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Abstract: With the development of the carbon market in China, research on the carbon price has
received more and more attention in related fields. However, due to its nonlinearity and instability,
the carbon price is undoubtedly difficult to predict using a single model. This paper proposes
a new hybrid model for carbon price forecasting that combines fast ensemble empirical mode
decomposition, sample entropy, phase space reconstruction, a partial autocorrelation function, and an
extreme learning machine that has been improved by particle swarm optimization. The original
carbon price series is decomposed using the fast ensemble empirical mode decomposition and sample
entropy methods, which eliminate noise interference. Then, the phase space reconstruction and
partial autocorrelation function methods are combined to determine the input and output variables
in the forecasting models. An extreme learning machine optimized by particle swarm optimization
was employed to forecast carbon prices. An empirical study based on carbon prices in three typical
regional carbon markets in China found that this new hybrid model performed better than other
comparable models.

Keywords: carbon price forecasting; decomposition; phase space reconstruction; maximal Lyapunov
exponent; partial autocorrelation function; extreme learning machine optimized by particle
swarm optimization

1. Introduction

Nowadays, climate change has seriously threatened sustainable human development. Especially,
China, as the world’s biggest emitter of CO2, is particularly concerned in this regard [1]. In order to
actively implement the Paris Agreement and to contribute to the fight against climate change, China
has committed to reducing its carbon intensity by 40–45% per unit of GDP whilst increasing the share
of non-fossil energy consumption to 15% by the year of 2020. Since the introduction of the Emissions
Trading System (ETS) by the European Union (E.U.) in 2005, carbon emissions trading has become an
important market tool for responding to climate change as well as a long-term mechanism to address
pollution problems. Advancing with the times, China has successfully established regional pilots for
carbon emissions trading and has currently formed eight regional carbon markets, consisting of three
provinces and five cities. Moreover, in the carbon trading market, an important corollary factor is
carbon price prediction, which helps to reflect the carbon reduction performance and market value [2].
It is certain that an accurate and a rational prediction of carbon prices would allow us to understand
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the pattern of carbon price variations and avoid risks in investments [3]. Therefore, it is meaningful
to be concerned with scientific methods for predicting carbon prices in China. In addition, carbon
prices in China’s regional markets are time-series-connected with historical data, which also makes it
possible to deliver an accurate prediction by using the model that is presented in this paper.

While early-stage research has been conducted on a qualitative analysis of China’s carbon
market [4,5], more and more carbon price prediction methods have emerged in recent studies. They can
be classified into two types that are focused on modeling and forecasting the carbon price volatility:
mathematical statistical models and artificial neural networks. The conventional mathematical
statistical models include difference-in-difference (DID), the vector auto-regression model (VAR),
the autoregressive integrated moving average (ARIMA), and generalized autoregressive conditional
heteroscedasticity (GARCH) models. Huang [6] proved that carbon emission trading has a significant
and sustained promotion effect on carbon emission reductions by using the difference-in-difference
method. Zeng et al. [7] employed a structural vector autoregressive (SVAR) model for exploring the
dynamic relationships among the carbon emission allowance price, the regional economy, and energy
prices in Beijing. Their empirical research results showed that, instead of the energy price, the historical
carbon allowance price series was the major influencing factor on the carbon price. Zhu and Wei [8]
examined the forecasting ability of three hybrid ARIMA models under the E.U. ETS. However,
the ARIMA model requires a stable time series, which obviously renders it unsuitable for the direct
prediction of a carbon price time series. Notably, the different GARCH-type models are popular in
this field. Xia [9] studied the carbon price volatility of five pilot cities in China with the AR-GARCH
(1,1) model. The results of experiments showed high consistency. Byun and Cho [10] compared three
methods to predict the related volatility, and concluded that the GARCH-type models were the most
suitable method. However, Zhang et al. [11] found that GARCH-type models are only satisfactory
for in-sample forecasting and have limited significance for out-of-sample results. As described in the
abovementioned studies, a single statistical model may not satisfy the condition of flexibility for an
appropriate simulation due to the dynamic characteristics of carbon price volatility.

Today, with the growing data volume and algorithms’ ability to learn, machine learning algorithms
are prevailing. The most essential feature of machine learning is to learn the data, which means to build
a system to parse data so as to excavate the laws that hold between the data. The main advantage of a
machine learning algorithm is that it can consider multiple attributes or features at one time and capture
the hidden relationship between them that is difficult for a statistical model to reveal [12–17]. Compared
with a traditional statistical model, machine learning algorithms have a stronger self-learning ability,
a generalization ability, fast calculation speed, an associative memory ability that can fit a nonlinear
relationship, and more flexible applicability to the amount of sample data. Based on these advantages,
machine learning algorithms are applied in many fields [18–24]. For example, many algorithms
have been developed to predict carbon prices, such as the back propagation neural network (BPNN),
the support vector machine (SVM), and the radial basis function neural network (RBF). Liu and
Sun [25] applied a BPNN to forecast the carbon price and the carbon trading volume in Shanghai.
Zhang et al. [26] proposed a grey neural network improved by the ant colony algorithm (GNN-ACA)
for carbon spot price forecasting. The results showed that the selected model performed significantly
better than single ARIMA and least squares support vector machine (LSSVM) models by using data
collected from the E.U. ETS. Tsai [27] proposed a carbon price forecasting system using the radial
basis function neural network (RBF), which can supply precise and real-time predictions of carbon
prices. Moreover, the SVM and LSSVM, individually or in combination with plenty of other algorithms,
have been widely adopted to predict the carbon trading price. Gao and Li [28] compared some different
prediction models in accordance with the daily EU emission allowance (EUA) futures prices from
March 2008 to September 2013 (DEC12). The results indicated that the proposed EMD-PSO-SVM
model performed better than other artificial neural networks (ANNs) in carbon price forecasting.
Razak et al. [29] and Zhu et al. [30] used LSSVM as their main forecasting model. Their conclusions
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indicated that the LSSVM model seems to be a superior method for forecasting highly nonlinear and
nonstationary carbon prices.

