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Abstract: Wireless rechargeable sensor networks (WRSNs) have gained much attention in recent
years due to the rapid progress that has occurred in wireless charging technology. The charging
is usually done by one or multiple mobile vehicle(s) equipped with wireless chargers moving
toward sensors demanding energy replenishing. Since the loading of each sensor in a WRSN can be
different, their time to energy exhaustion may also be varied. Under some circumstances, sensors may
deplete their energy quickly and need to be charged urgently. Appropriate scheduling of available
mobile charger(s) so that all sensors in need of recharge can be served in time is thus essential to
ensure sustainable operation of the entire network, which unfortunately has been proven to be an
NP-hard problem (Non-deterministic Polynomial-time hard). Two essential criteria that need to
be considered concurrently in such a problem are time (the sensor’s deadline for recharge) and
distance (from charger to the sensor demands recharge). Previous works use a static combination
of these two parameters in determining charging order, which may fail to meet all the sensors’
charging requirements in a dynamically changing network. Genetic algorithms, which have long been
considered a powerful tool for solving the scheduling problems, have also been proposed to address
the charging route scheduling issue. However, previous genetic-based approaches considered only
one charging vehicle scenario that may be more suitable for a smaller WRSN. With the availability
of multiple mobile chargers, not only may more areas be covered, but also the network lifetime
can be sustained for longer. However, efficiently allocating charging tasks to multiple charging
vehicles would be an even more complex problem. In this work, a genetic approach, which includes
novel designs in chromosome structure, selection, cross-over and mutation operations, supporting
multiple charging vehicles is proposed. Two unique features are incorporated into the proposed
algorithm to improve its scheduling effectiveness and performance, which include (1) inclusion
of EDF (Earliest Deadline First) and NJF (Nearest Job First) scheduling outcomes into the initial
chromosomes, and (2) clustering neighboring sensors demand recharge and then assigning sensors
in a group to the same mobile charger. By including EDF and NJF scheduling outcomes into the
first genetic population, we guarantee both time and distance factors are taken into account, and the
weightings of the two would be decided dynamically through the genetic process to reflect various
network traffic conditions. In addition, with the extra clustering step, the movement of each charger
may be confined to a more local area, which effectively reduces the travelling distance, and thus the
energy consumption, of the chargers in a multiple-charger environment. Extensive simulations and
results show that the proposed algorithm indeed derives feasible charge scheduling for multiple
chargers to keep the sensors/network in operation, and at the same time minimize the overall moving
distance of the mobile chargers.
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1. Introduction

In wireless sensor networks (WSN), hundreds or thousands of homogenous sensors with limited
battery power are deployed in the region where information will be collected. Sensor nodes detect
their proximate environment for specific information and send that information to a base station.
While sensors are deployed uniformly in a wireless sensor network, sensors located in different
positions bear different communication responsibilities. Accordingly, the energy consumption of
sensors in the network may be heterogeneous, so some may drain their power earlier than the others
and cause subsequent network failure.

Fortunately, as a result of advances in wireless charging technology [1], it is now possible to
recharge the sensors through a vehicle equipped with a charger (will be referred to as mobile charger
hereafter) [2–4]. WSNs that possess such a recharging capability, which are called wireless rechargeable
sensor networks (WRSNs), may potentially extend their network life time. However, the scheduling of
recharges needs to take the dynamic change in loading of each sensor, which usually comes in bursts
when events occur, into consideration. Otherwise part of the sensors may deplete their energy before
being charged, thus resulting in possible network failure. In other words, an efficient scheduling of
mobile charger(s) to perform its/their duty has/have to consider varied sensor requirements. Note
that, regardless of the number of mobile chargers used in a WRSN, optimal charging scheduling and
its related issues have been proven to be an NP-hard problem and so far only heuristic/near-optimal
solutions can be provided.

Two essential factors that are often used to determine the order of recharge are time (the sensor’s
deadline for recharge or energy consumption rate) and distance (from charger to the sensor demands
recharge) [5,6]. The two factors have usually been combined together through some pre-determined
weights in previous works. For example, in reference [5], both factors are considered equally,
while reference [6] argues that a 100% (time, in terms of energy consumption rate, which is not
constant as reference [5] assumes) and 80% (distance) split would be more favorable. However, as we
have stated earlier, in a dynamic changing sensor network environment, it is questionable whether
any static combination of the two parameters will meet all the sensors’ charging requirements.

Accordingly, in this work, we propose a genetic approach to solve the emergent charging
scheduling problem. The proposed algorithm is unique in adopting the following two strategies.
First, the genetic optimization process incorporates the Earliest Deadline First (EDF) and Nearest Job
First (NJF) scheduling outcomes into the initial chromosome population, which guarantees that the
results of the genetic optimization would be no worse than the EDF and NJF results. More importantly,
it also implies that both the time and distance (encoded in chromosomes based on EDF and NJF
generated outcomes) factors in charge scheduling are taken into consideration, while the genetic
process is used in some way to derive the weightings of the two. Secondly, the proposed algorithm
may assign the charging tasks to single or multiple chargers to meet the in-time charging limitations.
In the case of a multiple-charger arrangement, a clustering step is applied prior to every chromosome
re-generation procedure. The clustering process proceeds by grouping neighboring sensors that
demand recharges so that each group may be assigned to one of the available chargers, which thus
confines the movement of each mobile charger in a more local region. The advantages of the above
two strategies, as will be shown later in the simulation results, are improving the successful sensor
recharge rate and greatly shortening the overall moving distance of mobile chargers. In other words,
the charging need of sensors can be addressed, while reducing the energy consumption of mobile
chargers. In addition, the proposed algorithm is generic as it makes no assumption regarding what
target power level (i.e., charging deadline) sensors may issue charging requests and poses no restriction
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to both a charging vehicle’s moving speed and a sensor’s charging rate. However, the issue with
genetic process is that scheduling may need a more powerful platform as compared to the method
used in reference [5].

