Final

Consumption
Net

Export

Fixed
Assets

Investment

Other
Final

Demand

Intermediate
Sectors

1 z∗t
11 z∗t

12 . . . z∗t
1n f ∗t

FC,1 f ∗t
NE,1 f ∗t

FAI,1 f ∗t
OFD,1 x∗t

1
2 z∗t

21 z∗t
22 . . . z∗t

2n f ∗t
FC,2 f ∗t

NE,2 f ∗t
FAI,2 f ∗t

OFD,2 x∗t
2

...
...

...
...

...
...

...
...

...
...

m z∗t
m1 z∗t

m2 . . . z∗t
mn f ∗t

FC,m f ∗t
NE,m f ∗t

FAI,m f ∗t
OFD,m x∗t

m
m + 1 zt

(m+1)1 zt
(m+1)2 . . . zt

(m+1)n f t
FC,m+1 f t

NE,m+1 f t
FAI,m+1 f t

OFD,m+1 xt
m+1

...
...

...
...

...
...

...
...

...
...

n zt
n1 zt

n2 . . . zt
nn f t

FC,n f t
NE,n f t

FAI,n f t
OFD,n xt

n

Note: z represents the intermediate input; f stands for the final demand; x is various sectors’ output; and subscripts FC, NE,
and OFD means final consumption, net export, and other final demand, respectively. The first number subscript means the
row of the table and the second subscript means the column of the table. The specific establishing process of the hybrid
tables was explained by Miller et al. [52].

There are some key coefficient matrices that had to be estimated. The direct input coefficient at
ij

can be defined with Equation (1). The direct input coefficient matrix, which is A matrix, is composed of
direct input coefficients:

at
ij =

zt
ij

xt
j

(1)

The proportion of fixed assets invested by sector j in sectors i is defined as pfaiij. The fixed assets
invested by sector j in sectors i in t year, FAIt

ij, can be calculated by Equation (2):

FAIt
ij = p f ait

ij· f t
FAI,i (2)

where f t
FAI,i is the total fixed assets invested in sector i in t year.

The proportion of CSFAI to FAI is assumed to be pcsfait, which is important for distinguishing
between CSFAI and FAI. As mentioned before, the FAI invested by each sector can be divided into
CSFAI and operation services-related FAI. The operation services-related FAI can be simply estimated
by multiplying the net fixed assets and depreciation rate of the fixed assets in the sector. The net
fixed assets and the total FAI invested by each sector can be obtained from the statistical data. Thus,
the proportion of operation services-related FAI to the total FAI in each sector can be estimated.
Considering this parameter plus pcsfait equals 100%, the pcsfait of each sector can be estimated. Usually,
it is assumed that the depreciation rate of the fixed assets in the sector remains the same during the
forecasting period. Therefore, the quantity of CSFAI can be estimated using Equation (3):

CSFAIt
ij = pcs f ait

ij·FAIt
ij (3)

where CSFAIt
ij is the CSFAI of sector i invested by sector j of t year.

Based on the definition of CSFAIt
ij, a positive capital coefficient, Ct

ij, derived from the traditional
capital coefficient can be defined by Equation (4):

ct
ij = CSFAIt

ij/∑ ∆xt+
j , ∆xt+

j ≥ 0 (4)

where ∆xt+
j is the positive difference between the output of sector j in t + 1 year and the output of

sector j in t year. The specific definition and calculation of the positive capital coefficient are provided
in Appendix A.
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3.1.2. Prediction of Economic Development

The aim of Step 2 was to forecast the final demand of each sector according to the actual
development state of the economy. The prediction of economic development was realized in two steps:

1. Estimate the final demand of the primary industry, the secondary industry and the tertiary
industry in the future, respectively. In input-output models, the GDP of the economy equals the
sum of the final demand of various sectors. Therefore, we can calculate the total GDP according to
the historical GDP data and the future GDP growth rate predicted by other institutions, and
regard it as the total amount of final demand. It is assumed that the proportion of the final
demand of the primary industry to the total final demand logarithmic changes with time, and the
proportion of the final demand of the tertiary industry to the total final demand changes linearly
with time. Through historical data, the least square method is used to fit the change formula of
these two proportions. The proportion of the final demand of the secondary industry can be
calculated by subtracting the sum of the proportion of the primary industry and the proportion of
the tertiary industry from 100%. The final demand of each industry can be estimated as:

f t
type = f t·pint

type, type ∈ (primary, sec ondary, tertiary) (5)

where f t
type is the final demand of each industry in t year; ft = ( f t

1, f t
2, . . . , f t

n)T is n sectors’ final
demands in t year; pint

type stands for the proportion of the final demand of each industry in t year.

2. Predict the proportion of the final demand of each sector to the final demand of its industry.
The final demand of sector i can be estimated as:

f t
i = f t

type·pset
type,i, type ∈ (primary, sec ondary, tertiary) (6)

where f t
i is the final demand of sector i in t year; pset

type,i stands for the proportion of the final
demand of sector i to its industry in t year.