Huang et al. [31] put forward the extreme learning machine (ELM) model in 2004, which has a
higher precision of generalization as well as a faster convergence speed than the abovementioned
models. Moreover, it can avoid many of the problems that may arise in gradient-based learning
methods; for instance, stopping criteria and learning periods. As a consequence, it has been
widely employed to make predictions in a variety of fields since its introduction. Shrivastava and
Panigrahi [32] investigated the performance of a combination of ELM and the Wavelet technique
(WELM) in price forecasting in electricity markets. The empirical research demonstrated that this
model is appropriate for price forecasting. Liu et al. [33] applied the ELM model in wind speed
forecasting. In this study, the ARIMA model and the SVM model were involved in a comparison of
the prediction performance. The experimental results showed that the proposed WPD-EMD-ELM
model performed the best among the compared models. Furthermore, an ELM’s input weights matrix
and hidden layer bias are key parameters in the ELM’s generalization capability. Based on this, it is
essential to utilize an optimization algorithm to obtain the optimal parameters. Rocha et al. [34]
implemented parameter selection for an ELM improved by Particle Swarm Optimization (PSO-ELM)
in the forecasting of a distributed electrical generation system’s capacity. Fan et al. [35] proposed a
PSO-ELM model for short-term power load forecasting. The results proved that the improved model
showed a higher learning rate and prediction accuracy compared with the traditional ELM model.
From the above, it can be found that the ELM-type models have been well-employed in a variety of
forecasting scenarios. Therefore, one of the purposes of this paper is to verify the feasibility of the
PSO-ELM model for carbon price prediction.

Given the chaotic property and intrinsic complexity of carbon prices, it may not be appropriate to
directly forecast carbon prices before data preprocessing. Presently, empirical mode decomposition
(EMD) and the wavelet transform (WT) are considered to be the common data preprocessing
approaches for decomposing the initial series and eliminating the random volatility. WT was applied to
signal processing in electricity market price forecasting by Saber et al. [36]. In the process of analyzing
the unified interval price of China’s carbon trading market, Li and Lu [37] applied the GARCH-EMD
model to predict carbon prices. The results demonstrate that EMD is an effective method to decompose
unstable carbon prices. Zhu et al. [38] built a multiscale model that combined EMD and developmental
least squares support vector regression (LSSVR) for carbon price forecasting with a high accuracy.
Basing on the data from the E.U. ETS, the empirical results showed that the EMD-LSSVR model
performed the best in comparison with other prediction models according to the values of statistical
indicators. It is worth noting that EMD may have a mode mixing problem that causes the decomposed
intrinsic mode functions (IMFs) to lose their meaning. To tackle the problem, Huang and Wu carried
out ensemble empirical mode decomposition (EEMD) via introducing white noise into the original
series [39]. In 2014, fast ensemble empirical mode decomposition (FEEMD) was proposed to improve
EEMD’s computing capacity for a large amount of sample data [40]. They were all used successfully
in wind speed forecasting. Heng et al. [41] reconstructed the initial data for wind speed forecasting
by FEEMD. Sun and Liu proposed EMD and FEEMD for processing the original wind speed data,
and then combined these methods with different intelligent algorithms for the prediction of wind
speed [42,43]. Thanks to carbon prices having dynamic and nonlinear properties that are similar
to those of wind speed, this paper proposes EMD and FEEMD to decompose a carbon price series
and introduces both a phase space reconstruction theory (PSR) and a partial autocorrelation function
(PACF) for the analysis of the decomposed subsequences.

Currently, China has constructed eight regional carbon markets, and, on 19 December 2017, started
the construction of the national carbon market. As the earliest pilot markets, the Beijing, Shenzhen,
and Hubei carbon markets have been in smooth operation and gradually formed their features in the
process of promoting emission reductions.
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Having summarized the research of our predecessors, this thesis selects the carbon price of
Beijing, Shenzhen, and Hubei as the example. We focus on Beijing’s carbon price, and analyze the
features through a comparison with the other two typical markets. After being decomposed by the
FEEMD, the IMFs are analyzed by phase space reconstruction and a partial autocorrelation function
to determine the input of the forecasting models in the next step. Additionally, this paper adopts the
PSO-ELM model to forecast carbon prices.

The main contribution of this paper is this new hybrid combination model for carbon price
prediction, which is expressed as FEEMD-PSR-PACF-PSO-ELM. Firstly, this paper comprehensively
considers the chaotic property and the partial autocorrelation of decomposed carbon price subsequences
to reconstruct the input and output variables. Secondly, the research idea, which is based on the FEEMD
model combined with the PSO-ELM model to decompose carbon prices, represents a new attempt to
predict carbon prices.

The rest of this paper is divided into four sections. Section 2 presents the methods and models
that are applied in this paper, including the decomposition methods, the chaotic series reconstruction,
and the hybrid prediction model. An exhaustive explanation of the hybrid forecasting models that
are proposed in this paper is given in Section 3. The data processing and the analysis of carbon price
forecasting based on actual data from different regions under China’s ETS are presented in Section 4.
Finally, Section 5 provides conclusions according to the results of the empirical analysis.

2. Materials and Methods

2.1. The Particle Swarm Optimization Algorithm

Proposed by Kennedy and Eberhart [44] in 1995, the particle swarm optimization algorithm
simulates bird predation behavior and calls each bird a particle. As a well-recognized optimization
algorithm, its rationale is to continuously update the distance between Pbest (the best location found
by itself) and Gbest (the current global best position). Suppose that, in a D-dimensional search space,
the t-th particle is presented by Xt = (xt1, xt2, . . . , xtD)T, and the speed and the Pbest are expressed
as Vt = (vt1, vt2, . . . , vtD)T and Pt = (pt1, pt2, . . . , ptD)T, respectively. In addition, Gbest is stated as
Gt = (Gt1, Gt2, . . . , GtD). A kernel of PSO can be expressed as:

Vk+1
td = wVk

td + c1r1(Pk
td − Xk

td) + c2r2(Gk
td − Xk

td) (1)

Xk+1
td = Xk

td + Vk+1td, d = 1, 2, . . . , D; k = 1, 2, . . . , n (2)

where w is assumed to be the inertia weight to amend the search range, and c1 and c2 are
acceleration factors set to 1.4945. Afterwards, r1 and r2 are assigned evenly among the interval
[0, 1]. In order not to blindly search, the position and speed values have limitations of [−Xmax, Xmax]
and [−Vmax, Vmax], respectively.