Overall, the objective of this research is to develop an effective genetic-based scheduling algorithm
to sustain the lifetime of sensor networks in a multi-charger (include single charger) context. The novel
design of chromosome structure, selection, cross-over and mutation operations, together with the
afore-mentioned two strategies to fulfill the above goal will be presented and implemented. Extensive
simulations with parameters setting that is as realistic as possible will be conducted to evaluate the
performance of the proposed genetic approach, the effectiveness of incorporating one or both of the
strategies, and the effects of the number of mobile chargers. Performance comparisons will also be
made among ours and the other similar implementations. Note that a preliminary idea for this work
appeared in reference [7].

The rest of the paper is organized as follows. In the related work section, we review previous
works in the field of rechargeable wireless sensor networks. The proposed genetic approach to solve
the charging scheduling problem is provided in the following section. Extensive simulation results
of the proposed approach will be described and discussed in the simulation results and discussions
section. Finally, we conclude this paper and list possible future research directions in the final section.

2. Related Works

Wireless sensor networks have received a lot of attention and have been widely used in collecting
data in various fields in the past two decades [8]. However, energy drain due to the limited battery
power of the sensor nodes has been one of the major issues that results in eventual network failure.
However, the energy of sensors can be replenished by collecting ambient energy, such as solar
power, vibration energy, and so on. Nevertheless, the energy that can be harvested is unstable
and unpredictable. Fortunately, the feasibility of wireless power transfer through magnetic resonance,
as demonstrated by Kurs et al. [1], makes sustainable wireless sensor networks possible. Accordingly,
a WSN that possesses such a battery recharge capability, the Wireless Rechargeable Sensor Network
(WRSN) has emerged to become one of the popular areas in current WSNs research [9–11].

Some research proposed to use static charging devices to charge the sensors [12,13]. The required
number of charging devices may be increased proportionally to the area of the wireless sensor network,
which induces more cost. Moreover, due to the limited range of wireless power transmission, the static
charger solution may not be as energy efficient as compared to the mobile charger solutions [14].

In terms of mobile charger solutions, single or multiple charging vehicle(s) may be used.
The former may work well in a small scale environment [15]. Yet, in a larger network, one mobile
charger may not be feasible, considering the limited amount of energy it can carry. However, in both
cases, one of the most essential issues is to schedule the mobile charger(s) so that it/they can charge
whichever sensor that is running out of energy in time to keep the network operating.

L. Fu et al. [16] proposed an energy synchronized mobile charging (ESync) protocol,
which simultaneously reduces both of the charger’s travel distance and the charge waiting time
of sensor nodes. Their algorithm operates by constructing a set of nested TSP (Travelling Salesman
Problem) tours, which is an NP-hard problem, based on the sensor nodes’ energy consumption rate.
Sensor nodes are grouped according to their power consumption rate and charger is scheduled to visit
nodes belonging to the group in the order of descending consumption rate. However, the possible
issue with this technique would be that scheduling has to be redone once the power consumption rate
of the sensors changes, which happens quite often when new events spotted in the network.

L. Xie et al. [17] showed that WSN can remain operational forever through periodic wireless energy
transfer. They assumed that the node’s energy consumption is fixed. After careful analysis, the near
optimal charging schedule is obtained. The same team [18] also proposed to exploit the multi-node
wireless energy transfer technology provided by magnetic resonant coupling. Their algorithm
partitions a two-dimensional plane into adjacent hexagonal cells, and the charging vehicle visits
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these cells and charges multiple sensor nodes from the center of a cell. They then pursue a formal
optimization framework by jointly optimizing the traveling path, flow routing and charging time.
The result was a provably near-optimal solution for any desired level of accuracy. Both techniques
mentioned above work on finding the (near) optimal traveling paths for mobile charger so that it
may visit and charge sensor nodes periodically. In other words, the issue of on-demand recharging
requirements of sensors was not addressed.

Y. Shu et al. [19] proposed to control the velocity of mobile chargers in order to reduce the traveling
time of chargers so that effective time spent on sensors charging can be increased. They first proved
that velocity control of mobile charger in the specified problem to be NP-hard, and then developed
a heuristic solution with a provable upper bound. Although the work does not relate directly to the
recharge scheduling problem, yet it indicates a potential factor to be considered in future research.

M. Pan et. al. [20] proposed a heuristic algorithm to solve the charging problem. In their method,
the charging vehicle not only charges the sensors, but also collects data from some sensors acting as
intermediate sinks and then brings back the information to the base station. The goal is to reduce the
propagation of data packets among sensor nodes, which is the primary source of energy consumption.
This appears to be a good idea, since reducing the energy consumption of sensors relieves the burden
of chargers, which may deserve further attention in our future study. However, on-demand recharging
requirement of sensors was still not addressed in their work.

Jie Jia et al. [21] used a heuristic algorithm to locate sensors that need charging, followed
by a genetic approach to find a shorter moving sequence. The proposed strategy used only one
mobile charger, but the authors did not discuss how to fulfill the dynamic requirements of sensors.
A.H. Mohamed [22] also adopted a genetic algorithm to the charging vehicle scheduling problem.
They used a cluster structure to decrease the complexity of a genetic algorithm. That is, their algorithm
finds a better moving path among cluster heads only. The mobile charger charged the cluster heads,
which then charged their members in the cluster hierarchy via energy propagation. The advantage
of such a hierarchical design would thus be reducing the traveling distance of the mobile charger.
However, the possibility of using multiple charging vehicles and dynamic charging requirements was
not included in their research scope.

H. Dai et al. [15] proved that the optimal quantity of the charging vehicles in the wireless sensor
network is an NP-hard problem, and they use an approximation approach to obtain a better solution.
The authors proposed a heuristic approach to get the minimal number of charging vehicles to keep the
residual energy of sensors above some working threshold. In their work, the energy consumption of
each sensor is assumed to be uniform and constant, which under many circumstances may not be true.
In other words, the diversity of sensor requirements should be taken into consideration in charging
scheduling. Moreover, the efficient use of the charging vehicles to address the dynamic charging
requests is not included in their research.

According to the aforementioned prior research, with either one charger or multiple chargers,
the optimal charging scheduling and its related issues, have either been proven to be an NP-hard
problem [15,16,18] or only heuristic/near-optimal solutions can be provided [18,20–22]. Accordingly,
in this paper, a genetic approach like Jie Jia et al. [21] and A.H. Mohamed [22] is adopted. However,
the scheduling problem will be addressed in the context of multiple mobile chargers and the dynamic
sensors charging requirement will also be taken into consideration. In addition, meeting the recharging
requirements of sensors while reducing the travelling distance is also one of the major issues that was
addressed [16,19], which will be a major point in our proposed solution as well.