3.1.3. Forecast the Energy Consumption by the Static Method

In input-output models, the output of various sectors can be estimated using Equation (7):

xt = (I − At)
−1· f t (7)

where xt = (xt
1, xt

2, . . . , xt
n)T is n sectors’ output in t year; I represents an identify matrix; At = (aij)t is

the direct input coefficient matrix in t year; and (I − At) should be a non-singular matrix.
The output of energy sectors in xt is the embodied energy of the final demand. The embodied

energy of all the final demand plus the net import is considered the TPEC of the economy. To forecast
the energy consumption using Equation (7), it is necessary to forecast the direct input coefficient
matrix in t year, At. In input-output models, the direct input coefficient matrix reflects the production
structure of the economy. To forecast the At, the RAS procedure, improved by Toh [53], is adopted.
The RAS procedure is commonly used to adjust the direct input coefficient matrix of the future based
on the direct input coefficient matrix of the base year [7]. In the RAS procedure, the direct input
coefficient matrix in t year is estimated as:

At = R·At−1·S (8)

where R and S are two diagonal matrices. In the RAS procedure, the R matrix reflects the substitution of
products in the intermediate production, whereas the S matrix reflects the fabrication level of various
sectors. R and S are usually estimated by analyzing the change in matrix A in the history of the
economy and predicting the production structure of various sectors.
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3.1.4. Estimate the EECS Using the Dynamic Method

The EECS is the energy embodied in CSFAI, which is the output of energy sectors embodied
in CSFAI. The output can be estimated using Equation (7). Therefore, it is crucial to identify the
quantity of CSFAI when estimating EECS. The quantity of CSFAI can be estimated as:

CSFAIt
ij = ct

ij·∆xt+
j (9)

To differentiate the EECS result from the final demand change of various sectors and that result
from technological change, the structural decomposition analysis is adopted in this step. The specific
estimation of EECS is outlined in Appendix B. Considering the investment of each sector may change
in the future, a correction coefficient, cct, for Ct matrix is introduced in this paper. The positive capital
coefficient matrix C in t year can be estimated as:

Ct = cct·C0 (10)

Besides the basic assumptions in the input-output model, there are three special assumptions
in this CSDHI/O model: (1) FAI finishes within the same year it was invested, (2) FAI is used for
production in years after investment finished, and (3) the capacity utilization rate of each sector remains
the same in the forecast.

3.1.5. Sensitivity Analysis

The sensitivity analysis of various influencing factors of EECS and TPEC forecasting, such as the
GDP growth rate, proportion of final demand of each sector, fabrication level in the RAS procedure,
and the positive capital coefficient, was conducted. In sensitivity analysis, each influencing factor is
assumed to change within its own ±20% range.

We set various scenarios by choosing the most effective influencing factor for reducing EECS and
TPEC in each sensitivity analysis. Comparing the EECS and TPEC in each scenario can identify the
relative impact of each factor on the conservation of EECS and TPEC.

3.2. Data Preparation

China is the largest energy consumer and carbon emitter in the world. Energy conservation is
always an issue in China. According to the work of Fu et al. [2], the energy embodied in FAI accounts
for a large part of China’s TPEC. Therefore, choosing China as a case study demonstrates the model
well. In this paper, the economic and energy data for China from 2007 to 2012 were adopted as
basic data to forecast the energy consumption and EECS from 2013 to 2020. The forecast result was
compared with the statistical data published by National Bureau of Statistics (NBS) of China and
forecast results of two institutes to verify the accuracy of the CSDHI/O model.

To establish the hybrid input-output table, the input-output tables for China of 2007 [54], 2010 [55],
and 2012 [56], published by NBS, were adopted. The sectors of the original input-output tables were
merged into 21 sectors, as shown in Table 2. The specific process of merging sectors is provided in
Appendix C.
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Table 2. Sector setting.

Code Sector (Abbreviation) Sector (Full Name)

01 Coal Mining and Washing of Coal

02 Petroleum and Natural Gas Extraction of Petroleum and Natural Gas

03 Petroleum Processing Processing of Petroleum, Coking, and Processing of Nuclear Fuel

04 Electric Power Production and Supply of Electric Power, Heat Power, and Gas

05 Agriculture Agriculture, forestry, animal husbandry, and fishing

06 Ferrous Metals Smelting and Pressing of Ferrous Metals

07 Non-ferrous Metals Smelting and Pressing of Non-ferrous Metals

08 Non-metallic Manufacture of Non-metallic Mineral Products

09 Chemical Manufacture of Raw Chemical Materials and Chemical Products

10 Mining of Non-energy Mining of Non-energy

11 Foods Manufacture of Foods, Drinks, and Tobacco

12 Machinery Manufacture of Machinery

13 Automobiles Manufacture of Automobiles, Railway, Ship, Aerospace,
and Other Equipment

14 Textile Manufacture of Textile, Wearing Apparel, Accessories, Leather, Fur,
Feather and Related Products, and Footwear

15 Paper
Manufacture of Paper; Paper Products; Articles for Culture,

Education, Arts, and Crafts; and Printing and Reproduction of
Recording Media

16 Other Manufacture Other Manufacture

17 Other Industries Other Industries

18 Construction Construction

19 Transport Transport, Storage, and Post

20 Wholesale Wholesale, Retail Trade, and Hotel, Restaurants

21 Other tertiary industry Other tertiary industry

We used the energy balance tables for China and the final energy consumption by industrial sector
tables for China [57]. The HI/O models for China for 2007, 2010, and 2012 were established. The basic
direct input coefficient matrix for forecasting is the direct input coefficient matrix of input-output
model of 2012. The non-fossil electricity of China accounted for 21% of the total electricity consumption
in 2012 [57]. In the forecast, the proportion of non-fossil electricity is assumed to be consistent with
that in 2012.

To create an annual database, we linearly expanded the HI/O tables for the three years
according to the GDP ratio to obtain the HI/O tables for 2008, 2009, and 2011.

