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Abstract: In recent years, modular multilevel converters (MMCs) have developed rapidly, and are
widely used in medium and high voltage applications. Model predictive control (MPC) has attracted
wide attention recently, and its advantages include straightforward implementation, fast dynamic
response, simple system design, and easy handling of multiple objectives. The main technical
challenge of the conventional MPC for MMC is the reduction of computational complexity of the
cost function without the reduction of control performance of the system. Some modified MPC scan
decrease the computational complexity by evaluating the number of on-state sub-modules (SMs)
rather than the number of switching states. However, the computational complexity is still too high
for an MMC with a huge number of SMs. A reverse MPC (R-MPC) strategy for MMC was proposed
in this paper to further reduce the computational burden by calculating the number of inserted
SMs directly, based on the reverse prediction of arm voltages. Thus, the computational burden was
independent of the number of SMs in the arm. The control performance of the proposed R-MPC
strategy was validated by Matlab/Simulink software and a down-scaled experimental prototype.

Keywords: model predictive control (MPC); computational burden; reverse prediction; modular
multilevel converter (MMC)

1. Introduction

Multilevel converters have been widely used in medium and high voltage applications in recent
years [1–3]. Among various multilevel converters, the modular multilevel converter (MMC) has become
more popular because of its scalability, modularity, and redundancy. An MMC can be used in many
high-power applications; for example, high-voltage direct current (HVDC) systems, static synchronous
compensators, grid-connected systems, and medium/high voltage motor drive systems [4–6].

There are some technical challenges for the control of an MMC, such as the balance of sub-module
(SM) capacitor voltages, the suppression of circulating currents, and the tracking of output currents.
Many control and modulation methods have been proposed to address these issues. Among them,
model predictive control (MPC) is an interesting control scheme for the MMC. Its advantages include
straightforward implementation, fast dynamic response, and suitability for dealing with multiple
objectives [7–9].

Reference [10] first applied the conventional MPC scheme to MMC, in which the output currents,
SM capacitor voltages, and circulating currents were controlled together by the evaluation for all
the possible switching states in a cost function. In Reference [11], the proportional integral (PI)
control method was experimentally compared with the conventional MPC scheme for MMC, and the
conclusion was that the MPC scheme had better control performance than PI method, either for
steady-state or dynamic performance. In Reference [12,13], similar methods based on conventional
MPCs were used to control the MMC by evaluating for all the possible switching states of SMs.
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However, it is difficult to implement a conventional MPC scheme in practical applications due to
the huge computation complexity because the number of all the possible switching states of SMs for
an MMC with N SMs (N is the number of SMs) in each arm is as large as CN

2N (e.g., MMC used for
HVDC usually has more than 100 SMs, thus the number of all possible control options is more than
9 × 1058).

In the literature, several modified strategies have been developed to reduce the computational
burden [14–22]. Reference [14] proposed a modified method to reduce the subset of control options,
which can reduce the computational burden of MPC to a certain extent. For an MMC with eight SMs
per bridge, the number of switching states can be reduced to 361. In Reference [15], an integrated
MPC combined with the classical energy balancing approach was proposed to reduce the number of
switching states to (N + 1)3. In Reference [16], by combining with the conventional sorting algorithm,
an indirect MPC was proposed to reduce the calculation burden, in which the computation complexity
was determined by the SM number instead of the switching states of SMs. The number of switching
states can be reduced to (N + 1)2, thus the computation complexity of indirect MPC is significantly
reduced. In Reference [17], a grouping-sorting-optimized MPC strategy was proposed, in which the
SMs in each arm were divided into several groups, and the computational load is determined by the
number of groups and SMs of each group. The number of control options can be reduced to 2X + M+ 3,
where M is the number of groups, and X is the number of SMs in each group. Reference [18] proposed
a fast MPC method, in which the number of control options could be significantly reduced to two or
three by limiting the change of output voltage level in each control cycle within two or three levels
near the previous output voltage level. However, the cost was the reduction of dynamic performance
because the variation of the output voltage was limited in each control cycle. A dual-stage MPC
scheme for MMC was proposed in Reference [19], in which the control objectives were achieved
by a two-stage prediction algorithm. Compared with fast MPC method or indirect MPC method,
the dual-stage MPC scheme had better dynamic performance, but the computational burden was
increased. In Reference [20], a modulated MPC method combined with the sorting algorithm for MMC
was proposed, in which the SMs were selected by evaluating the output voltage level and inserted
at regular intervals to obtain a fixed switching frequency. The number of switching states could be
reduced to N + 1. In Reference [21], aiming at the control objectives of output currents and circulating
currents, and based on evaluating the output voltage levels, the overall computation complexity of
indirect MPC was reduced to N + 4. A similar approach was also adopted in Reference [22]. However,
for the MMC used in HVDC (usually with hundreds of SMs), the computational burden of indirect
MPC was still too large.