3. Genetic Approach for Multiple Mobile Chargers Scheduling

In this section, the proposed genetic approach for scheduling multiple mobile chargers in
WRSN is presented, followed by the context and assumptions of the proposed approach, and the
algorithm details.
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First of all, assume that there are a total of Ncar mobile chargers and the positions of sensors are
already known to the base station (BS). In addition, a sensor node will send a recharge request to the
BS when its battery power drops to some predefined threshold, which means the BS is also aware of
the residuals of the sensor, i.e., its remaining work time (RWT). All sensor nodes, together with their
remaining work time and positions, that demand charging are kept in the charging_list. With the above
information, the BS may determine when to initiate a charge scheduling and determine the charging
routes for the mobile chargers. The goal is to minimize the moving distance of the chargers while
meeting the requirement that all sensors are recharged in time if possible. Specifically, when the BS
finds the “start of charge scheduling” condition (as described later) occurs, it initiates the scheduling
procedure (a genetic algorithm as described later in this section) and then assigns missions to the
mobile chargers accordingly.

3.1. Conditions for Start of Charge Scheduling

The preliminary requirement to meet the “start of charge scheduling” condition is the availability
of mobile charger(s). In other words, there must be at least one (out of Ncar) charger available at BS’s
disposal. The number of available chargers is denoted as Ncar_available, 0 ≤ Ncar_available ≤ Ncar. In case
Ncar_available ≥ 1, either one of the following two scenarios: (1) the number of sensor nodes demanding
charging reaches the capacity of recharging (Q) that currently available chargers can provide, or (2) the
minimum recharging deadline time, min_RDT, beyond that some sensor nodes may die if a charging
mission does not start, which will trigger the initiation of a charge scheduling procedure.

The capacity of charging, Q, is the total number of sensor nodes that can be charged given a
specific number of available chargers. It may be estimated according to the total battery power required
by the sensors and the battery power may be provided by the available charging vehicles. To simplify
the matter, let us assume that each charging vehicle is capable of charging an equal number of sensor
nodes, Ncharge. In case there are Ncar_available chargers, Q can be expressed by Equation (1).

Q = Ncar_available × Ncharge (1)

The minimum recharging deadline time (min_RDT), can be computed as follows. First, sort
the charging tasks demanded by sensor nodes in the charging_list according to the Earliest Deadline
First (EDF) order [23] and distribute these tasks evenly to all available mobile chargers. The arrival
time, ATSi , of each charger to each assigned sensor node, Si, can be calculated given the facts that
visiting order, distance to sensor node and moving speed of mobile charger are known. The estimated
recharging deadline time RDTSi for sensor node Si, can be derived by computing the difference
between the arrival time (of mobile charger) and its remaining work time, as depicted in Equation (2).

RDTSi = ATSi− LTSi (2)

To deriving the minimum recharging deadline time (min_RDT) is then equivalent to finding the
minimum among all the RDTSi , Si ∈ charging_list

3.2. The Proposed Genetic Charge Scheduling Algorithm

The proposed genetic scheduling algorithm starts by randomly generating initial population P.
After an iteration (and every subsequent iteration) of the genetic process, the best α% chromosomes in
the population are preserved for the next generation. Also, β% chromosomes of the new population are
newly and randomly generated as done in the initial phase. The remaining chromosomes of the new
population (1−α%−β%) are generated by using the crossover function from two randomly selected
chromosomes of previous generation, among which some might be mutated with γ probability.
The genetic process would proceed until it reaches a pre-determined maximum iteration count
(max_Iteration) or the fitness function has not been further improved for t consecutive iterations.
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The detailed genetic algorithm is listed in Algorithm 1. Note that Algorithm 1 would be performed n
times with parameter Number_of_car iterates from 1 to n, where n equals to the number of charging
vehicles available at the moment when the algorithm starts. The goal is finding the number of charging
vehicles (k, 1 ≤ k ≤ n) that achieves the best recharge scheduling.

Algorithm 1. Genetic algorithm for recharging scheduling

Input: Number_of_car, charging_list
Output: the best chromosome for recharging scheduling using Number_of_car vehicles
1 Generating initial population P.
2 Select the first chromosome from P to be the best_one chromosome
3 fitness_unchanged_count = 0
4 for i = 0 to max_Iteration do
5 Calculating fitness value of each individual in P
6 Sorting P ascendingly according to the values of individuals
7 Select the first chromosome from P to be the new_best_one chromosome
8 if best_one is equal to new_best_one
9 fitness_unchanged_count ++
10 else
11 Set best_one to be the new_best_one chromosome
12 fitness_unchanged_count = 0
13 end
14 if fitness_unchanged_count > t
15 Return the best_one chromosome
16 end
17 Set population next_P to {}
18 Add first α% individuals in P to next_P
19 Generate and add β% new individuals to next_P by using Algorithm 2
20 for j = 0 to Population_size·(1−α%−β%) do
21 Select two parents p1 and p2 from P by using Algorithm 3
22 Cross p1 with p2 by using Algorithm 4, and produce child p’
23 Cross p2 with p1 by using Algorithm 4, and produce child p”
24 Choose the better one from p’ and p” to be pchild
25 Mutate pchild by using Algorithm 5 with probability γ

26 Add pchild into next_P
27 next j
28 next i
29 Return the first chromosome of P

In the following, the design and generation of chromosomes (Algorithm 2), fitness function,
selection (Algorithm 3), crossover (Algorithm 4), and mutation (Algorithm 5) operations that are
involved in the afore-mentioned genetic scheduling algorithm will be presented in more detail.