We used the table of investment in fixed assets by industry for China from 2007 to 2012 [58] to
set the proportion of fixed assets invested by each sector. Due to lack of data, we assume that the
proportion of fixed asset products invested by sector j in all sectors is the same, which means that
p f ait

1j = p f ait
2j = . . . = p f ait

21j = p f ait
j . The proportion of fixed assets invested by each sector, which

is p f ait
j , is shown in Table 3.
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Table 3. The proportion of fixed assets invested by each sector.

Sector No. 2007 2008 2009 2010 2011 2012

01 1.4% 1.4% 1.3% 1.6% 1.5% 1.4%
02 1.5% 1.6% 1.4% 1.1% 1.0% 1.0%
03 1.5% 1.5% 1.5% 1.4% 1.5% 1.6%
04 6.9% 6.4% 6.4% 5.6% 4.7% 4.4%
05 2.5% 2.9% 3.1% 2.8% 2.8% 2.9%
06 2.9% 2.9% 2.8% 2.6% 2.6% 2.8%
07 1.5% 1.5% 1.4% 1.3% 1.3% 1.6%
08 1.6% 1.7% 1.6% 1.9% 1.9% 1.9%
09 4.4% 4.5% 4.3% 4.4% 4.5% 4.9%
10 1.4% 1.5% 1.4% 1.3% 1.2% 1.1%
11 3.0% 3.0% 2.9% 3.2% 3.3% 3.6%
12 3.0% 3.0% 2.9% 3.1% 3.2% 3.0%
13 2.4% 2.4% 2.3% 2.8% 2.8% 2.6%
14 3.1% 3.1% 3.0% 2.7% 2.8% 2.7%
15 1.1% 1.1% 1.0% 1.0% 1.0% 1.2%
16 6.8% 6.9% 6.6% 6.9% 7.2% 6.3%
17 1.2% 1.2% 1.1% 0.8% 0.8% 1.0%
18 0.9% 0.9% 0.9% 1.0% 1.1% 1.0%
19 10.3% 9.9% 11.1% 10.8% 9.1% 8.4%
20 3.2% 3.3% 3.5% 3.4% 3.7% 4.0%
21 39.5% 39.4% 39.5% 40.5% 41.9% 42.4%

The depreciation rate of the fixed assets in Sector 04 (Electric Power) is assumed to be 5%.
The data of total fixed assets invested by Sector 04 is from the statistical data of NBS [58]. The pcsfai of
Sector 04 in 2007, 2010, and 2012 is shown in Table 4. Given the lack of data, the proportion of
CSFAI invested by Sector 04 in each sector is assumed to be the same, which means pcs f ait

14 =

pcs f ait
24 = . . . = pcs f ait

21,4 = pcs f ait
4. Furthermore, we suppose that other sectors’ pcsfai were

set to be the same as that of Sector 04 (Electric Power). This assumption is reasonable, because that
this coefficient is mainly determined by the proportion of FAI to the total net fixed assets of each
sector each year. The development status and investment enthusiasm of each sector have a great
influence on this coefficient. Since 2007, China’s economic growth has been rapid, and all sectors are in
a state of capacity expansion. Sector 04 is a typical representative. It is reasonable to assume that the
development speed of each sector is close to that of Sector 04, and the investment enthusiasm is also
close to that of Sector 04.

Table 4. The pcsfai of Sector 04 (Electric Power).

Ratio of CSFAI 2007 2010 2012

Sector 04 (Electric Power) 74% 65% 61%

We used the published GDP of China from 2007 to 2015 in the model [58]. The growth rate of
China’s GDP from 2016 to 2020 is assumed to be 6.5%, the same as China’s GDP growth rate in 2018
predicted by the World Bank [59]. The GDP of China from 2007 to 2020 in this paper is shown in
Table 5.

Table 5. The gross domestic product (GDP) of China (2005 price, trillion Renminbi (RMB)).

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

GDP 23.93 26.22 28.64 31.67 34.68 37.35 40.23 43.16 45.92 49.00 52.19 55.58 59.19 63.04
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According to the hypothesis of this paper, the proportion of the final demand of the primary
industry logarithmic changes with time, and the proportion of the final demand of the tertiary industry
linear changes with time. Based on the data of the hybrid I/O model from 2007 to 2012, the change
formula of these two proportions can be fitted, as shown in Equation (11) and Equation (12):

pinprimary = −0.007 ln(t) + 0.0524 (11)

pintertiary = 0.0065 t + 0.3558 (12)

where pinprimary is the proportion of the final demand of the primary industry to the total final demand;
pintertiary represents the proportion of the final demand of the tertiary industry to the total final demand;
t is prediction year. In this paper, the pset

type,i of each sector in the forecast is assumed to be the same as
that in 2012 [56], as shown in Table 6.

Table 6. The proportion of sector i in its own industry in 2012.

Sector 01 02 03 04 05 06 07 08 09 10 11

pset
type,i −0.48% −4.07% 0.33% 0.94% 100.00% 0.40% −2.05% 0.71% 1.17% −2.85% 13.11%

Sector 12 13 14 15 16 17 18 19 20 21

pset
type,i 11.92% 11.30% 8.63% 2.26% 14.28% 1.47% 42.91% 6.22% 19.48% 74.30%

Note: The final demand in our model contains four categories, which are final consumption, FAI, net export and other final
demand. In some sectors of China, the quantity of imported products is very large, far higher than export. Therefore, the net
export is negative in some sectors. Moreover, when the net import is even higher than the sum of final consumption, FAI,
and other final demand, the proportion of final demand will be negative.