In this paper, a reverse MPC (R-MPC) strategy for the MMC was proposed to further reduce
computation complexity. Based on predicted output voltage of MMC, the number of control options
was further reduced by calculating the number of on-state SMs directly and decoupling the SM
capacitor voltage control. The control of capacitor voltage balance task was carried out in an external
control loop. Thus, the computational complexity was independent of the SM number of MMC.
This strategy could be used for the MMC with hundreds of SMs.

The rest of this paper is arranged as follows. Section 2 presents the topology, basic operation,
and mathematical model of system. In Section 3, the details of the conventional MPC, modified MPC,
and proposed R-MPC are explained. The control performance of the proposed R-MPC strategy is
validated by Matlab/Simulink software and a down-scaled experimental prototype in Sections 4 and 5,
respectively. In Section 6, the conclusions are drawn.

2. Mathematical Model

The topology of the MMC and the single-phase equivalent circuit are shown in Figure 1. The MMC
was comprised of three phase legs, and each leg contained an upper arm and a lower arm, which were
represented by the subscript “p” and “n”, respectively. Each arm included an arm inductor Lo and N
SMs. The arm inductor limited the di/dt of the circulating currents caused by instantaneous voltage
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differences within the arms. The SMs usually adopted half-bridge structure, which contained two
switches (T1 and T2) and one capacitor (CSM). The SMs generally worked in two switching states,
namely, on-state and off-state. On-state: The SM output voltage was the capacitor voltage ucij (i = p, n,
j = 1, 2, . . . , N) when T1 was turned ON and T2 was OFF. Off-state: The output voltage of the SM is
zero when T1 was turned OFF and T2 was ON. The switching states of SMs could be written as follows:

Sij =

{
1, T1 is ON, T2 is OFF
0, T1 is ON, T2 is OFF

(1)
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The capacitor voltage dynamic equation for each SM of the MMC is expressed as follows:

ducij

dt
= icij/CSM (2)

where icij is the capacitor current, which can be obtained from the switching state Sij and the arm
current ii as follows:

icij = Sijii (3)

Based on Figure 1, the arm current ip and in can be written as follows:{
ip = 1

2 io + idiff
in = − 1

2 io + idiff
(4)

where idiff is the circulating current, io is the output current, and they can be calculated by:{
io = ip − in
idiff =

1
2 (ip + in)

(5)

Similarly, the arm voltage equations are as follows:
Udc

2
= up + Lo

dip
dt

+ Rio + L
dio
dt

+ e
Udc

2
= un + Lo

din
dt

− Rio − L
dio
dt

− e
(6)

where up is the voltage of upper arm, un is the voltage of lower arm, Udc is the voltage of dc link, e is
the voltage of grid, Lo represents the arm inductance, and R and L represent the equivalent resistance
and inductance of the load circuit.
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Based on Equations (4)–(6), the dynamic equation of the MMC can be obtained as:
dio
dt

=
un − up − 2Rio − 2e

Lo + 2L
didiff

dt
=

Udc − (un + up)

2Lo

(7)

Equation (7) indicates that the output current and the circulating current can be regulated directly
by the voltage difference and voltage summation between the lower arm voltage un and upper arm
voltage up, respectively.