3.2.1. Chromosome Design and Generation

Assume that there are m sensors that need to be recharged in the entire wireless sensor network.
In the case of single mobile charger, a chromosome may be designed to contain m genes, with each
gene assigned the serial number of the sensor. In other words, a chromosome and a gene represent the
list of sensors demand charging and the sensors ID in that list, respectively. The position of gene in a
chromosome stands for the charging order of a sensor. Figure 1 depicts a possible gene combination of
a chromosome in the case of seven sensors requesting a recharge. In this specific case, sensor 1 would
be charged first, followed by sensors 5, 3, 2, 7, 6, and 4.
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To allocate the charging tasks to multiple mobile chargers, the assignment of sensors to the
charging vehicles should also be included in the chromosome. Accordingly, each gene now contains
not only the serial number of a sensor, but also the serial number of the charger that is responsible for
recharging of that specific sensor. Figure 2 shows a scenario with 3 chargers and 7 sensors waiting to
be recharged. The charging order is {1, 5, 3, 2, 7, 6, 4} and chargers 1, 2, and 3 are assigned to charge
sensors {1, 2, 7}, {5, 6}, and {3, 4}, respectively. In that case, the chromosome encoding is depicted in
Figure 2.
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Figure 2. A sample chromosome for solving the charge scheduling problem with multiple chargers.

Algorithm 2 shows the detailed process of chromosome generation. Note that, assigning adjacent
sensors demand recharging to the same charger may be an effective way to reduce the energy cost
of moving chargers back and forth among sensors located apart from each other for their missions.
To explore and incorporate this idea into our proposed method, we adopt a notion of clustering that
is similar to the k-center algorithm. To be more specific, in case there are k available chargers and m
to-be-charged sensor nodes, this process may divide these sensors into k groups based on their locality
and assign them to the k available chargers. Taking the scenario depicted in Figure 3 as an example,
the clustering process proceeds as follows: (1) Calculate the angle, θi (1 ≤ i ≤ m), of the ray originating
from BS to each sensor node i (as the θ shown in Figure 3a, −π < θ ≤ π). (2) Sort θi in ascending
order and derive the sensor nodes list {7, 6, 5, 4, 3, 2, 1, 8}, which may be considered as a circular
queue (3) Pick randomly a sensor from the list as the starting node and assigned sensors evenly to each
available chargers. For example, if the second node, 6, is selected, the assignment would go like: {6, 5,
4}→charger 1, {3, 2, 1}→charger 2, and {8, 7}→charger 3, as shown in Figure 3b.
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to mobile chargers.
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Algorithm 2. Algorithm for generating chromosome instances

Input: Number_of_available_car, charging_list
Output: a randomly generated chromosome Chrom
1 Sort sensors in the charging_list in ascending order by the angle of the ray originating from BS to the sensors

to be charged and derive new charging _list in angle sequence.
2 Set Chrom = {}
3 Ncharge_list = size of charging_list

4 Navg =
∣∣∣Ncharging_list / num_of_available_car

∣∣∣
5 for i = 1 to Ncharging_list
6 Set gene.node_id to a randomly selected sensor ID from charging_list
7 Mark gene.node_id in charging_list as used
8 Set angle_seq as the position of gene.node_id in charging_list
9 Set gene.car_id =

⌊
angle_seq / Navg

⌋
10 Add gene to Chrom
11 next i
12 Return Chrom

3.2.2. Fitness Function

The goal of the proposed charge scheduling algorithm is to charge all the sensors before their
batteries exhausted and to minimize the energy consumption of the mobile charger. From the point of
view of charging vehicles, the amount of power required for a charging mission does not change no
matter what the charging sequence is. Accordingly, minimizing the moving distance of the mobile
charger(s) corresponds to saving its/their energy. Before going further with our discussion, a summary
of the notations to be used later is listed in Table 1.

Table 1. Notations used in this work.

Symbol Definition

Dbase, p1
k

The distance from the base station to the first sensor to be charged in charging path k.
Dpi

k , pi+1
k

The distance between the i-th and i+1-th sensors to be charged in charging path k.

τ
pi

k
arrive

The time of the charging vehicle arrives at the i-th sensor of charging path k.

τ
pi

k
charge The time needed to charge the i-th sensor in the charging path to the target power level

Speedcar The moving speed of charging vehicles
Speedcharge The charging speed of battery

Rpi
k

target The target power level of i-th sensor in the charging path k

Rpi
k

residual
The current power level of i-th sensor in the charging path k

RWTpi
k

The remaining working time of i-th sensor in the charging path k
sendtimepi

k
The time stamp of i-th sensor in charging path k that sends charging request

deadldinepi
k

The deadline of i-th sensor in charging path k to be charged
Distancek

car The moving distance of k-th charging vehicle
Distancetotal The sum of moving distances of all charging vehicles

pi
k The i-th sensor in charging path k (for k-th charging vehicle)

PathLengthk The length of charging path k

In case of using a single charger, the fitness function is designed to be the moving distance of
the charger. Since the charging vehicle departs from the base station for charging, and returns to the
base station after completing its tasks, the fitness function for some charging path p1: p1

1, p2
1, p3

1, . . . ,
pn

1 containing n sensors is defined as follows.
The objective is to minimize

f (p1) = Distance1
car, (3)
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Distance1
car = Dbase,p1

1
+ ∑n

i=1 Dpi
1,pi+1

1
+ Dpn

1 ,base, (4)

We have
τ

pi
1

arrive = τ
pi−1

1
arrive + τ

pi
1

charge for 2 ≤ i ≤ n, (5)

where

τ
pi

1
arrive = timecurrent +

Dbase,p1
1

Speedcar
, (6)

and

τ
pi

1
charge =

Rpi
1

target − Rpi
1

residual

Speedcharge
for 1 ≤ i ≤ n, (7)

Since each sensor sends its charging request to the base station with the estimated remaining
working time RWTpi

1
, the base station can get the deadldinepi

1
by summing sendtimepi

1
and RWTpi

1
.

For every node i in charging path p1, we have

τ
pi

1
arrive ≤ deadldinepi

1
, (8)

While there are m charging vehicles available with m charging paths pk: p1
k, p2

k, p3
k, . . . , pnk

k (1 ≤ k ≤ m),
the fitness function has to take into consideration the sum of all charging vehicles’ moving distance. Similar
to Equation (4), the Distanceark

c is defined below.

Distancek
car = Dbase,p1

k
+ ∑nk−1

i=1 Dpi
k ,pi+1

k
+ Dp

nk
k ,base, (9)

Fitness function for a chromosome x is modified as follows.

f (x) = ∑m
k=1 Distancek

car, (10)

Equations (5)–(7) are modified as follows.