We adopted the diagonal elements of the R and S matrix of Yu et al. [7], and adjusted the matrix
according to the sector setting and the prediction of the various sectors’ development in this paper.
The R and S matrix of Yu et al. [7] was estimated from the A matrices of China in 2007 and 2010,
which includes an assumption: in this forecast, the reference speed of technology change in China is
consistent with that in 2007–2010. The diagonal elements of the R matrix and S matrix used in this
paper is shown in Table 7.

Table 7. The diagonal elements of the R matrix and S matrix.

Sector 01 02 03 04 05 06 07 08 09 10 11

R 0.9986 1.0523 0.9896 1.0078 1.0000 0.9362 0.9652 1.0113 0.9702 1.0738 1.0212
S 1.0103 1.0103 0.9217 1.0013 0.9776 1.0146 1.0248 0.9985 0.9993 1.0103 0.9801

Sector 12 13 14 15 16 17 18 19 20 21

R 0.9700 0.9700 0.9803 0.9503 0.9700 0.9797 1.0182 1.0402 1.0435 1.0171
S 1.0248 1.0248 0.9899 1.0136 1.0248 1.0136 0.9800 1.0392 0.9213 0.9549

We assumed that the positive capital coefficient matrix should change with the economic
development. The correction coefficient for the positive capital coefficient matrix from 2012 to 2020 is
shown in Table 8.

Table 8. The correction coefficient for the positive capital coefficient matrix.

Year 2012 2013 2014 2015 2016 2017 2018 2019 2020

cc 1.20 1.45 1.75 1.75 1.75 1.75 1.75 1.75 1.75
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4. Results and Sensitivity Analysis

4.1. Forecast Results of Energy Consumption and EECS

According to the economic prediction in this paper, the forecast results of TPEC and EECS for
China from 2012 to 2020 are shown in Figure 2.
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Figure 2. Forecast results of the total primary energy consumption (TPEC) and energy embodied in
construction services (EECS) of China.

China’s TPEC and EECS will increase until 2020. By 2020, China’s TPEC will reach 5.10 billion
tons of coal equivalent (Gtce), and the EECS will reach 1.79 Gtce. The reason for the steady growth in
TPEC is that China’s GDP is set to grow at a steady rate, which leads to a steady increase in the final
demand of each sector. Due to the constant growth rate in GDP, the annual GDP increase will increase
with time, which leads to an increasing demand for construction services and the increase in EECS.

The growth rate of EECS is higher than that of TPEC. The proportion of EECS to TPEC will rise
from 29% in 2013 to 35% in 2020. To meet the economic growth rate determined in this paper, a large
quantity of CSFAI will need to meet the increasing production demand of various sectors, which
causes a higher growth in EECS. Based on the forecast in this paper, China’s TPEC and EECS will
not automatically decrease before 2020. The contribution of EECS will increase as GDP increases at
a steady rate. Therefore, controlling measures are needed to reduce EECS and TPEC. To this end,
we need to understand the impact of various factors on EECS and TPEC. To verify the credibility of
the forecast in this paper, the TPEC and FAI forecasts for China from 2013 to 2016 were compared with
the data published by the NBS [58] of China. FAI from 2013 to 2016 is displayed by the proportion of
FAI in 2012. The results of this comparison are shown in Table 9.
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Table 9. The comparison of the forecast and data published by National Bureau of Statistics (NBS)
(billion tons of coal equivalent, Gtce).

Parameters Specific Categories
of Parameters 2013 2014 2015 2016

TPEC
Data from NBS 4.17 4.26 4.30 4.36

Forecast of this paper 4.08 4.16 4.23 4.34
Deviation −2.22% −2.36% −1.59% −0.33%

FAI
Data from NBS 116% 133% 145% 154%

Forecast of this paper 116% 130% 146% 151%
Deviation −0.33% −1.53% 0.63% −2.08%

The comparison shows that the forecast results from this paper are close to the data published
by the NBS of China: the deviation of TPEC is less than 3%, and the forecast of FAI is also basically
consistent with the data published by NBS. Moreover, the TPEC of China in 2020 forecasted by the
Chinese Academy of Engineering [13] is 4.8 Gtce, and the TPEC of China in 2020 forecasted by the
Chinese Energy Research Institute [14] is 5.2 Gtce. The forecast results of China’s TPEC in 2020 of this
paper is between the forecast results of the two institutes, which shows that the forecast results of this
paper can be supported by other studies and statistical data. Therefore, the CSDHI/O model proposed
in this paper can be applied to forecast TPEC and EECS.

4.2. Sensitivity Analysis of Each Influencing Factor

The factors that influence the EECS of an economy include: (1) GDP growth rate, (2) proportion of
final demand of each sector, (3) fabrication level, and (4) the positive capital coefficient. Through the
sensitivity analysis of these factors, we analyzed the impact of each factor on EECS and TPEC. Based on
the results of sensitivity analysis and scenario analysis, we identified the key factor to conserve EECS
and TPEC, and provide policy implications.

4.2.1. Sensitivity Analysis of GDP Growth Rate

Since the GDP of China from 2013 to 2016 was published by NBS [58], the published data were
adopted. Since 2017, the influence of different GDP growth rates on China’s TPEC and EECS is shown
in Figure 3.
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Figure 3. Energy consumption under different GDP growth rates for (a) TPEC and (b) EECS.

