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Abstract: Succinic acid (SA) is a valuable raw material obtained by hydrogenation of maleic acid (MA).
The product selectivity of this reaction is highly dependent on the reaction conditions. This study
therefore investigated the effect of the reaction temperature, hydrogen pressure, and reaction time
on the liquid-phase hydrogenation of MA by a Pd/Al2O3 catalyst. Complete conversion of MA and
100% selectivity for SA were achieved at a temperature of 90 ◦C, H2 pressure of 5 bar, and reaction
time of 90 min. Fumaric acid (FA) was formed as an intermediate material by hydrogenation of MA
under nonoptimal conditions. The impact of the percentage of Pd dispersion and phase of the Al2O3

support (γ, θ + α, and α) was also examined. The Pd/Al2O3 catalyst with 29.8% dispersion of Pd
and γ phase of Al2O3 exhibited the best catalytic performance. Thus, catalytic activity depends not
only on the amount of Pd dispersion but also on the physicochemical properties of Al2O3.
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1. Introduction

The growth of the petrochemical industry has brought about environmental problems such as
industrial waste, pollution, and global warming. Therefore, many researchers have been investigating
sustainable and renewable resources. In this regard, succinic acid (SA) has attracted attention as an
eco-friendly raw material for the production of biodegradable plastics and biosolvents. SA is widely
used as an intermediate material in the production of high value products such as γ-butyrolactone,
1,4-butanediol, and tetrahydrofuran [1,2]. It is usually obtained by hydrogenation of maleic anhydride
(MAN), although the product of this reaction varies depending on the reaction conditions. Several
researches have investigated various catalysts for this reaction, such as Ru/C, Ni/HY–Al2O3, Pd/C,
Pd/SiO2, Ni/TiO2 and Pd/Al2O3 [3–9]. The reaction pathways of hydrogenation of maleic acid (MA)
are shown in Figure 1. Kim et al. reported a yield of 99.97% SA using Pd/C as the catalyst and
conducting the reaction under 1.0 MPa of H2 at 90 ◦C for 150 min [3]. Torres et al. reported achieving
100% selectivity for succinic anhydride through the reaction catalyzed by a mesoporous Ni/TiO2

catalyst at low temperature [8]. Yuan et al. reported achieving MA conversion of 98% and succinic
anhydride selectivity of 99% using Pd/Al2O3 catalyst under 1.0 MPa of H2 pressure and 1,4-dioxane
as solvent [5]. Among the various catalysts, the Pd/Al2O3 catalyst has an advantage for the chemical
industry due to the high thermal stability and high dispersion of Pd [10,11]. However, few studies have
been performed on the optimization of reaction conditions for the hydrogenation of maleic acid (MA)
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to SA over a Pd/Al2O3 catalyst. In our previous study, we reported that the particle size distribution
of Pd is influenced by the physicochemical properties of Al2O3 (specific surface area and surface
functional groups) and catalyst preparation conditions (pH, solution temperature, and reduction
agent) [12,13]. Herein, we investigated the effect of reaction temperature (T), H2 pressure (PH2),
and reaction time (t) on the liquid-phase hydrogenation of MA over a Pd/Al2O3 catalyst. The catalytic
activities of Pd/Al2O3 with varying percentage of Pd dispersion and Al2O3 phase (γ, θ + α, and α)
were also compared. Finally, the reusability of the Pd/Al2O3 catalyst was assessed.
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2. Experiment

2.1. Catalyst Preparation

The catalyst support, Al2O3 (≥99%, Alfa Aesar, γ phase, average particle size: 20 nm), was dried
at 105 ◦C for 4 h and calcined at various temperatures (900, 1100, and 1150 ◦C) for 4 h. The Pd/Al2O3

catalysts, containing 5 wt % Pd, were prepared by the deposition–precipitation method. The detailed
procedure has been described in our previous research [12]. Briefly, Al2O3 was dispersed in the Pd
precursor solution at 60 ◦C, and the pH was adjusted using 0.25 M NaOH solution. Reduction of the
catalyst was carried out in the liquid phase using formalin solution (10 wt %, Sigma Aldrich, St. Louis,
MO, USA). The prepared Pd/Al2O3 catalysts are denoted as Pd/Al2O3 (X)_pHY, where X is the heat
treatment temperature of the Al2O3 support, and Y is the pH. The physicochemical properties of the
catalysts are summarized in Table 1.
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Table 1. Summary of physicochemical properties of Pd/Al2O3 catalysts [12,13].