τ
pi

k
arrive = τ

pi−1
k

arrive+τ
pi

k
charge for 2 ≤ i ≤ nk, where (11)

τ
p1

k
arrive = timecurrent +

Dbase, p1
k

Speedk
car

and, (12)

τ
pi

k
charge =

R
pi

k
target − R

pi
k

residual

Speedk
car

, (13)

So the problem can be formulated as a linear programming formula as follows:
Objective function:

Minimize ∑m
k=1 Distancek

car, subject to τ
pi

k
arrive ≤ deadldinepi

k
for 1 ≤ i ≤ nk and 1 ≤ k ≤ m. (14)

Note, only the scenarios where the charging vehicles move at constant speed and charge sensors
at the same rate will be considered in the following discussions. But according to equations above
(i.e., Equations (12) and (13)), there is no restriction on both the charging vehicle’s moving speed and
the sensor’s charging rate. In addition, sensors can issue requests at different target power levels and
provide different charging deadline. As a result, the fitness function as designed and presented above
can potentially deal with dynamic sensors’ charging requirements with multiple mobile chargers,
which may be an interesting problem to be addressed in the future.

In addition, the charging time should also be included in the fitness function. A schedule that
cannot complete the charging tasks is given a larger fitness value so that this schedule has lower
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possibility of being selected. On the other hand, for charging schedules that can complete charging
tasks in time should be given scores according to the times they needed for these tasks. Finally,
the fitness function is defined as follows.

f (x) = a × τovertime + b × τtotal + c × Distancetotal , (15)

τovertime = ∑m
k=1 ∑PathLengthk

i=1 (deadldine pi
k
− τ

pi
k

arrive), (16)

τtotal = max
1 ≤ k ≤ m

(τ
p

PathLengthk
k

arrive +
D

p
PathLengthk
k ,base

Speedk
car

), (17)

Distancetotal =
m

∑
k=1

Distancek
car, (18)

The constants a, b, c used in Equation (15) are predefined constant values as the weights of
τovertime, τtotal and Distancetotal , respectively. In the simulations performed in this work, a is set
to a very larger number (e.g., 1,000,000) to avoid adopting charging schedules that are not able
to fulfill their missions. On the other hand, b and c are both set to 1 for simplicity. In the future,
it may be possible to explore various combinations of these three parameters to potentially improve
scheduling performance.

3.2.3. Selection

In order to ensure that better chromosomes may possess higher probabilities of being selected to
generate new chromosomes, the chromosome pool is first sorted in ascending order according to the
fitness values (smaller fitness value implies better chromosome, which would be placed at the forepart
of pool). Assume that there are n chromosomes in the pool. Then a random number s is selected from
0 to n2 − 1 and the (n − b

√
sc)-th chromosome would be selected. To sum up, the algorithm to select a

chromosome from the chromosome pool is listed below.

Algorithm 3. Algorithm for randomly selecting a chromosome

Input: an integer number n
Output: a chosen chromosome
1 Select a uniformly distributed random number s from 0 to n2−1
2 Choose the (n − b

√
sc)-th chromosome from the sorted chromosome pool to be the selection result

3.2.4. Crossover

Crossover proceeds by first randomly selecting two chromosomes Ca and Cb from the chromosome
pool using the selection method mentioned above (Algorithm 3). A cutting point k is then randomly
generated. Let C[i] represent for the gene at position i of chromosome C, and C[i, j] represents a subsequence
of genes of chromosome C from the position i to j. Then the content of the crossover chromosome Cc is
composed of Ca[0, k− 1] and Cb[k, n− 1]. However, since the contents of Ca[0, k− 1] and Cb[k, n− 1] may
be duplicated, the crossover steps are modified accordingly as follows.

For example, a possible crossover process, as depicted in Algorithm 4, of two chromosomes,
Ca and Cb, with each containing 5 genes and with cutting point k being set to 3 is shown in Figure 4.
As can be seen, the crossover result, Cc, receives its first 3 (=k) and last 2 genes from Ca and Cb,
respectively. However, since the two genes from Cb contain sensor IDs that have overlapped with the
ones from Ca, they would be marked with −1 and later been replaced with ones that are not shown in
genes from Ca, which would be sensor ID 4 and 5.
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Algorithm 4. Algorithm for chromosomes’ crossover

Input: Two chromosomes Ca and Cb.
Output: A new chromosome Cc

1 Randomly select an integer k, where 1 ≤ k < |Ca| −1.
2 Set Cc [0, k − 1] = Ca [0, k − 1].

3 Set Cc[i] =

{
−1, i f Cb[i] ∈ Cc[0, k− 1]

Cb[i], otherwise
where k ≤ i ≤ n − 1

4 Find the elements from Cb that have not yet been placed in Cc, and fill them sequentially to the positions
marked with −1 in Cc.
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3.2.5. Mutation

As a chromosome should contain each sensor to be charged just once, a sensor ID in a chromosome
cannot just change to another one randomly. Thus, the mutation operation is designed to swap the
IDs of two randomly selected genes in a chromosome. The algorithm to mutate a chromosome Cm

is presented in Algorithm 5 below. Figure 5 is an illustration of the mutation process depicted in
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Algorithm 5. Algorithm for mutating a chromosome

Input: chromosome Cm

Output: mutated chromosome Cm

1 Select two distinct number x and y randomly, 0 ≤ x, y ≤ n − 1.
2 Swap the ID values of Cm[x] and Cm[y].
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4. Simulation Results and Discussions

The simulation program was coded with Visual Studio C# and executed on a personal computer
with an Intel i7-8700 CPU running Microsoft Windows 10. The simulation environment is specified
by a 1000 × 1000 meters’ rectangular region with 1000 sensors uniformly and randomly deployed.
The base station is located at the center of the area. Mobile chargers are equipped with independent and
unlimited power source for their movement. Also assume that a gradient based routing tree [24] has
been built already. Packets are sent from nodes to the base station hop by hop. Based on the free space
model proposed in reference [25], to transmit l bits over d distance would cost ETx(l, d) and to receive
l bits would cost ERx(l) as shown below.