3. MPC Strategy

3.1. Conventional MPC

In general, there are three control targets for conventional MPC used for MMCs. The first control
target is the balancing of SM capacitor voltages. The second control target is the tracking of output
current correctly, including magnitude, frequency, and phase angle. The third control target is the
suppressing of circulating current, removing its AC component and only keeping its DC component.

The discrete-time model of MPC can be obtained by the following forward Euler
approximation equation:

dx
dt

=
x(k + 1)− x(k)

Ts
(8)

where x is the variable of control objectives, x(k + 1), x(k) are the variable values at time k + 1 and k,
respectively, and Ts is the sampling period.

The discrete-time dynamic models of the SM capacitor voltages, output currents, and circulating
currents can be obtained as follows:

ucij(k + 1) = ucij(k) +
Sijii(k)Ts

CSM
(9)

io(k + 1) = (1 − 2RTs

Lo + 2L
)io(k) +

[un(k)− up(k)− 2e(k)]Ts

Lo + 2L
(10)

idiff(k + 1) = idiff(k) +
[Udc − un(k)− up(k)]Ts

2Lo
(11)

For MMC, the balancing of SM capacitor voltages, tracking of output current, and suppressing of
circulating current should be achieved simultaneously. Because these control variables (SM capacitor
voltages, output currents, circulating currents) interact with each other, they can be included in
a multivariable cost function with weighting factors. More details of the MPC cost function can be
found in [10–12]. The cost function can be defined as follows:

g = λ1

∣∣∣i∗o(k + 1)− ipo(k + 1)
∣∣∣+ λ2

∣∣∣i∗diff(k + 1)− ipdiff(k + 1)
∣∣∣+ λ3

∣∣∣Udc/N − up
cij(k + 1)

∣∣∣ (12)

where λ1, λ2, and λ3 are the function weighing factors, i∗o(k + 1), i∗diff(k + 1), Udc/N are the reference
values of control objectives, and ipo(k + 1), ipdiff(k + 1), and up

cij(k + 1) are the next-step predicted values
of control objectives, respectively.

The block diagram of conventional MPC is shown in Figure 2a. Within each sampling period of
MPC strategy, the cost function was evaluated one step ahead, and the switching state that minimized
the cost function was chosen and used to control the converter at next switching cycle by evaluating
for all the possible switching states of the converter.

Nevertheless, the number of all possible switching states for an MMC with N SMs in each bridge
is CN

2N . For example, an MMC used for HVDC usually has more than 100 SMs per arm, thus the
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number of all possible switching states in one phase is more than 9 × 1058. Therefore, it is challenging
to implement the conventional MPC by the existing digital processors in practical applications due to
large computation load.

3.2. Modified MPC

Some modified MPC strategies have been developed to reduce the computational burden.
In combination with decoupling the SM capacitor voltage control and carrying it out in an independent
control loop, indirect MPC [16,21] (shown in Figure 2b) can be used to reduce the computation
complexity by evaluating the number of inserted SMs instead of the all possible switching states.
However, the computational burden is still too high when the MMC has huge number of SMs.

In addition, the fast MPC [18] method can significantly reduce the computational burden to two
or three by limiting the change of output voltage level in every control cycle within two or three
levels near the previous output voltage level. However, the cost would be the reduction of dynamic
performance because the variation of the output voltage was limited in each control cycle.
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Figure 2. Control schemes of a model predictive control (MPC). (a) A conventional MPC, (b) an indirect
MPC, and (c) the proposed inverse MPC.