2.2. Extreme Learning Machine

Extreme learning machine is an innovative algorithm based on a feed forward neural network as
shown in Figure 1. The gradient descent algorithm is used to regulate the weights and parameters
in the training process. Meanwhile, the Moore–Penrose inverse is used to calculate the hidden
layer matrix to transform the training process into a solution to a least square problem. ELM has
a faster learning velocity in comparison with other neural network models, and it can be used for
classification, regression, clustering, and sparse approximation while guaranteeing learning accuracy
at the same time.

Of note is that, during the learning process, the weight values and thresholds may have
non-optimal values, which lead to poor performance and an unstable output. Actually, ELM needs a
large number of hidden layer nodes to reach an expected result, which may make it prone to overfitting.
To resolve these problems, this paper uses PSO to optimize the deviation of the hidden layer and the
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input layer weight of ELM, referred to as PSO-ELM, which works as shown in Figure 2. In Figure 2,
Part 1 is the forecasting process of the extreme learning machine, and Part 2 is the principle of the
particle swarm optimization algorithm. The proposed model not only takes full advantage of PSO’s
global search capability and ELM’s rapid convergence rate, but also overcomes the inherent problems
of ELM.Energies 2019, 12, x FOR PEER REVIEW  5 of 31 
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2.3. Fast Ensemble Empirical Mode Decomposition and Sample Entropy

As described above, fast ensemble empirical mode decomposition (FEEMD) is a fast implementation
of EEMD. It is often used for signal decomposition, which decomposes a nonstationary timing signal
X(i) (i = 1, 2, . . . , n) into a finite number of IMFs and one residual R component. Moreover, it can
effectively solve the mixing mode phenomenon of EMD, and introduces white noise and the idea of an
ensemble average. Given the features of a dataset, the amplitude k of white noise is set as 0.05–0.5
times and the iteration time M is set to 100.

Sample entropy (SE) is a modification of approximate entropy (AE), which is used to assess the
complexity of physiological time-series signals, diagnose disease states, and so on, and was proposed
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in 2000 by Richman et al. [45]. The larger the SE values, the higher the sample complexity. Furthermore,
SE has two advantages over AE: data length independence and better consistency; that is, the influence
of the parameters on the sample entropy is the same. The SE value has three important parameters,
denoted by N, m, and r, where N expresses the length of subsequences, m represents the dimension,
and r is the similarity tolerance. The formula for calculating SE is shown below.

SE = lim
N→∞

{− ln[Bm+1(r)/Bm(r)]} (3)

Since N cannot be an infinite value in an actual calculation application, N takes a finite value,
and the sample entropy is calculated as:

SE(N, m, r) = − ln[B m+1(r)/Bm(r)] (4)

Generally, in practical applications, m is 1 or 2, and r is set from 0.1 × std to 0.25 × std (where
std represents the original sequences’ standard deviation). Therefore, this paper sets m at 2 and r as
0.2 × std. Based on the characteristics of the SE value, this paper judges the autocorrelation of each
decomposed sequence by calculating the SE value, and then combines the sequences with similar
SE values. In other words, sequences with similar complexity are combined into new sequences to
prepare for follow-ups.

2.4. Phase Space Reconstruction and the Maximal Lyapunov Exponent

Phase space reconstruction was put forward to deal with the complexity and nonlinearity in time
series based on Chaos. Considering the nonlinear and chaotic characteristics of carbon price time
series, this paper applied phase space reconstruction (PSR) to reconstruct the phase space of each
subsequence to accurately determine the input of carbon price prediction. In general, regarding a time
series {xi} = {x1, x2, . . . , xN} with τ (the delay time) and m (the embedded dimension), which are two
key parameters of PSR, the reconstructed matrix is calculated by:

X(k) = [x(k), x(k + τ), · · · , x(k + (m− 1)τ)]. (5)

Then, the original time series and the corresponding output can be reconstructed as:
X1

X2
...

XN−m+1

 =


x(1) x(1 + τ) · · · x(1 + (m− 1)τ)
x(2) x(2 + τ) · · · x(2 + (m− 1)τ)

...
...

. . .
...

x(N −m + 1) x(N −m + 1 + τ) · · · x(N −m + 1 + (m− 1)τ)

 (6)


x(2 + (m− 1)τ)
x(3 + (m− 1)τ)

...
x(N)

x(N + 1)

. (7)

In mathematics, the Lyapunov index of a dynamic system describes the properties of the
separation rate of infinitely small close tracks [46]. Whether the system has dynamic chaos can
be judged intuitively from whether the maximum Lyapunov exponent is greater than zero: a positive
Lyapunov exponent means that, no matter how small the spacing between the initial two trajectories
is, the difference will increase exponentially with time in the system’s phase space, so that it can be
called Chaos. There are many ways to calculate the maximal Lyapunov exponent, such as the Wolf
method and Gram–Schmidt Renormalization. This paper uses the widely used method ‘Wolf’ [47] to
calculate the maximal Lyapunov exponent under PSR.
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3. The Framework of the Proposed Model

Figure 2 displays the flowchart of the proposed PSO-ELM model for carbon price prediction.
Part 1 is the calculation process of the PSO algorithm and Part 2 is the forecasting procedure of ELM.
In a word, this paper utilizes PSO to optimize the key parameters of ELM.

The focus of the overall hybrid model in this paper can be divided into two parts, which are
presented in Figure 3. One part is to decompose the initial carbon price time series to determine the
input and output of the prediction model. The other part is to forecast the carbon price and verify the
accuracy of the proposed prediction model.
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This paper utilizes FEEMD, EMD, and WT for the decomposition of a carbon price series.
For FEEMD and EMD, the original data is decomposed into several IMFs. Then, this paper calculates
the SE value of each IMF separately to judge its complexity, and the IMFs with similar SE values
are merged to form several new subsequences. PSR is performed for each subsequence, and the
maximum Lyapunov exponent is calculated to test the chaotic characteristics of each subsequence.
In particular, this paper uses PACF to analyze those subsequences whose chaotic characteristics are
not significant. In this way, after comprehensively analyzing the characteristics of the sequences,
the input and output of the PSO-ELM model can be determined more reasonably. Similarly, in part
two, after WT decomposition, the initial data is transformed into an approximate sequence and a
detailed sequence. The detailed sequence is discarded. Then, the same steps of part one are followed
to perform phase space reconstruction and a partial autocorrelation analysis to determine the input
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and output of PSO-ELM. The forecasting is divided into training sets and test sets. Finally, the forecast
is compared with the actual carbon price.