ETx(l, d) = lEelec + lε f sd2

ERx(l) = lEelec

Eelec = 50
nJ
bit

ε f s =
10pJ
bit

/m2

The traffic load of each node is assigned a random value uniformly distributed within range
[0, x/n], where n is the total number of nodes. In other words, in every second, each sensor node has a
probability in between 0 and x/n in generating a packet. Whenever a node finds that its remaining
energy is lower than the preset percentage (Eth), it needs to send the charging request packet to the
base station. Both the request packet and the data packet are fixed at a size of 10 kB in the following
simulations. Packet transmission is set to 1/100 s for one hop delivery. The content of a charging
request packet includes node id, energy consumption rate Rc, residual energy Ec, and demand time
Tcurrent. Energy consumption rate Rc and Remaining Work Time (RWT) are calculated using the
following equations.

Rc =
E f ull − Ec

Tcurrent − Tf ull
,

where Efull and Tfull are battery capacity and time that the sensor was last charged.

RWT = Ec/Rc

Unless otherwise specified, the parameters used in simulations are summarized in Table 2. All the
results are the average of 100 simulations. Three performance metrics, as listed below, are used for
evaluating the simulation results.

• Percentage or number of sensors been charged—the percentage of sensors can be successfully
charged. This is the primary goal of the proposed algorithm: the more sensors been charged
successfully, the longer the network life time would be expected.

• Moving distance—the average moving distance of the charging vehicles in charging a sensor.
It is calculated by dividing the total moving distance of charging vehicles by the total number of
sensors been charged. The shorter the average moving distance, the lower the cost in charging
the sensors.

• Percentage of data packets been delivered—the percentage of all transmitted data packets that are
successfully delivered to their destinations.

Note, as shown in Table 3, most of our parameter settings are based on those used by
Tsoumanis et al. [26], and three other research articles [5,6,17]. In some cases, the values of our
parameters were chosen to be even harsher than theirs. Examples of this were the network traffic,
battery power of chargers and sensor nodes’ initial energy power. Also, according to our assessment
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(through simulation), the energy consumption rate of the free space model is also higher than the other
models in our scenario, and thus puts more pressure on the network. Finally, other than the assumption
that mobile chargers have an independent and unlimited power source for their movement, all the
other parameter settings are chosen so that they are as close as possible to a realistic scenario.

Table 2. Simulation parameter settings.

Parameters Values

Network size 1000 × 1000 m2

Number of nodes 1000
Energy capacity of node 500 J

Energy capacity of mobile charger 10000 J
Traveling speed of mobile charger 5 m/s

Energy consumption of moving mobile charger 0
Charging rate 5 J/s

Initial residual of nodes 5%~25% ([0..20%] + 5%)
Residual of sensor triggering charging request 10%

Energy consumption model Free space model
Network traffic (Probability of a node generating a packet per second) [0, 1/100], [0, 1/10]

Transmission range of nodes 60 m
Packet length 10 kB

Parameters t, α, β, and γ used in Algorithm 1 20, 10, 10, 0.2
Population size (of GA procedure) 200
max_Iteration (used in Algorithm 1) 200

Table 3. Parameter settings used in other methods.

[5] [6] [17] [26]

Battery full 100 kJ 500 J 10.8 kJ 1
Network size 100 × 100 m2 100 × 100 m2 1000 × 1000 m2 1 × 1

Number of nodes 100 20–100 50, 100 1000
Transmission range − − − 0.06

WCV traveling speed 4 m/s 3 m/s 5 m/s −
WCV energy − 50,000 J − −
WCV moving
consumption − 10 J/m − −

Packet length − − − −
Charging speed − − 5 J/s −

Network traffic(for each
node) − − [1,10 kb/s] [0, 1/1000]

Node initial energy full − − −
Energy consumption

model 0.002 kJ/s TB-Powercast Multi-path µr3, µ=1,3,5

Request threshold 30% 225 J (45%) 540 J (5%) 10%, 50%, 90%

We have designed and conducted five simulations, with the results shown in the
following sub-sections.

4.1. The Impacts of Genetic Algorithm Parameters

The first simulation is designed to assess the two important parameters, population size and
maximal number of iterations, of a genetic procedure. To speed up the simulation, the simulation time
is limited to 10,000 seconds with network traffic set at [0, 100/n], while the other parameters are the
same as shown in Table 2. In these simulations, the values of both the population size and maximal
number of iterations are set in between 200 and 800. The following figures show the results of all the
three performance metrics listed above plus the average computation time (the average time required
for completing a scheduling task on the simulation personal computer) by varying the population
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size and maximal number of iterations. Figure 6 reveals that increasing the value of population size
only slightly improves the percentage of sensors being charged and packets received, and the average
moving distance. On the other hand, the increase in maximal number of iterations not only has no
apparent impact on the performance, but also greatly prolongs the computation process. This may
imply that the genetic algorithm usually converges before it reaches the maximal iteration counts.
Thus, in the following simulations, it may be adequate to set the population size and the maximal
number of iteration to 200 and 200, respectively.
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Figure 6. The performance metrics of the proposed genetic algorithm when varying population sizes
and maximal number of iterations. (a) percentage of sensors been charged, (b) average moving distance,
and (c) percentage of packets received, and (d) average computation time, vs population sizes and
maximal number of iterations. Note that simulation time and network traffic are set at 10,000 s and
[0, 100/n], while the other parameters, except population size and maximum number of iterations,
are the same as shown in Table 2.

4.2. The Impacts of Vehicle Parameters

The second simulation is to investigate the effects of charging vehicle’s moving speed and sensor
charging speed, which determine the cost (in time) of charging tasks. Intuitively, the smaller the
time cost, the easier it is to find a feasible solution to complete the charging tasks. As expected,
Figure 7a,c show that with a higher vehicle speed and charging rate, it is easier to get charging tasks
done, which again improves the packets received rate. Figure 7b shows that when charging tasks
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can be mostly completed (vehicle speed ≥ 5 m/s and charging rate ≥ 5 J/s), both vehicle speed
and charging rate do not have much impact on the average moving distance (of charging vehicles).
Accordingly, the following simulations will set the speed of vehicle and battery charging rate to 5 m/s
and 5 J/s, respectively.
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4.3. The Impacts of Clustering and Incorporation of EDF/NJF Outcomes to Initial Chromosomes

In the following simulation, performance of variations of our proposed genetic scheduling
approach is examined. Five possible variations include: implementations with clustering step only
(denoted by Clustering), with clustering step plus incorporating EDF and/or NJF scheduling outcomes
into the initial chromosome (denoted by EDF-Clustering, NJF-Clustering, and EDF + NJF-Clustering),
and with none of the above (denote Random, meaning no clustering is performed and all initial
chromosomes are generated randomly).