3.3. Reverse MPC

Figure 2c shows the reverse MPC (R-MPC) strategy, which was proposed to further reduce the
computational complexity of MPC by decoupling the SM capacitor voltage control and carrying it
out in an independent control loop. Assuming the on-state SM numbers of the upper arm and lower
arm at next step are np and nn, the SM capacitor voltages should be resorted in either ascending or
descending order, according to the direction of the corresponding arm current. ni (i = p, n) SMs with
the lowest voltages are chosen to be inserted to the arm when the arm current is positive, and the
other SMs are bypassed. On the contrary, ni (i = p, n) SMs with the highest voltages are selected to be
inserted to the arm when the arm current is negative, and the other SMs are bypassed.
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The balancing of SM capacitor voltage is one of key issues in MMC. The modified MPC generally uses
the conventional sorting method (e.g., bubble sorting) to balance the SM capacitor voltages [16,18,20,22],
in which all of the SM capacitor voltages have to be sorted in ascending or descending order to
determine the inserted SMs with the highest or lowest voltages. However, the sorting algorithm
itself is not a trivial task when MMC has huge number of SMs. Therefore, many improved sorting
methods were presented to reduce the computational complexity, such as grouping sorting method [17],
fundamental-frequency sorting method [23], limited sorting method [24], etc. In general, as long as
several SMs with the highest or lowest voltages are selected, the voltage balance task can be completed
within an allowable range of voltages ripples, while the rest SMs need not be sorted to reduce the
computational burden. In addition, using the parallel computing method, FPGA (Field Programmable
Gate Array) can be used to complete the SM capacitor voltage balancing task more quickly, which does
not occupy CPU resources [9,16].

After the sorting task, assuming all of the capacitor voltages are balanced well, then the number
of on-state SMs for upper arm and lower arm at next-step can be calculated if the next-step arm voltage
can be predicted.

From Equation (7), the arm voltages can be written as follows:{
up = Udc

2 − Lo
didiff

dt − ( Lo
2 + L) dio

dt − Rio − e
un = Udc

2 − Lo
didiff

dt + ( Lo
2 + L) dio

dt + Rio + e
(13)

By using the backward Euler approximation,

dx
dt

=
x(k)− x(k − 1)

Ts
(14)

The discrete-time dynamic models of the arm voltages of MMC can be written as follows:{
up(k) =

Udc
2 − Lo

Ts
[idiff(k)− idiff(k − 1)]− ( Lo/2+L

Ts
+ R)io(k) + Lo/2+L

Ts
io(k − 1)− e(k)

un(k) =
Udc

2 − Lo
Ts
[idiff(k)− idiff(k − 1)] + ( Lo/2+L

Ts
+ R)io(k)− Lo/2+L

Ts
io(k − 1) + e(k)

(15)

Assuming the next-step reference values of control objectives can be tracked without error, thus,
the next-step predicted arm voltages up

p(k + 1) and up
n(k + 1) can be obtained by shifting forward

(Equation (15)), as follows:{
up

p(k + 1) = Udc
2 − Lo

Ts
[i∗diff(k + 1)− idiff(k)]− ( Lo/2+L

Ts
+ R)i∗o(k + 1) + Lo/2+L

Ts
io(k)− e∗(k + 1)

up
n(k + 1) = Udc

2 − Lo
Ts
[i∗diff(k + 1)− idiff(k)] + ( Lo/2+L

Ts
+ R)i∗o(k + 1)− Lo/2+L

Ts
io(k) + e∗(k + 1)

(16)

where i∗diff(k + 1) is the next-step reference value of circulating current, i∗o(k + 1) is the next-step
reference value of output current, and e∗(k + 1) is the next-step reference values of grid voltage.

For the circulating current, the main frequency component is DC, its next-step reference value
i∗diff(k + 1) can be replaced by the previous reference value i∗diff(k). But for output current and grid
voltage, in order to improve the control accuracy, the next-step reference value i∗o(k + 1), e∗(k) can be
predicted by the formula of the Lagrange extrapolation [25], as follows:

i∗o(k + 1) = 3i∗o(k)− 3i∗o(k − 1) + i∗o(k − 2) (17)

e∗(k + 1) = 3e∗(k)− 3e∗(k − 1) + e∗(k − 2) (18)

At last, the number of next-step on-state SMs can be calculated as follows: np
p(k + 1) = round(

up
p(k+1)

ucp_avg(k)
)

np
n(k + 1) = round( up

n(k+1)
ucn_avg(k)

)
(19)
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where ucp_avg(k) and ucn_avg(k) are the average arm voltages of the MMC (upper arm and lower arm).
The number of control options of the proposed R-MPC strategy was further reduced to one by

calculating the number of on-state SMs directly based on the reverse prediction of arm voltages. Thus,
the computational burden was independent of the number of SMs in the arm. This strategy was
especially suitable for the MMC which has huge number of SMs. The number of control options for
different MPC strategies are listed in Table 1. As can be seen from this table, fast MPC and proposed
R-MPC have the least computational complexity, especially for the MMC with hundreds of SMs.