4. Empirical Analysis

4.1. Data

As the capital of China, Beijing’s carbon market development is related to the sustainable
development of the capital in the future. The Beijing carbon market mechanism provides basic support
to the strategic positioning of the capital’s “four centers”. In addition, we select the carbon price data
from the Shenzhen and Hubei carbon markets to perform a comparative analysis. The Shenzhen and
Hubei carbon markets are typical carbon markets in China with a longer transaction time and a higher
transaction volume. Afterward, we chose the daily transaction price of these three carbon markets for
empirical studies. The training set and testing set were divided according to a ratio of 7:3.

We selected the carbon price of the Beijing carbon market from 28 November 2013 to
29 December 2017 in the first case study to verify the hybrid model’s applicability. The carbon price
data from the Shenzhen carbon market from 1 November 2013 to 29 December 2017 and the data
from the Hubei carbon market from 2 April 2014 to 20 June 2017 were used to further test the model’s
validity. To further validate the effectiveness of the model, we updated the latest data on the Beijing
carbon market and conducted an empirical analysis as shown in Section 4.4. Figure 4 shows the
original price data from these three regional carbon markets, which were obtained from the literature
and an official website with the address: http://www.tanjiaoyi.com/.
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4.2. Case Study of the Beijing Carbon Price

4.2.1. Carbon Price Decomposition

It can be seen from Figure 4 that the original carbon price series of the regional carbon markets all
have serious fluctuations. In order to reduce noise interference, this paper proposes the FEEMD method
to decompose carbon prices. At the same time, EMD and WT were also employed to decompose
the same Beijing carbon price series so as to test the superiority of FEEMD. The results are shown in
Figures 5 and 6, respectively. Figure 5a expresses that the FEEMD decomposed the Beijing carbon
price series into seven IMFs and one remainder; Figure 5b shows that EMD decomposes the series into
six IMFs and one remainder. In Figure 6, the original data were decomposed into an approximation

http://www.tanjiaoyi.com/
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A1 and a detail D1 by WT. A1 was expected to present the main fluctuation, while D1 depicted the
highest frequency. Therefore, A1 was used for prediction in this paper.
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4.2.2. The Calculation of Sample Entropy

As described above, SE is used to measure the complexity in a series. Since decomposition by
FEEMD and EMD results in a large number of IMFs, this paper calculates the SE values of each
IMF, which are shown in Table 1 and Figure 7, so as to understand their complexity and merge them
into new sequences, which will improve the computational efficiency. The recombination results are
exhibited in Tables 2 and 3. The new subsequences will be used in the carbon price predictions.

Table 1. The results on the sample entropy (SE) values.

Sub IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

SE
Value

Processed by FEEMD 0.7972 0.4772 0.3983 0.3557 0.0849 0.0649 0.0246 0.0073
Processed by EMD 0.595 0.3777 0.1908 0.0222 0.0269 0.0326 0.0079
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Table 2. The new subsequence after being processed by fast ensemble empirical mode decomposition
(FEEMD).

Index Sub1 Sub2 Sub3 Sub4 Sub5

Results IMF1 IMF2 IMF3, IMF4 IMF5, IMF6 IMF7, R

Table 3. The new subsequence after being processed by empirical mode decomposition (EMD).

Index Sub1 Sub2 Sub3 Sub4

Results IMF1 IMF2 IMF3 IMF4, IMF5, IMF6, R

4.2.3. Input and Output Selection

In the process of predicting each subsequence, the key part is the determination of the input
and output. This paper introduces phase space reconstruction and the PACF method to reconstruct
the subsequences.

Firstly, after calculation of the τ and m for each subsequence, the phase space is rebuilt based on
Formulas (6) and (7). At the same time, the maximal Lyapunov exponents are calculated to examine
the chaotic properties. After obtaining the τ and m of the five series after decomposition by FEEMD,
the answers can be seen in Table 4.

Table 4. The parameters of each subsequence after processing by FEEMD-SE.

Index Sub1 Sub2 Sub3 Sub4 Sub5

τ 2 2 6 18 5
m 13 24 15 14 4

Max Lyapunov index 1.689 0.03 0.128 −166.2 −169.7

Train X1–X806 X1–X791 X1–X763
(xi−1, xi−2, xi−3, xi−4, xi−5,

xi−6, xi−7) (size: 818) (xi−1, xi−2) (size: 821)

Test X807–X1150 X792–X1128 X764–X1090
(xi−1, xi−2, xi−3, xi−4, xi−5,

xi−6, xi−7) (size: 350) (xi−1, xi−2) (size: 352)

Secondly, there may be non-chaotic subsequences. This paper introduces a PACF analysis on
these subsequences to make the determination of the input and output more complete and reasonable.
In a word, the main idea of PACF is to find the lags that satisfy the 95% confidence interval.

In Table 4, we found that the maximal Lyapunov exponents of sub4 and sub5 are negative.
Theoretically speaking, these subsequences do not have chaotic characteristics; so, phase space
reconstruction methods are not suitable for them. Therefore, we used the PACF method to analyze
sub4 and sub5. The results are shown in Figure 8, and the Train and Test sets are shown in Table 4.
For instance, sub5 was reconstructed using PACF and two lags were obtained, and the size of the
data in the Train and Test sets was set according to the ratio of 7 to 3. Similarly, Table 5 and Figure 9a
show the results of the PSR and PACF analysis of the subsequences decomposed by EMD, respectively.
In addition, we found that, through the result on its maximal Lyapunov exponent, which is shown in
Table 6, the approximation (A1) component decomposed by WT did not satisfy the chaotic characteristic.
Figure 9b shows the PACF analysis result of A1. In order to clearly understand the meaning of Figures 8
and 9, Table 7 lists the autocorrelation coefficients of each subsequence after PACF. With the data in
Table 7, it can be seen that the coefficients of the lags that exceed the limit range line in Figures 8 and 9
are two times greater than the standard error; so, we extract them as significant lags for prediction.
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Table 5. The parameters of each subsequence after processing by EMD-SE.