From the results shown in Figure 8, it is obvious that, when comparing to pure genetic algorithm
(Random), the full implementation of all additional steps (EDF + NJF + Clustering, which includes
clustering and EDF + NJF) of our proposed algorithm performs significantly better in all three
performance metrics. It is also interesting to see the impacts of each extra steps. First of all, clustering
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alone does not have any physical effect when there is only one charger, which is within our expectations.
Clustering only starts to have moderate performance margin over the random genetic implementation
in multi-charger scenarios. Second, NJF-Clustering appears to perform better (in terms of successful
recharging and data packet delivery rate) than EDF-Clustering in cases with less available chargers.
However, as the number of chargers increases (≥3), the performances of the two start going the
opposite directions. It appears that when there are more chargers at our disposal, the weighting in
“time” is more essential than the “distance” factor. Note, NJF-Clustering does still perform better
in terms of average moving distance, which is reasonable as it takes “distance” as its first priority.
Third, although EDF + NJF + Clustering implementation consistently achieves less in average moving
distance of chargers, it seems to be the only one that this metric increases as the number of cars.
The reason for this may be due to the sometimes conflicting circumstances between the “time” and
“distance” factors, and the compromise made by the genetic procedure causes the increase in average
moving distance.

Energies 2019, 12, x FOR PEER REVIEW  16 of 20 

 

NJF-Clustering), and with none of the above (denote Random, meaning no clustering is performed 
and all initial chromosomes are generated randomly).  

From the results shown in Figure 8, it is obvious that, when comparing to pure genetic 
algorithm (Random), the full implementation of all additional steps (EDF + NJF + Clustering, which 
includes clustering and EDF + NJF) of our proposed algorithm performs significantly better in all 
three performance metrics. It is also interesting to see the impacts of each extra steps. First of all, 
clustering alone does not have any physical effect when there is only one charger, which is within 
our expectations. Clustering only starts to have moderate performance margin over the random 
genetic implementation in multi-charger scenarios. Second, NJF-Clustering appears to perform 
better (in terms of successful recharging and data packet delivery rate) than EDF-Clustering in cases 
with less available chargers. However, as the number of chargers increases (≥3), the performances of 
the two start going the opposite directions. It appears that when there are more chargers at our 
disposal, the weighting in “time” is more essential than the “distance” factor. Note, NJF-Clustering 
does still perform better in terms of average moving distance, which is reasonable as it takes 
“distance” as its first priority. Third, although EDF + NJF + Clustering implementation consistently 
achieves less in average moving distance of chargers, it seems to be the only one that this metric 
increases as the number of cars. The reason for this may be due to the sometimes conflicting 
circumstances between the “time” and “distance” factors, and the compromise made by the genetic 
procedure causes the increase in average moving distance. 

1 2 3 4
0

10
20
30
40
50
60
70
80
90

100

se
ns

or
s 

be
en

 c
ha

rg
ed

 (%
)

number of cars

 RANDOM
 Clustering
 EDF+Clustering
 NJF+Clustering
 EDF+NJF+Clustering

(a) 

1 2 3 4
60
70
80
90

100
110
120
130
140
150
160
170

m
ov

in
g 

di
st

an
ce

 (m
)

number of cars

 RANDOM
 Clustering
 EDF+Clustering
 NJF+Clustering
 EDF+NJF+Clustering

(b) 

1 2 3 4
0

10
20
30
40
50
60
70
80
90

100

re
ce

iv
ed

 p
ac

ke
ts

 (%
)

number of cars

 RANDOM
 Clustering
 EDF+Clustering
 NJF+Clustering
 EDF+NJF+Clustering

 
(c) 

Figure 8. Performance comparisons among variations of our proposed algorithm in terms of:
(a) percentage of sensors being charged successfully, (b) average moving distance of charging vehicles,
and (c) percentage of successful data packets delivery. Note that simulation time and network traffic
are set at 10,000 s and [0, 100/n], while the other parameters are the same as shown in Table 2.
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4.4. The Impacts of Varying Number of Chargers

In this simulation, we try to investigate the effects of increasing the number of chargers under
light ([0..10/n]) and heavy ([0..100/n]) network traffic scenarios. Note, the full implementation of
our algorithm (i.e., the EDF + NJF + Clustering implementation) is adopted in this and the following
simulations. Also, the simulation time is extended to 1,000,000 s to explore the comparatively long-term
effects of our algorithm.

As shown in Table 4, we can see that under light traffic conditions, an increase in the number of
chargers available does not improve much in terms of both a successful sensor charging rate and data
packet delivery rate. On the other hand, it does show a positive impact as network traffic becomes
heavier, especially in terms of data packet delivery rate. Note that less than 100% of the percentage
of sensors that have been charged may be due to the strict setting in the initial residual of nodes
(in-between 5% and 25%) and the hot spot effect around the base station, which result in the early
death of nodes without having any chance of being recharged. In addition, we may also observe the
results and realize how the failure of even a small percentage of sensors may affect the final successful
data delivery. For example, in a scenario with heavy network traffic and one available charger, a less
than 4% rate of recharge misses may cause drops in packet delivery by more than a quarter.

When it comes to moving distance, more chargers mean more add-on costs induced by moving
these chargers back to the base station for energy replenishment, and thus increase the average moving
distance of charging vehicles. Overall, having more chargers is definitely helpful in prolonging a sensor
network’s operations. However, the average moving distance of chargers in light traffic conditions
all appear to be longer. It seems that there are less recharge requests expected in that case. As a
result, each scheduled mission of a charger turns out to service less sensor nodes, and thus increases
the average moving distance per sensor charged. Also, due to the same afore-mentioned reasons
(the strict setting in initial residual of nodes and the hot spot effect around the base station), the chargers
(initially located at the base station) usually tend to service nearby sensor nodes in the beginning of
the simulation. As the simulation proceeds over time, the effect would be less obvious. That is why
we see results with significantly lower average moving distances (less than 100 m) from previous
simulations when their simulation time was set to 10,000, instead of 1,000,000 s in this simulation and
the following ones.