Catalysts Pd/Al2O3
(105)_pH 7.5

Pd/Al2O3
(900)_pH 7.5

Pd/Al2O3
(900)_pH 11.5

Pd/Al2O3
(1100)_pH 7.5

Pd/Al2O3
(1150)_pH 7.5

Al2O3 phase 1 γ γ γ θ + α α

Al2O3 surface area 2 195 146 146 54 6
Al2O3 Pore volume 2 0.82 0.62 0.62 0.28 0.007

Al2O3 Acidity (mmol/g) 3 0.47 0.37 0.37 0.22 0.07
Pd dispersion (%) 4 20.6 29.8 13.1 11.0 2.9
1 X-ray diffraction, 2 Brunauer–Emmett–Teller analysis of N2 adsorption–desorption, 3 NH3 temperature
programmed desorption, 4 CO chemisorption.

2.2. Hydrogenation of Maleic Acid

Liquid-phase hydrogenation of maleic acid was conducted in a 100 mL stainless steel autoclave.
MA (0.29 mol), 46 g distilled water, and 0.1 g Pd/Al2O3 were placed in the autoclave. The reactor
was purged with nitrogen three times to remove air, and hydrogen was then used to purge out
nitrogen. The sealed autoclave was pressurized to the desired pressure and heated to the desired
temperature, and the reaction mixture was stirred at 700 rpm. The catalytic reaction was carried out for
15–90 min. The reaction products were analyzed by high-performance liquid chromatography (HPLC,
Shimadzu Co. Model Prominence) equipped with a refractive index detector and Agilent Hi-Plex
H (7.7 mm × 300 mm × 8 µm). The mobile phase was 5 mM H2SO4 with a flow rate of 6 mL min−1.
The MA, SA, fumaric acid (FA), and malic acid (MLA) standards (Sigma Aldrich) were analytical
grade and used without purification. The reaction was conducted at varying temperature, hydrogen
pressure, and reaction time. Conversion and selectivity were calculated as follows:

Conversion (%) =
Initial mole o f MA − f inal mole o f MA

Initial mole o f MA
× 100 (1)

Selectivity (%) =
mole o f desired product

Initial mole o f MA − f inal mole o f MA
× 100 (2)

3. Results and Discussion

3.1. Effect of Reaction Temperature

The effect of reaction temperature on MA hydrogenation over the Pd/Al2O3 (900)_pH7.5
catalyst was investigated within the range of 30–110 ◦C (Figure 2). As the reaction temperature
increased, the conversion of MA increased, while the selectivity for SA decreased from 100% to 85%.
At temperatures above 90 ◦C, the selectivity for FA and MLA slightly increased. It has been reported
that, at high temperature, MA is unstable and can isomerize to the more stable FA [14]. On the other
hand, the isomer FA undergoes hydration to form MLA at high temperature. Thus, 90 ◦C is the optimal
temperature for high conversion of MA and selectivity for SA.
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at PH2 = 3 bar and t = 60 min.

3.2. Effect of H2 Pressure

The effect of H2 pressure on MA hydrogenation over the Pd/Al2O3 (900)_pH7.5 catalyst was
investigated within the range of 1–15 bar (Figure 3). MA conversion and SA selectivity increased from
30% to 100% and 53% to 100%, respectively, as the H2 pressure increased from 1 to 15 bar. Within the
range of 1–5 bar, the selectivity for FA gradually decreased from 40% to 1.6%. As demonstrated above,
FA can be produced by isomerization of MA at high temperature. However, FA is predominantly
produced at low H2 pressure, indicating that FA is an intermediate in the conversion of MA to
SA. Kim et al. reported that the formation of FA is determined by the relative reaction rates of
hydrogenation and protonation [3]. Protonation occurs faster than hydrogenation at H2 pressures
lower than 5 bar but slower at higher pressures.
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3.3. Effect of Reaction Time