It should be noted that the computational burden of R-MPC is independent of the number of SMs,
but the computational burden of sorting algorithm is still related to the number of SMs. However,
the sorting algorithm can be improved by other means [9,16,17,23,24] to reduce its computational load.

Table 1. Number of control options of different MPC strategies.

Number of SM (N) 4 10 50 100 200

Number of
control options

Conventional MPC [10–13] 70 1.8 × 105 1.0 × 1029 9.1 × 1058 1.0 × 10119

Integrated MPC [15] 125 1331 1.3 × 105 1.0 × 106 8.1 × 106

Indirect MPC-I [16] 25 121 2601 1.0 × 104 4.0 × 104

Indirect MPC-II [21] 8 14 54 104 204
Modulated MPC [20] 5 11 51 101 201
Indirect MPC-III [22] 5 11 51 101 201

Fast MPC [18] 2~3 2~3 2~3 2~3 2~3
Proposed MPC (R-MPC) 1 1 1 1 1

4. Simulation Results

As shown in Figure 1, a three-phase MMC system was investigated in MATLAB/Simulink
softwareto validate the control performance of the proposed R-MPC strategy. Table 2 lists the
parameters of the MMC.

Table 2. Parameters of MMC system.

Parameter Simulation Experiment

Rated power (kVA) 5000 2
Rated line voltage (V) 10,000 200
DC bus voltages (V) 20,000 400

SMs per arm 32 8
SM capacitance (µF) 4700 1000

SM capacitor voltage (V) 625 50
Arm buffer inductance (mH) 2.8 2.8

Load inductance (mH) 1 1
Load resistance (Ω) 0.01 1.6

Output frequency (Hz) 50 50
Sampling period (µs) 100 100

4.1. Steady-State Operation

Figure 3 shows the steady-state operation results of a fast MPC [18], an indirect MPC [21], and the
proposed R-MPC strategy, respectively. Three MPC strategies have almost the same steady state
performance. All the capacitor voltages are well balanced, which are around 3% of their rated values.
All the circulating currents are also well-suppressed, with peak-peak ripple values of 28 A, 20 A
and 26 A, respectively. The total harmonic distortions (THD) of output currents are only 2.13%,
2.43%, and 2.02%, respectively. The results show that the three strategies all had good steady-state
performance. But for an MMC with hundreds of SMs, fast MPC and R-MPC have more advantages
because of less computational burden.
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Figure 4 shows the harmonic spectrums of the output voltages and currents with proposed R-MPC.
The THDs of output voltages and currents were only 1.88% and 2.02%, respectively. The results showed
that the low-order harmonics were very small and within acceptable range. Thus, the noises generated
by prediction did not affect the quality of the generated voltages/currents.
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Figure 4. Harmonic spectrums of the output voltages and currents with proposed reverse model
predictive control (R-MPC).

Figure 5 shows the comparison of output SM states between the traditional nearest level
modulation (NLM) method and the R-MPC strategy proposed in this paper. The NLM method just
obtains the nearest level state from the reference voltage, according to the tracking of output currents,
however, R-MPC strategy considers not only the tracking of output current but also the suppressing of
circulating current and the system delay compensation. Thus, the two methods generated different
SM states and switching sequences.
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4.2. Dynamic Operation

Figure 6 shows the step response results of fast MPC [18], an indirect MPC [21], and the proposed
R-MPC strategy, respectively. Before t = 0.1 s, the MMC system reached a stable state, after which the
magnitudes of the reference output currents experienced two step changes, stepped up from 100 A to
200 A at t = 0.1 s and stepped down from 200 A to 100 A at t = 0.2 s. In Figure 6b,c the capacitor voltages
were well balanced after the step changes, the output currents of the indirect MPC and the proposed
R-MPC could rapidly track their references, and the circulating currents were still well-suppressed.
However, as seen in Figure 6a the output currents of the fast MPC took more time to reach the
references because the change of output voltage level in each control cycle was limited within two or
three levels near the previous output voltage level.
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The results showed that the indirect MPC and the proposed R-MPC both had better dynamic-state
performance than the fast MPC. However, for the MMC with hundreds of SMs, the R-MPC had more
advantages due to less computational burden.
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5. Experimental Results