Index Sub1 Sub2 Sub3 Sub4

τ 9 10 6 14
m 15 11 15 7

Max Lyapunov index 1.38 0.512 0.029 −167.6
Train X1–X733 X1–X751 X1–X763 (xi−1, xi−2, xi−3, xi−4, xi−5, xi−6) (size: 818)
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Figure 9. (a) The result of the PACF analysis of sub4 after processing by EMD of the Beijing carbon
price; (b) The result of the PACF analysis of A1 after processing by WT of the Beijing carbon price.

Table 6. The parameters of the approximation subsequences decomposed by wavelet transform (WT).

Index Beijing Shenzhen Hubei

τ 7 7 5
m 20 14 21

Max Lyapunov index value −165.36 −165.05 −165.32

Train
(xi−1, xi−2, xi−3, xi−4, xi−5, xi−6, xi−7, xi−8,
xi−9, xi−10, xi−11, xi−12, xi−13) (size: 814)

(xi−1, xi−2, xi−3, xi−5)
(size: 766)

(xi−1, xi−2, xi−3, xi−4,
xi−5, xi−6) (size: 750)

Test
(xi−1, xi−2, xi−3, xi−4, xi−5, xi−6, xi−7, xi−8,
xi−9, xi−10, xi−11, xi−12, xi−13) (size: 349)

(xi−1, xi−2, xi−3, xi−5)
(size: 328)

(xi−1, xi−2, xi−3, xi−4,
xi−5, xi−6) (size: 321)
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Table 7. The coefficients of different subsequences processed by partial autocorrelation function
(PACF).

Lag Std. Error
Partial Autocorrelation Coefficients of Subs

Sub4 after FEEMD Sub5 after FEEMD Sub4 after EMD Sub after WT

1 0.029 0.998 1 0.995 0.972
2 0.029 −0.67 −0.085 −0.154 −0.421
3 0.029 −0.394 −0.078 −0.131 0.538
4 0.029 −0.268 −0.073 −0.111 −0.357
5 0.029 −0.189 −0.068 −0.093 0.393
6 0.029 −0.131 −0.064 −0.076 −0.276
7 0.029 −0.085 −0.06 −0.061 0.31
8 0.029 −0.047 −0.057 −0.047 −0.238
9 0.029 −0.016 −0.054 −0.035 0.257

10 0.029 0.009 −0.051 −0.024 −0.18
11 0.029 0.028 −0.049 −0.016 0.206
12 0.029 0.041 −0.046 −0.009 −0.112
13 0.029 0.049 −0.044 −0.003 0.126
14 0.029 0.054 −0.042 0 −0.058
15 0.029 0.055 −0.041 0.003 0.047
16 0.029 0.053 −0.039 0.004 −0.056
17 0.029 0.049 −0.038 0.004 0.043
18 0.029 0.044 −0.036 0.003 0.02
19 0.029 0.037 −0.035 0.002 −0.015
20 0.029 0.03 −0.034 0.001 0.005
21 0.029 0.022 −0.032 0 −0.024
22 0.029 0.015 −0.031 0 0.041
23 0.029 0.007 −0.03 −0.001 −0.067
24 0.029 0 −0.029 −0.001 −0.04
25 0.029 −0.006 −0.028 0 0.017
26 0.029 −0.011 −0.027 0 0.018
27 0.029 −0.016 −0.026 0.001 0.006
28 0.029 −0.019 −0.026 0.002 0.019
29 0.029 −0.021 −0.025 0.003 −0.013
30 0.029 −0.022 −0.024 0.004 −0.018
31 0.029 −0.022 −0.023 0.005 0.025
32 0.029 −0.021 −0.022 0.005 0.044
33 0.029 −0.019 −0.022 0.006 −0.024
34 0.029 −0.017 −0.021 0.006 −0.026
35 0.029 −0.014 −0.02 0.006 0.041

4.2.4. Forecasting Evaluation Criteria

In order to effectively evaluate the performance of the prediction models, this paper selected the
root mean square error (RMSE) and the mean absolute percentage error (MAPE) to test the accuracy of
the proposed models. As general error indicators, we know that the larger the value, the worse the
performance and vice versa. The formulas are listed as follow.

RMSE =

√√√√ 1
n

n

∑
t = 1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣2 (8)

MAPE =
1
n

n

∑
t = 1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣ ∗ 100% (9)

where n represents the amount of data in the test set, yt is the t-th actual data, and ŷt is the matching
prediction output.
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4.2.5. Beijing Carbon Price Forecasting

First of all, to show the forecasting performance capability of this hybrid model, the models
for the comparison are established as shown in Figure 10. Figure 10 is divided into two main parts.
The first part compares the influence of different decomposition methods, which are shown in the
blue box. The second part emphasizes the forecasting veracity among the prediction models under
comparison, which are displayed in the pink box. The operations and graphics in this paper were all
done in matlab2015b and Excel. Figure 11 shows the carbon price forecasting fitting curves that were
calculated by all of the models in this paper. The MAPE and RMSE values are listed in Table 8 and
Figure 12. Based on the results, we can draw the following conclusions:
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Table 8. The performance values of the prediction models under Beijing’s emissions trading
scheme (ETS).

Prediction Models MAPE RMSE

FEEMD-PSR-PACF-PSO-ELM 0.024604 1.853
EMD-PSR-PACF-PSO-ELM 0.071919 5.6987

WT-PACF-PSO-ELM 0.030036 2.6397
FEEMD-PSR-PACF-ELM 0.031777 5.3961
FEEMD-PSR-PACF-BP 0.112765 7.1804

Single PSO-ELM 0.046367 3.3612
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1. The proposed FEEMD-PSR-PACF-PSO-ELM model had the lowest MAPE and RMSE
values (2.4604% and 1.853, respectively) among the models under comparison in this paper, which
demonstrates its performance.

2. In Figure 12, the forecasting curve of FEEMD-PSR-PACF-PSO-ELM model was the nearest to
the actual carbon price, and that of FEEMD-PSR-PACF-BP was the least close to the actual carbon price.

3. Compared with the FEEMD-PSR-PACF-ELM and FEEMD-PSR-PACF-BP models, the proposed
model had the best performance, which proves the superiority of the PSO-ELM predictive model.