With a higher GDP growth rate, China’s TPEC of each year will be larger. With the GDP growth
rate fluctuating in the ±20% range (5.20–7.80%) since 2017, the TPEC in 2020 will change in the ±5%
range (from 4.85 Gtce to 5.35 Gtce). The GDP growth rate will directly determine the total final demand
in China, which leads to changes in the output of various sectors, thus affecting TPEC.
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The EECS of each year will increase as the GDP growth rate increases. When the GDP growth
rate changes ±20%, the EECS in 2020 will change from −22% to 24% (from 1.39 Gtce to 2.22 Gtce).
The abrupt change in EECS in 2016 was due to the sudden change in GDP growth rate in 2017.
The change in the output of each sector caused by the change in GDP growth rate leads to the change
in construction services in various sectors, which results to the change in EECS in 2016.

Compared to TPEC, EECS is more sensitive to the change in GDP growth rate. When GDP growth
rate decreases, the quantity of construction services decrease significantly or even completely to zero,
while the quantity of total energy services also decreases, but the decline will be smaller than that of
construction services. Therefore, compared to the total energy services, construction services are more
sensitive to the change in GDP growth rate, and EECS is more sensitive than TPEC.

4.2.2. Sensitivity Analysis of Proportion of Final Demand

To analyze the sensitivity of the proportion of the final demand, the proportion of each sector’s
final demand to the total final demand was assumed to increase by 20%. The sensitivity analysis of the
proportion of the final demand of TPEC and EECS is shown in Figure 4.
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The increase in the service industry’s final demand proportion has the greatest impact on the
conservation of TPEC. The change in the proportion of final demand for each sector has little influence
on the growth trend of TPEC. The increase in the proportion of final demand of some sectors, such
as sectors in tertiary industry, results in a decrease in China’s TPEC, whereas the increase in the
proportion of final demand of some sectors with high energy intensity produces the opposite result.
The influence of the proportion of each sector’s final demand on TPEC was determined by the energy
intensity and the quantity of final demand of the sector. Increasing the proportion of final demand of
Sector 18 (Construction) leads to the greatest increase in China’s TPEC (increase of 2.9%), followed
by Sector 02 (Petroleum and Natural Gas). Increasing the proportion of the final demand of Sector 21
(Other Tertiary Industry) results in the greatest decrease in China’s TPEC (decrease of 4.8%), followed
by Sector 20 (Wholesale). Considering the proportion of final demand represents the industrial
structure, reasonably adjusting the industrial structure is effective for TPEC conservation.

Adjusting the industrial structure has relatively less impact on EECS than on TPEC. Increasing the
proportion of final demand of Sector 16 (Other Manufacture) leads to the greatest increase in China’s
EECS (increase of 1.3%), followed by Sector 12 (Machinery). Increasing the proportion of the final
demand of Sector 04 (Electric Power) results in the largest decrease in China’s EECS (decrease of 1.9%),
followed by Sector 20 (Wholesale). Therefore, in order to reduce the EECS of China in 2020, increasing
the proportion of final demand of Sectors 04 (Electric Power) and decreasing the proportion of the final
demand of Sector 16 (Other Manufacture) would be the most effective.

Compared to EECS, TPEC is more sensitive to the change in each sector’s proportion of final
demand. This is due to the greater difference in the energy intensity of products from different sectors
than the difference in energy intensity of EECS.

The influence of the increase in the proportion of the final demand of a specific sector on the
growth trend of EECS is not always the same. For example, an increase in the proportion of final
products of Sector 21 (Other Tertiary Industries) from 2013 to 2015 leads to the largest increase in EECS.
However, an increase in the proportion of the final demands of Sector 21 (Other Tertiary Industries) in
2020 results in EECS decreasing by 0.73%. Because the increase in the proportion of the final demand of
a specific sector leads to a decrease in the proportion of other sectors, the ultimate impact of the increase
in the proportion of the final demand of a specific sector on the EECS is a complex coupling of changes
in construction services caused by the change in each sector’s final demand due to the assumptions in
this paper.

4.2.3. Sensitivity Analysis of Fabrication Level

The S matrix in the RAS procedure reflects the fabrication level of various sectors. Each column
elements of the S matrix decreased by 20% in this sensitivity analysis, which represents the fabrication
level of each sector increased by 20%. The TPEC and EECS with different fabrication level of each
sector are shown in Figure 5.

The improvement of fabrication level in each sector leads to a reduction in China’s TPEC.
The improvement of fabrication level in Sector 04 (Electric Power) produces the greatest reduction in
TPEC, which is 2.35 Gtce in 2020, or a reduction of 46.1%. This is because Sector 04 (Electric Power)
consumes a huge quantity of energy, and it is an important energy producer. The improvement of
fabrication level in Sector 04 (Electric Power) will lead to a higher conversion efficiency of
primary energy to electricity in China, which results in higher energy efficiency and lower TPEC.
The improvement of fabrication level in Sector 18 (Construction) and Sector 19 (Transport) also cause
considerable energy conservation: 1.57 Gtce and 1.20 Gtce in 2020, respectively.
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The improvement of fabrication level in each sector also reduces the EECS of China, and the
amount of reduction is determined by the degree of the sector’s participation in the fixed assets
production. The improvement of fabrication level in Sector 18 (Construction) produces the greatest
reduction in EECS in 2020, which is 1.02 Gtce, or by 57%, followed by Sectors 04 (Electric Power) and 16
(Other Manufacture). Therefore, to reduce the EECS, it is most effective to hasten the improvement of
fabrication level in Sectors 18 (Construction), 04 (Electric Power), and 16 (Other Manufacture). A 20%
acceleration in the improvement of fabrication level in each of these three sectors could prevent further
increases in EECS or even produce a decline trend.