Figure 7 shows a down-scaled experimental prototype of the MMC (2 kVA), setup to verify the
control performance of the proposed R-MPC.A DSP/FPGA-based central control board was chosen to
complete the control scheme. The DSP (TI TMS320F28335) was used for mathematical calculations
and the MPC algorithm. The FPGA (Altera EP2C8Q208C8) was used for Pulse-width modulation
(PWM) generation, the sorting algorithm of capacitor voltages, and fault protection. Table 2 lists the
parameters of the experimental prototype.

It should be noted that a larger load resistance than that of simulation was chosen because the
experimental prototype could only operate in the passive inversion state (limited by the experimental
conditions), but the simulation model operated in the active inversion state, which simulated the
working characteristics of HVDC. In addition, also limited by the experimental conditions, the SM
capacitance was also smaller than that of simulation, which would increase the capacitor voltage
ripple slightly. Despite the above differences in load and capacitor parameters, it would not affect the
performance comparison and analysis of different control strategies.
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Figure 7. Experimental prototype.

5.1. Steady-State Operation

Figure 8 gives the steady-state experimental results of fast MPC [18], an indirect MPC [21], and the
proposed R-MPC strategy, respectively. As seen in Figure 8, three MPC strategies had almost the same
steady state performance, where the total harmonic distortions (THD) of output currents were 5.1%,
5.4%, and 5.0%, respectively. In addition, the capacitor voltages of the MMC were well-balanced and
the circulating currents were also well-suppressed. The results showed that the three strategies all had
good steady-state performance. But, for MMC with hundreds of SMs, fast MPC and R-MPC had more
advantages because of less computational burden.
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Figure 8. Experimental results of steady-state operation: (a,b) a fast MPC, (c,d) an indirect MPC,
(e,f) the proposed R-MPC. Scopes: from top to bottom, first capacitor voltage of phase a (25 V/div),
arm current of phase a (5 A/div), output voltage of phase a (100 V/div), and output current of phase
a (10 A/div). Time scale: 50 ms/div.

5.2. Dynamic Operation

Figure 9 shows the step response results of fast MPC [18], an indirect MPC [21], and the proposed
R-MPC strategy, respectively. Before t = 1.2 s, the MMC system reached a stable state, after which the
magnitudes of the reference output currents experienced one step change, stepped up from 2 A to 4 A.
From Figure 9b,c it is easy to see that the capacitor voltages could be balanced well after step changes,
the circulating currents were well-suppressed, and the output currents could be rapidly tracked to
their references, for both indirect MPC and proposed R-MPC strategy. However, as seen in Figure 9a,
the output currents of the fast MPC took more time to reach the references because the change of
output voltage level in each control cycle was limited within two or three levels near the previous
output voltage level.

The results show that the indirect MPC and proposed R-MPC both have better dynamic-state
performance than the fast MPC. However, for MMC with hundreds of SMs, the R-MPC have more
advantages due to less computational burden.
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6. Conclusions

In order to reduce the computational complexity of MPC for MMC, this paper proposed a R-MPC
strategy. Compared with the fast MPC and indirect MPC, the number of control options to be
calculated of proposed R-MPC was greatly reduced to one by calculating the number of on-state SMs
directly based on the reverse prediction of arm voltages. The simulation and experimental results of
steady-state operation showed that the fast MPC, an indirect MPC, and the proposed R-MPC all had
good steady-state performance, but fast MPC and the proposed R-MPC had more advantages than
indirect MPC because of less computational burden. However, the simulation and experimental results
of dynamic operation showed that the proposed R-MPC had better dynamic-state performance than
the fast MPC. Therefore, the proposed R-MPC strategy would be especially suitable for an MMC with
hundreds of SMs because of less computational burden and good performance of both steady-state
and dynamic operation.
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