4. Compared with EMD-PSR-PACF-PSO-ELM and WT-PACF-PSO-ELM, we can infer that the
FEEMD decomposition method has the best effect. It should be noted that the approximate sequence
after WT decomposition was also analyzed by phase space reconstruction. If, based on the value of
the maximum Lyapunov exponent, it was found to not be chaotic, a PACF analysis was performed.
Therefore, this group of models directly differs only in the method that was used to decompose the
initial data.

5. The comparison of the proposed FEEMD-PSR-PACF-PSO-ELM model and the single PSO-ELM
model shows the rationality of the decomposition and the data reconstruction, regardless of the fitting
of the prediction curves or the MAPE and RMSE error analysis values.

4.3. Case Studies of Other Typical Pilot Carbon Prices

In order to test the applicability of the proposed model and compare it with other regional
market situations, Shenzhen and Hubei’s carbon prices were analyzed for forecasting. In order to
avoid redundancy, this section presents only the results and not the details of the analysis process.
Appendix A contains the tables and figures that show repetitive work, including Figures A1–A3,
and Tables A1–A12.
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Firstly, the carbon price series of Shenzhen and Hubei were decomposed by FEEMD, EMD,
and WT separately, and the results are presented in Figures A1 and A2. In addition, we calculated the
SE values of each IMF, as shown in Tables A1 and A2, to understand their complexity and merge them
into new subsequences, which are shown in Tables A3 and A4.

Secondly, Tables A5–A8 were prepared to determine the input and output of the predictive
models. Based on the result, it can be concluded that there are some subsequences that are not chaotic.
Therefore, we applied the PACF method to them.

Finally, to demonstrate the performance and general applicability of the proposed model,
the carbon price series from different markets were employed for supplemental verification. The results
on the Shenzhen and Hubei carbon prices are shown in Figures 13 and 14, respectively. The MAPE
and RMSE values of all the models are shown in Table 9.Energies 2019, 12, x FOR PEER REVIEW  18 of 31 
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From the forecasting results on the Shenzhen and Hubei carbon markets, some conclusions can
be drawn.

(a) Similar to the forecasting results on the Beijing carbon market, the proposed model (the
FEEMD-PSR-PACF-PSO-ELM model) performs the best among the models under comparison, and the
FEEMD-PSR-PACF-BP model has the worst fitting effect.

(b) The difference is that, under the same model, the accuracy of the carbon price prediction is
different in these regions. For instance, the results on the Shenzhen carbon market show that the
MAPE value with the best performance is 8.39%, which is weaker than that of Beijing (2.46%) and
Hubei (1.645%). This may be due to the different actual regional situations, but it does not prevent us
from establishing the validity of the proposed hybrid model.
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Table 9. A comparison of the different forecasting models under the Shenzhen ETS and the Hubei ETS.

Value FEEMD-PSR-
PACF-PSO-ELM

EMD-PSR-
PACF-PSO-ELM

WT-PACF-
PSO-ELM

FEEMD-PSR-
PACF-ELM

FEEMD-PSR-
PACF-BP

Single
PSO-ELM

Shenzhen
MAPE 0.08039 0.30097 0.08086 0.10047 0.61954 0.66958
RMSE 3.03 11.35 3.031 4.001 23.63 21.67

Hubei
MAPE 0.01645 0.03037 0.02228 0.01914 0.39747 0.4833
RMSE 0.36 0.797 0.44 0.3975 7.0004 7.49

4.4. Additional Case Study of the Beijing Carbon Market

In order to test the applicability and superiority of the proposed model, we used the latest official
data on the Beijing carbon market, that is, data from 28 November 2013 to 5 December 2018. On this
basis, according to the above-described analysis process, a new Beijing carbon price was analyzed
and predicted.

Similar to the above illustration, the samples were divided into two subsets for prediction:
a training set (approximately 70%) and a testing set (approximately 30%). For the sake of simplicity,
we ignore the details of the process and directly explain the results of the analysis for each step.
Figure A3 displays the decomposed results of FEEMD, EMD, and WT. After the calculation of the SE
value (shown in Table A9), the new subsequences were divided as illustrated in Table A10.

To determine the input and output of the model, we performed a phase space reconstruction and
a PACF analysis of each sequence. After calculating the main parameters (as shown in Table A11),
the input and output of these subsequences were obtained, and are shown in Table A12. Finally,
the PSO-ELM model, the ELM model, and the back propagation neural network (BP) model were used
for forecasting, and the results are shown in Figure 15 and Table 10.
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Table 10. A comparison of the different forecasting models under Beijing’s ETS.

Model MAPE RMSE

FEEMD-PSR-PACF-PSO-ELM 0.00456 0.3123
FEEMD-PSR-PACF-ELM 0.0558 4.5
FEEMD-PSR-PACF-BP 0.1817 12.66

EMD-PSR-PACF-PSO-ELM 0.0718 5.96
WT-PACF-PSO-ELM 0.051 4.643

As shown in Table 10, the proposed model has the best MAPE and RMSE values among the
models under comparison. It is worth noting that the prediction accuracy with the updated data on the
Beijing carbon price is higher, which also means better prediction performance. In Figure 15, the curve
of FEEMD-PSR-PACF-PSO-ELM best fits the actual data. In a word, we can conclude that the model
proposed in this paper still has the best applicability to the prediction of carbon prices in Beijing’s
carbon market after updating the data in the models under comparison.

5. Conclusions

The promotion of the carbon market is a requirement for the high-quality development of
China’s economy. An accurate carbon price forecasting method is helpful for the stability of the
carbon market. This paper proposed a new hybrid model for carbon price prediction based on
fast ensemble empirical mode decomposition, sample entropy, phase space reconstruction, and a
partial autocorrelation function that utilizes an extreme learning machine improved by particle
swarm optimization. Due to the nonlinearity and volatility of carbon price time series, this paper
combined a decomposition method and a phase space reconstruction theory for data analysis and
processing. FEEMD was introduced to decompose the original carbon price to reduce the noise
signal. The sample entropy was calculated to merge the series decomposed by FEEMD to form new
subsequences, which reduced the overall computational workload. Based on Chaos theory, a phase
space reconstruction and the maximum Lyapunov exponent were employed to determine the input
and output variables of the prediction models. In particular, this paper tested the chaotic property of
each subsequence by calculating the maximum Lyapunov exponent, and performed a PACF analysis
of the subsequences that were not suitable for PSR. This paper forecast the carbon price using the
PSO-ELM model. The decomposition methods and prediction models, including WT, EMD, single
ELM, and BP, were compared. To verify the performance and validity of FEEMD-PSR-PACF-PSO-ELM,
case studies of three different carbon markets were used. Moreover, we focused on the carbon price
forecast under Beijing’s ETS. The conclusions that can be drawn according to the empirical results are
summarized below.