EECS and TPEC are both sensitive to the improvement of fabrication level. The improvement of
fabrication level is important for the conservation of both EECS and TPEC. However, it is difficult for
a specific sector to achieve a 20% annual improvement of fabrication level. Therefore, to effectively
conserve TPEC and EECS, multiple sectors need to achieve the improvement of fabrication level.

4.2.4. Sensitivity Analysis of the Positive Capital Coefficient

The positive capital coefficient does not affect TPEC. The column vector of the positive capital
coefficient matrix represents the intensity of the construction services of the corresponding sectors.
In the sensitivity analysis of the positive capital coefficient matrix, each column vector of the positive
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capital coefficient matrix was reduced by 20%, and the EECS was estimated. The result is shown in
Figure 6.Energies 2017, 10, x FOR PEER REVIEW  16 of 25 
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In all sectors in China, the reduction in the positive capital coefficient of the sectors belonging
to the tertiary industry leads to the largest reduction in EECS. The reduction of positive capital
coefficient of Sector 21 (Other Tertiary Industries) caused the greatest decrease in EECS, which is
a decrease of 8.5% in 2020, or 0.15 Gtce. This is followed by Sector 19 (Transport) and Sector 20
(Wholesale). The influence of the 20% reduction in the positive capital coefficient of most sectors on
EECS in 2020 is less than 1%. Therefore, reducing the intensity of construction services of the tertiary
industry can reduce EECS of China more efficiently.

4.2.5. Comparison of Various Scenarios

Based on the results of sensitivity analysis, several scenarios were established by selecting
some of the most sensitive factors to compare the influence of each factor on EECS and total
energy consumption of China. The scenarios are called: (1) reference scenario, (2) low GDP
scenario, (3) adjusting industrial structure scenario, (4) fabrication improvement scenario, and (5) low
investment scenario:

(1) Reference scenario: GDP growth rate, the proportion of final demand of each sector, fabrication
level, and the positive capital coefficient are set as the forecast data in this paper.

(2) Low GDP scenario: GDP growth rate after 2016 is assumed to be 20% lower than forecast in the
reference scenario. Other parameter settings are the same as in the reference scenario.

(3) Adjusting industrial structure scenario: the final demand proportion of each sector is adjusted.
The final demand proportions of Sectors 02 (Petroleum and Natural Gas), 12 (Machinery),
13 (Automobiles), 16 (Other Manufacture), and 18 (Construction) are assumed to be 20% lower
than the proportion of the sector in the forecast; whereas the final demand proportions of Sectors
04 (Electric Power), 20 (Wholesale), and 11 (Foods) are assumed to be 20% higher. Other parameter
settings are the same as in the reference scenario.

(4) Fabrication improvement scenario: the elements of the S matrix that represent the fabrication
level of four sectors—Sectors 18 (Construction), 04 (Electric Power), 19 (Transport), and 16
(Other Manufacture)—are decreased by 2% lower than the reference scenario, which means the
improvement of fabrication level in these sectors is 2% faster annually than predicted. Other
parameter settings are the same as in the reference scenario.
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(5) Low investment scenario: the positive capital coefficients of Sectors 19 (Transport), 20 (Wholesale),
and 21 (Other tertiary industry) are assumed to be 20% lower than in the reference scenario.
Other parameter settings are the same as in the reference scenario.

TPEC and EECS of each scenario is shown in Figure 7.
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In the fabrication improvement scenario, TPEC is the smallest in 2020, and remains stable after
2015. TPEC is 3.79 Gtce in 2020 in the fabrication improvement scenario, which is 25.6% lower than
in the reference scenario. Only a 2% acceleration in the improvement of fabrication level in the four
sectors enable China’s total energy consumption to plateau, or even decrease. A small acceleration
in the improvement of fabrication level in these four sectors may be more effective than a large-scale
improvement of fabrication level in one sector to reduce TPEC. In adjusting the industrial structure
scenario, TPEC also decreased significantly compared with the reference scenario. In the low GDP
scenario, TPEC also decreases, but with at a slower pace.

The EECS in the fabrication improvement scenario is the lowest (1.08 Gtce) in 2020, which is
39.6% lower than in the reference scenario. The EECS of China in each year is basically the same as in
2012, which shows that the EECS of China enters a plateau in the fabrication improvement scenario.
The EECS in the low GDP scenario is the second lowest in 2020. A sudden decrease in GDP growth rate
leads to a significant decrease in EECS, as shown in 2017. In the low investment scenario, controlling
the investment in the service industry can reduce EECS by 13.1% in 2020. Adjusting the final demand
proportion of various sectors has relatively little influence on EECS.

Under the scenarios in this paper, the improvement of fabrication level has the greatest impact on
conservation of both TPEC and EECS in 2020 among all the influencing factors. Adjusting industrial
structure is the second most effective method of conserving TPEC in China, but it is not as effective
for the conservation of short-term EECS. Restricting GDP growth rate can significantly reduce EECS,
but TPEC is less affected by low GDP growth rate. Decreasing the investment in service industry
by, for example, improving equipment use and reducing demolition and construction waste, can
reduce EECS.

4.3. Discussion

The main problem with EECS forecasting using the CSDHI/O model is whether the energy
embodied in the final demands other than CSFAI can meet the consumption demand of the economy
for a given year. Considering that the CSFAI estimated by the dynamic method is necessary for
satisfying the hypothetical GDP growth rate, the mismatch of energy consumption with the final
demands other than CSFAI and the consumption demand of the economy of the year indicates that
there is a deviation in the GDP growth rate setting in the economic prediction. In order to provide
energy that matches the consumption demand of the economy for the year, it is necessary to adjust
the prediction of the economic growth. By adjusting the GDP growth rate and proportions of various’
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final demands in the EECS forecasting, we can appropriately provide energy for the current economic
demand and forecast EECS, which is essential to achieve this economic prediction.