The effect of reaction time on MA hydrogenation over the Pd/Al2O3 (900)_pH7.5 catalyst was
investigated within the range of 15–90 min at a fixed reaction temperature of 90 ◦C and H2 pressure of
5 bar (Figure 4). The conversion of MA dramatically increased up to 80% upon increasing the reaction
time from 15 to 30 min. It subsequently changed more gradually as the reaction time was prolonged
from 30 to 90 min. The selectivity for FA initially increased between 15 and 30 min and then decreased
as the reaction time increased from 30 to 90 min. Thus, 100% MA conversion and SA selectivity were
achieved at a temperature of 90 ◦C, H2 pressure of 5 bar, and reaction time of 90 min.
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3.4. Effect of Al2O3 Support Properties and Pd Dispersion

The effect of the properties of the Al2O3 support and dispersion of Pd on the catalytic activity
for liquid-phase hydrogenation of MA were investigated under the following conditions: T = 90 ◦C,
PH2 = 5 bar, t = 60 min, and stirring rate = 700 rpm. The physicochemical properties of the different
Pd/Al2O3 catalysts are summarized in Table 1. The order of decreasing catalytic activity was Pd/Al2O3

(900)_pH7.5 > Pd/Al2O3 (105)_pH7.5 > Pd/Al2O3 (900)_pH11.5 > Pd/Al2O3 (1100)_pH7.5 > Pd/Al2O3

(1150)_pH7.5 (Figure 5). The conversion of MA and selectivity for SA increased with increasing
dispersion (i.e., decreasing particle size) of Pd, indicating that Pd was the more active species in the
hydrogenation of MA. The dispersion of Pd in the Pd/Al2O3 (900)_pH11.5 and Pd/Al2O3 (1100)_pH7.5
catalysts was similar at 13.1% and 11.0%, respectively. However, the catalysts exhibited significantly
different MA conversion and SA selectivity owing to the difference in the properties of the Al2O3

support. It has been reported that the isomerization of MA to FA can occur without a catalyst and
is strongly affected by the concentration of maleic acid, the reaction temperature, and the pH of the
solution [15]. Al2O3 in the Pd/Al2O3 (900)_pH11.5 catalyst was in the γ phase, which has a large
specific surface area and strong acid sites, whereas in the Pd/Al2O3 (1100)_pH7.5 catalyst, it was in
the θ + α phase, which has a small specific surface area and weak acid sites. The physicochemical
properties of the Al2O3 support affect the adsorption strength of the reactant and Pd nanoparticles on
the active sites. Al2O3 in the γ phase can provide a large number of active sites for the hydrogenation
reaction and allows increased retention time on the catalyst surface, resulting in high conversion of MA
and high selectivity for SA. In contrast, the low Pd dispersion, small specific surface area, and weak
acid sites in Pd/Al2O3 catalysts with Al2O3 in the θ + α or α phase can cause reduced retention time
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on the catalyst surface, resulting in low efficiency for the hydrogenation reaction. These results suggest
that a decrease in the retention time of MA and H2 on the catalyst surface leads to a lower reaction rate.
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3.5. Reusability of Pd/Al2O3 (900)_pH 7.5 Catalyst in Hydrogenation of MA

Reusability and stability are important factors in the chemical industry. The reusability of the
Pd/Al2O3 (900)_pH7.5 catalyst was therefore investigated. Liquid-phase hydrogenation of MA was
carried out under optimized reaction conditions. After each reaction, the catalyst was separated from
the reactant and washed with deionized water. The conversion of MA and selectivity for SA did not
decrease significantly for seven cycles, indicating that the Pd/Al2O3 (900)_pH7.5 catalyst was stable
during the liquid-phase hydrogenation of MA (Figure 6).
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4. Conclusions

Liquid-phase hydrogenation of MA to SA with different Pd/Al2O3 catalysts was investigated,
focusing mainly on the effect of two factors on catalytic activity and selectivity: reaction conditions
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and physicochemical properties of the catalyst. The effect of the reaction conditions was investigated
by varying the reaction temperature, H2 pressure, and reaction time. Depending on the reaction
conditions, FA was formed as an intermediate or final product through isomerization of MA. Under
the optimal reaction conditions of T = 90 ◦C, PH2 = 5 bar, t = 90 min, 100% MA conversion and 100%
SA selectivity were achieved using the Pd/Al2O3 (900)_pH7.5 catalyst. The effect of the Al2O3 phase
and Pd dispersion were also investigated. Catalytic activity and selectivity were found to increase
with Pd dispersion. The characteristics of the Al2O3 phase strongly affected the adsorption strength of
the reactant and Pd nanoparticles on the active sites and, consequently, the catalytic activity.
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