(a) Through the performance of the forecasting models in the case studies, we can infer that the
decomposition methods (FEEMD, EMD, WT) can improve the forecasting accuracy by reducing the
noise interference in the initial data on the carbon price. In the comparison of the decomposition
methods, the FEEMD method has better applicability for forecasting the carbon price when applying
the same prediction models.

(b) Integrating the Chaos and PACF methods leads to an effective method for processing
nonstationary and nonlinear carbon prices that takes full account of the characteristics of the carbon
price subsequences.

(c) The PSO-ELM model has the best performance in forecasting the carbon price compared
with the other models that were considered in this paper. Taking only historical data into account to
determine the input and output of the forecasting models, and following the above-described technical
route, we can obtain future carbon price changes in regional carbon markets in China through the
proposed model, which contributes to policy development and investment. Moreover, it may be useful
for the analysis of the national carbon market.
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This paper focuses on the study of historical time series of carbon prices, and fully considers the
instability and nonlinear properties of carbon price series. The applicability of the proposed hybrid
model was also verified by case studies. However, we did not analyze possible influencing factors
in this paper. Therefore, subsequent research may focus on external influencing factors of the carbon
price in China’s carbon market.
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Table A1. The results on the SE values of the Shenzhen carbon price decomposition.

Sub IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 R

SE Value
Processed by FEEMD 1.243 0.7629 0.5166 0.3277 0.258 0.0583 0.0051

Processed by EMD 0.922 0.596 0.3315 0.3675 0.1286 0.0259 0.0034

Table A2. The results on the SE values of the Hubei carbon price decomposition.

Sub IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 R

SE Value
Processed by FEEMD 1.3197 0.8531 0.5024 0.4785 0.2035 0.0604 0.0207 0.0021

Processed by EMD 0.8099 0.6181 0.5047 0.2223 0.0369 0.0489 0.0028 0.0012
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Figure A2. (a) The Shenzhen carbon price after WT decomposition; (b) The Hubei carbon price after
WT decomposition.

Table A3. The new subsequences after being processed by FEEMD and EMD for the prediction of the
Shenzhen carbon price.

Index Sub1 Sub2 Sub3 Sub4 Sub5

Results by FEEMD IMF1 IMF2, IMF3 IMF4, IMF5 IMF6, R /
Results by EMD IMF1 IMF2 IMF3, IMF4 IMF5 IMF6, R

Table A4. The new subsequences after being processed by FEEMD and EMD for the prediction of the
Hubei carbon price.

Index Sub1 Sub2 Sub3 Sub4

Results by FEEMD IMF1 IMF2 IMF3, IMF4 IMF5, IMF6, IMF7, R
Results by EMD IMF1 IMF2, IMF3 IMF4 IMF5, IMF6, IMF7, R

Table A5. The parameters of each subsequence decomposed by FEEMD of the Shenzhen carbon price.

Index Sub1 Sub2 Sub3 Sub4

τ 4 3 10 6
m 20 10 22 8

Lyapunov index 0.4017 0.1848 0.0349 −168.6032
Train X1–X716 X1–X750 X1–X622 (xi−1, xi−2) (size: 768)
test X717–X1022 X751–X1071 X623–X888 (xi−1, xi−2) (size: 329)
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Table A6. The parameters of each subsequence decomposed by EMD of the Shenzhen carbon price.

Index Sub1 Sub2 Sub3 Sub4 Sub5

τ 7 3 11 16 8
m 16 22 9 8 6

Lyapunov index 0.5129 0.0537 0.0408 0.0249 −167.74
Train X1–X695 X1–X725 X1–X707 X1–X690 (xi−1) (size: 769)
test X696–X993 X726–X1035 X708–X1010 X691–X986 (xi−1) (size: 328)

Table A7. The parameters of each subsequence decomposed by FEEMD of the Hubei carbon price.

Index Sub1 Sub2 Sub3 Sub4

τ 4 2 5 17
m 21 11 8 10

Lyapunov index 0.6638 0.0462 0.0282 −168.1197
Train X1–X697 X1–X733 X1–X730 (xi−1, xi−2, xi−3, xi−4, xi−5, xi−6)(size: 750)
test X698–X996 X734–X1056 X731–X1041 (xi−1, xi−2, xi−3, xi−4, xi−5, xi−6)(size: 321)

Table A8. The parameters of each subsequence decomposed by EMD of the Hubei carbon price.

Index Sub1 Sub2 Sub3 Sub4

τ 7 3 9 17
m 12 20 8 10

Lyapunov index 0.8668 0.0391 0.0342 −167.92

Train X1–X699 X1–X713 X1–X709
(xi−1, xi−2, xi−3, xi−4, xi−5, xi−6, xi−7,

xi−8) (size: 749)

test X700–X999 X714–X1019 X710–X1013
(xi−1, xi−2, xi−3, xi−4, xi−5, xi−6, xi−7,

xi−8) (size: 320)

Table A9. The results of SE values under various decomposition methods.

sub IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 R

SE
Value

Processed by FEEMD 0.9534 0.393 0.2971 0.2139 0.0536 0.0526 0.0285 0.0104
Processed by EMD 0.5616 0.312 0.2698 0.3828 0.1217 0.0703 / 0.018

Table A10. The new subsequences divided according to the SE values.

Index Sub1 Sub2 Sub3 Sub4 Sub5

Results by FEEMD IMF1 IMF2 IMF3, IMF4 IMF5, IMF6 IMF7, R
Results by EMD IMF1 IMF2, IMF3 IMF4 IMF5, IMF6, R

Table A11. The parameters used to determine the input and output of each subsequence prediction.