The coefficient pcsfai affects the forecast results of EECS by affecting the CSFAI caused by the
output increment of each sector. The pcsfai of all the sectors is assumed to be the same as Sector
04 (Electric Power). To verify the influence of pcsfai on the results of EECS forecasting, we made a
sensitivity analysis of this coefficient. When the pcsfai of each sector fluctuates in the range of ±20% in
the model, the change of the forecast results of EECS in 2020 is shown in Figure 8. The result shows
that the forecast results are most sensitive to the change of pcsfai of Sector 21 (Other tertiary industry):
the 20% change of pcsfai can cause 8.5% change of forecast results. However, the forecast of EECS are
not sensitive to the changes of most sectors’ pcsfai. For 19 out of 21 sectors, the forecast results will
change by less than 1% when pcsfai changes by 20%. Therefore, assuming pcsfai of each sector is the
same as that of Sector 04 has little impact on the forecast results.
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5. Conclusions and Policy Implications

A combination static and dynamic hybrid input-output model (CSDHI/O model) was developed
to forecast the total primary energy consumption (TPEC) and estimate the energy consumed by
construction services (EECS), which is the energy cost of economic development, based on the gross
domestic product (GDP) prediction.

We used China as a case study. Based on historical Chinese data from 2007 to 2012 and economic
predictions from 2013 to 2020, the EECS and TPEC were forecasted. The CSDHI/O model was effective
at EECS and TPEC forecasting, and the short-term forecast was relatively close to the published
data. With the sensitivity analysis of several influencing factors, including GDP growth rate, the final
demand proportion of each sector, the improvement of fabrication level, and the positive capital
coefficient, we analyzed the impact of each factor on EECS and TPEC. Based on the settings in this
paper, the main findings are as follows: (1) the improvement of fabrication level was identified as the
key factor for conserving both EECS and TPEC of China until 2020; (2) a sudden drop in GDP growth
rate significantly reduces EECS, but has little effect on TPEC conservation; (3) adjusting industrial
structure significantly reduces China’s TPEC, but is ineffective for the conservation of EECS; and (4)
decreasing the investment in service industry also reduces EECS.

Based on results of sensitivity analysis and scenario analysis, we have the following policy
recommendations: (1) hasten the improvement of fabrication level in Sectors 18 (Construction),
04 (Electric Power), 19 (Transport), and 16 (Other Manufacture) to effectively prevent the increase in
EECS and TPEC in China, or even achieve a decrease; (2) speeding up the transformation of industrial
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structure, especially reducing the proportion of sectors with high energy intensity and increasing the
proportion of sectors with low energy intensity; (3) appropriate slowdown of GDP growth, which
is also the work being promoted by the Chinese government; (4) restrict the capacity expansion in
service sectors.

As a next step, the CSDHI/O model can be further developed in the following directions. First,
as the fixed assets may not be installed within one time series, and construction services may not be
consumed only for increasing production demand of the next time series, this model can be modified
into a multiple time delay model. Secondly, this model also be applied to forecast the carbon emissions
and pollutant emissions caused by construction services. Finally, if more detailed data are available, we
can further improve the resolution of the CSDHI/O model by more deeply analyzing the sectoral level.
For example, considering the development of renewable energy power in the power sector, we can
forecast the EECS, carbon emissions, and pollutant emissions for the rapid installation of various types
of renewable energy power generation, if the quantities of construction services for each type of power
installation can be estimated.
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Abbreviations

CSDHI/O Combination of Static and Dynamic Hybrid Input-Output
CSFAI Constructive Services-related Fixed Assets Investment
EECS Energy Embodied in Construction Services
FAI Fixed Assets Investment
GDP Gross Domestic Product
HI/O Hybrid Input-Output
NBS National Bureau of Statistics
tce Tons of Coal Equivalent
TPEC Total Primary Energy Consumption

Appendix A

In the traditional DHI/O model, fixed assets investment is the endogenous variable of the output changes
between two consecutive time periods. As discussed by Holz et al. [48], fixed assets investment was produced for
both construction services and operation services. Fixed assets investment caused by construction services is a
part of total fixed assets investment. The ratio of CSFAI to total fixed assets investment in various sectors was be
set as pcsfait. As the main part, the fixed assets investment caused by construction services in sector i produced by
sector j can be estimated as follows:

CSFAIt
ij = pcs f ait

ij·FAIt
i (A1)

In the conventional dynamic input-output model, capital coefficient bt
ij is defined as the ratio of “the value of

the output of sector i that is held by sector j as stock” [52] to the total output increase of sector j in year t. However,
only fixed assets investment caused by construction services, not total fixed assets investment, can be the result of
output changes. In the other aspect, this capital coefficient is meaningful only when the total output increases of
sector i are positive, according to Miller et al. [52]. To solve these two problems, a similar coefficient, ct

ij, is
proposed, which is defined as the ratio of fixed assets investment caused by construction services in sector i that is
held by sector j to the sum of output increases that are positive, as shown in Equation (A2):

ct
ij = CSFAIt

ij/∑ ∆xt
j , ∆xt

j ≥ 0 (A2)
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Equation (A2) contains an assumption: fixed assets investment caused by construction services is only
caused by the positive output increase, and negative output changes have no effect on fixed assets investment
caused by construction services in various sectors. As energy consumption of fixed assets investment caused by
construction services occur in the installation of fixed assets and cannot be recycled even if the fixed assets are
either idle or retired, only the fixed assets investment caused by construction services due to a positive demand
increased leads to energy consumption. Otherwise, energy consumption of fixed assets investment caused by
construction services in a sector with a decreasing demand is zero, but not negative. Therefore, the assumption is
reasonable in analyzing historical data because the fixed assets have been installed.