Table 4. Simulation results with varying numbers of chargers.

Number of cars
Sensor Been Charged (%) Moving Distance (m) Packet Delivery Rate (%)

[0..10/n] [0..100/n] [0..10/n] [0..100/n] [0..10/n] [0..100/n]

1 99.810% 96.041% 199.9 218.6 99.998% 72.188%
2 100% 97.080% 256.3 221.9 99.999% 74.596%
3 99.810% 98.008% 263.7 232.2 99.999% 80.925%
4 99.683% 99.084% 262.6 240.9 99.998% 94.895%

(Note, simulation time and network traffic are set at 1,000,000 s, while the other parameters are the same as shown
in Table 2.).

4.5. Comparison of Scheduling Performance with Other Mrthods

In the final simulation, we compare scheduling performance between ours and the
afore-mentioned algorithm [5], which uses static combination of “time” and “distance” with the
same weight. The algorithm was called TemporAl and Distantial Priority charging scheduling
algorithm (denoted by TADP). EDF scheduling outcomes are also included and used as the baseline
for comparison. The simulations are done under both light ([0..10/n]) and heavy ([0..100/n]) network
traffic scenarios with one charger. The results, as shown in Table 5, indicate that our algorithm
outperforms the other two implementations in all three performance metrics under both network
loading conditions.
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Table 5. Performance comparison between ours and the other methods.

Method
Sensor Been Charged (%) Moving Distance (m) Packet Delivery Rate (%)

[0..10/n] [0..100/n] [0..10/n] [0..100/n] [0..10/n] [0..100/n]

EDF 94.479% 87.473% 346.3 292.2 89.272% 70.094%
TADP 89.270% 87.640% 335.1 289.4 78.603% 70.201%
Ours 99.810% 96.041% 199.9 218.6 99.998% 72.188%

(Note, simulation time and network traffic are set at 1,000,000 s, while the other parameters are the same as shown
in Table 2).

One thing that deserves noting is that TADP performs worse than EDF in the lighter traffic
condition, and only does slightly better when traffic is heavier. It appears that given “time” and
“distance” the same weight as TADP may result in a scenario with a sensor node closer to the charger
but with an less urgent need to be recharged first. In the meantime, another sensor that needs
immediate attention yet located a few hops away may just drain its last bit of power. On the other
hand, EDF would have made a completely different decision, which may just have enough time
to save both sensors from dying in a less busy network environment. In fact, the lower successful
recharge percentage / data delivery rate and shorter average moving distance of TADP (as compared
to EDF) imply that this would very likely be the case. However, when network traffic becomes
heavier, “time”-first or “time and distance”-balanced do not seem to have much difference. Either
way, the results indicate that charge scheduling that depends on putting on some pre-determined
and static weights upon the “time” and “distance” may not be a good idea. This, along with a much
better performer in both light and heavy traffic conditions, demonstrates that the dynamic nature of
our proposed recharge scheduling algorithm may well be a better answer to the constantly changing
sensor network environment.

5. Conclusions

In this paper, a genetic approach to solve the emergent charging scheduling problem with
multiple charging vehicles for rechargeable wireless sensor networks is proposed. The multiple
charging vehicles scheduling problem is nicely transformed to a genetically evolving process through
a novel design of chromosome structure, selection, cross-over and mutation operations. The major goal
is to ensure a sustainable sensor network, while at the same time minimizing the traveling distance of
the mobile chargers.

In terms of the number of mobile chargers used in a WRSN, there can be one or multiple ones
available. However, with either one charger or multiple chargers, the optimal charging scheduling
and its related issues have been proven to be an NP-hard problem and only heuristic/near-optimal
solutions can be provided. Our proposed genetic-based scheduling algorithm is distinct and different
from the others in the following three aspects. First of all, the proposed algorithm incorporates the
EDF (Earlier Deadline First) and NJF (Nearest Job First) scheduling algorithm generated outcomes
into the initial populations (aside from the other randomly generated ones), which guarantees that the
results of our genetic optimization would be no worse than the EDF and NJF results. Second, we adopt
an extra step where clusters sensors would be charged to k groups based on their locality and assigned
to k available chargers in newly generated populations of each generation. This step ensures sensor
nodes that are closer been assigned to the same charger later on, which then effectively reduces the
moving distance of chargers. Finally, the fitness function we developed imposes no restriction on the
charging vehicle’s moving speed and the sensor’s charging rate. Sensors are also allowed to issue
requests at different target power levels and provide different charging deadlines. These facts imply
that the fitness function, and thus our genetic approach, can be used to deal with dynamic sensors’
charging requirements in the multiple mobile chargers scenarios. In other words, the proposed genetic
algorithm may be applied to WRSNs with heterogeneous sensors and mobile chargers.
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With extensive simulations, the impacts of many parameters in the proposed genetic algorithm
are revealed and investigated further so that more insights may be gained, and adjustments made
accordingly. The simulations also show that the proposed approach can find efficient scheduling paths
for multiple charging vehicles while making sure virtually all the sensors in need are charged in time.
In addition, the idea of clustering charging requests made by adjacent sensors and assigning these
requests to the same mobile charger has proven to be a very good strategy in reducing the overall
moving distance of chargers, and thus saving battery power and efficiency in charging the sensors.

For future research, it would be interesting to apply the proposed genetic algorithm to WRSNs
with heterogeneous sensors and mobile chargers. In addition, designing a more efficient genetic
approach to deal with more sensors and more charging requirements so that the overall computation
time may be reduced in order to respond promptly to more realistic and complex situations will be our
other concern. Finally, our algorithms assume that mobile chargers always return to the base station for
recharge until its/their next missions. We also assume there would always be some available charger(s)
ready for deployment. In reality, the recharging of the chargers themselves [27,28] (includes battery
for charging sensor nodes and battery for their movement, and whether or not the base station is the
only source for providing energy to the chargers) is another issue that deserves further exploration,
which will also be our future research topic.
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