Thus, ct
ij can be calculated with historical fixed assets investment data and energy-economic hybrid

input-output tables using Equations (A1) and (A2). Because the positive output increase may be caused by
the final demand increase of various sectors and technological change, the quantities of fixed assets investment
caused by construction services, due to the positive output increase, can be considered the quantities of fixed
assets investment due to construction services caused by the final demand increase of various sectors and
technological change.

Appendix B

To estimate the output impact of industrial development industrial developments and technological change,
structural decomposition analysis was applied. Assuming that there are two time periods (year t and year t + 1)
for which I/O data are available, the difference between the total outputs in the two years can be estimated as:

∆X =
1
2

∆L·( f t + f t+1) +
1
2
(Lt + Lt+1)·∆ f (A3)

where L represents the inverse matrix (I − A)−1, and ∆ means the difference between the two time periods.
Equation (A3) produces a decomposition of the total change in outputs of each industry into two parts:

1
2 ∆L·( f t + f t+1) is attributable to technological change, and 1

2 (Lt + Lt+1)·∆ f reflects the contribution of final
demand changes, which is the impact of industrial development. The final demand changes can be specified as
changes in the final demand of each industry. A more detailed derivation process can be found in Miller et al. [52].

Appendix C

The code is from the I/O table of China in 2007, 2010, and 2012. Adjustment and merger of the sectors is
shown in Table A1.

Table A1. Sector setting.

Sector Sector in
This Paper

Sector of I/O
Table, 2007

Sector of I/O
Table, 2010

Sector of I/O
Table, 2012

Mining and Washing of Coal 01 006 02 06006

Extraction of Petroleum and
Natural Gas 02 007 03 07007

Processing of Petroleum, Coking,
and Processing of Nuclear Fuel 03 037

038 11 25039
25040

Production and Supply of Electric
Power, Heat Power, and Gas 04 092

093
23
24

44096
45097

Agriculture, Forestry, Animal
Husbandry, and Fishing 05

001
002
003
004

01

01001
02002
03003
04004

Smelting and Pressing of Ferrous
Metals 06

057
058
059
060

14

31059
31060
31061

Smelting and Pressing of
Non-Ferrous Metals 07 061

062
32062
32063
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Table A1. Cont.

Sector Sector in
This Paper

Sector of I/O
Table, 2007

Sector of I/O
Table, 2010

Sector of I/O
Table, 2012

Manufacture of Non-Metallic
Mineral Products 08

050
051
052
053
054
055
056

13

30052
30053
30054
30055
30056
30057
30058

Manufacture of Raw Chemical
Materials and Chemical Products 09

039
040
041
042
043
044
045
046
047
048
049

12

26041
26042
26043
26044
26045
26046
26047
27048
28049
29050
29051

Non-Energy Mining 10
008
009
010

04
05

08008
09009
10010

Manufacture of Foods, Drinks,
and Tobacco 11

011
012
013
014
015
016
017
018
019
020
021
022
023
024

06

13012
13013
13014
13015
13016
13017
13018
14019
14020
14021
14022
15023
15024
16025

Manufacture of Machinery 12

064
065
066
067
068
069
070
071
072

16

34065
34066
34067
34068
34069
34070
35071
35072
35073
35074

Manufacture of Automobiles,
Railway, Ship, Aerospace and

Other Equipment
13

073
074
075
076

17

36075
36076
37077
37078
37079
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Table A1. Cont.

Sector Sector in
This Paper

Sector of I/O
Table, 2007

Sector of I/O
Table, 2010

Sector of I/O
Table, 2012

Manufacture of Textile, Wearing
Apparel, Accessories, Leather, Fur,
Feather, and Related Products and

Footwear

14

025
026
027
028
029
030
031

07
08

17026
17027
17028
17029
17030
18031
19032
19033

Manufacture of Paper; Paper
Products; Articles for Culture,

Education, and Arts and Crafts;
and Printing and Reproduction of

Recording Media

15
034
035
036

10
22036
23037
24038

Other Manufacture 16

063
077
078
079
080
081
082
083
084
085
086
087
088
089
090

15
18
19
20

21/22

33064
38080
38081
38082
38083
38084
38085
39086
39087
39088
39089
39090
39091
40092
41093

Other Industries 17

032
033
091
094

09
25

20034
21035
42094
46098

Construction 18 095 26

47099
48100
49101
50102

Transport, Storage, and Post 19

096
097
098
099
100
101
102
103
104

27
28

53104
54105
55106
56107
57108
58109
59110
60111

Wholesale, Retail Trade, and
Hotel, Restaurants 20

108
109
110

30
31

51103
61112
62113
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Table A1. Cont.

Sector Sector in
This Paper

Sector of I/O
Table, 2007

Sector of I/O
Table, 2010

Sector of I/O
Table, 2012

Other Tertiary Industry 21

005

29
32
33
34
35
36
37
38
39
40
41
42

05005
105 11011
106 43095
107 63114
111 65115
112 66116
113 67117
114 68118
115 70119
116 71120
117 72121
118 73122
119 74123
120 75124
121 76125
122 77126
123 78127
124 79128
125 80129
126 82130
127 83131
128 84132
129 85133
130 86134
131 87135
132 88136
133 89137
134 93138
135 90139
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