FEEMD

Index Sub1 Sub2 Sub3 Sub4 Sub5
τ 6 2 6 13 6
m 26 9 10 8 6

Max Lyapunov index 0.3912 0.055 0.383 0.0011 −168.31

EMD

Index Sub1 Sub2 Sub3 Sub4
τ 9 7 8 21
m 13 12 8 13

Max Lyapunov index 0.479 0.73 0.022 −166.23

WT

Index A1
τ 11
m 11

Max Lyapunov index −164.92
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Table A12. The parameters used to determine the input and output of each subsequence prediction.

FEEMD EMD WT

Subs Train Set Test Set Subs Train Set Test Set Subs Train Set Test Set

Sub1 X1–X875 X876–X1250 Sub1 X1–X905 X906–X1292 A1

(xi−1, xi−2, xi−3,
xi−4, xi−5, xi−6, xi−7,

xi−8, xi−9, xi−18)
(size: 968)

(xi−1, xi−2, xi−3,
xi−4, xi−5, xi−6, xi−7,

xi−8, xi−9, xi−18)
(size: 415)

Sub2 X1–X969 X970–X1384 Sub2 X1–X927 X928–X1323
Sub3 X1–X942 X943–X1346 Sub3 X1–X941 X942–X1344

Sub4 X1–X917 X918–X1309 Sub4

(xi−1, xi−2, xi−3,
xi−4, xi−5, xi−6, xi−7,

xi−8, xi−9, xi−10)
(size: 974)

(xi−1, xi−2, xi−3,
xi−4, xi−5, xi−6, xi−7,

xi−8, xi−9, xi−10)
(size: 417)

Sub5 (xi−1) (size:
980)

(xi−1) (size:
420)

Energies 2019, 12, x FOR PEER REVIEW  27 of 31 

 

 

(a) 

(b) 

Figure A3. Cont.



Energies 2019, 12, 277 25 of 27
Energies 2019, 12, x FOR PEER REVIEW  28 of 31 

 

 
(c) 

Figure A3. (a) The FEEMD decomposition result of the Beijing carbon price; (b) The EMD decomposition 
result; (c) The WT decomposition result. 

Table A9. The results of SE values under various decomposition methods. 

sub IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 R 

SE 
Value  

Processed 
by FEEMD 0.9534 0.393 0.2971 0.2139 0.0536 0.0526 0.0285 0.0104 

Processed 
by EMD 0.5616 0.312 0.2698 0.3828 0.1217 0.0703 / 0.018 

Table A10. The new subsequences divided according to the SE values. 

Index Sub1 Sub2 Sub3  Sub 4 Sub 5 
Results by FEEMD IMF1 IMF2 IMF3, IMF4  IMF5, IMF6 IMF7, R 

Results by EMD IMF1 IMF2, IMF3 IMF4 IMF5, IMF6, R  

Table A11. The parameters used to determine the input and output of each subsequence prediction. 

FEEMD 

Index Sub1 Sub2 Sub3  Sub 4 Sub 5 
τ 6 2 6 13 6 
m 26 9 10 8 6 

Max Lyapunov index 0.3912 0.055 0.383 0.0011 −168.31 

EMD 

Index Sub1 Sub2 Sub3  Sub 4  
τ 9 7 8 21  
m 13 12 8 13  

Max Lyapunov index 0.479 0.73 0.022 −166.23  

WT 

Index A1     
τ 11     
m 11     

Max Lyapunov index −164.92     

Table A12. The parameters used to determine the input and output of each subsequence prediction. 

FEEMD EMD WT 
Subs Train Set Test Set Subs Train Set Test Set Subs Train Set Test Set 
Sub1 X1–X875 X876–X1250 Sub1 X1–X905 X906–X1292 A1 (xi−1,xi−2,xi−3,xi (xi−1,xi−2,xi−3,xi−

Figure A3. (a) The FEEMD decomposition result of the Beijing carbon price; (b) The EMD
decomposition result; (c) The WT decomposition result.

References

1. Sun, W.; Wang, C.F.; Zhang, C.C. Factor analysis and forecasting of CO2 emissions in Hebei, using extreme
learning machine based on particle swarm optimization. J. Clean. Prod. 2017, 162, 1095–1101. [CrossRef]

2. Tsai, M.T.; Kuo, Y.T. A Forecasting System of Carbon Price in the Carbon Trading Markets Using Artificial
Neural Network. Int. J. Environ. Sci. Dev. 2013, 4, 163–167. [CrossRef]

3. Zhu, B.Z.; Shi, X.T.; Chevallier, J.; Wang, P.; Wei, Y.M. An adaptive multiscale ensemble learning paradigm
for nonstationary and nonlinear energy price time series forecasting. J. Forecast. 2016, 35, 633–651. [CrossRef]

4. Lin, W.B.; Liu, B. Chinese carbon market: Current status and future perspectives. J. Tsinghua Univ. Sci. Technol.
2015, 55, 1315–1323.

5. Peng, S.Z.; Chang, Y.; Zhang, J.T. Considerations on Some Key Issues of Carbon Market Development in
China. China Popul. Resour. Environ. 2014, 24, 1–5. [CrossRef]

6. Huang, Z.P. Does the carbon emission trading scheme promote carbon mitigation. J. Arid Land Resour. Environ.
2018, 32, 32–36.

7. Zeng, S.H.; Nan, X.; Liu, C.; Chen, J.Y. The response of the Beijing carbon emissions allowance price (BJC) to
macroeconomic and energy price indices. Energy Policy 2017, 106, 111–121. [CrossRef]

8. Zhu, B.Z.; Wei, Y.M. Carbon price forecasting with a novel hybrid ARIMA and least squares support vector
machines methodology. Omega 2013, 41, 517–524. [CrossRef]

9. Xia, R.T. The fluctuant features of China’s carbon emission trading prices. China Price 2018, 5, 52–54.
10. Byun, S.J.; Cho, H.J. Forecasting carbon futures volatility using GARCH models with energy volatilities.

Energy Econ. 2013, 40, 207–221. [CrossRef]
11. Zhang, Y.J.; Yao, T.; He, L.Y.; Ripple, R. Volatility forecasting of crude oil market: Can the regime switching

GARCH model beat the single-regime GARCH models? Int. Rev. Econ. Financ. 2018. [CrossRef]
12. Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. iGHBP: Computational identification of growth hormone

binding proteins from sequences using extremely randomised tree. Comput. Struct. Biotechnol. J. 2018, 16,
412–420. [CrossRef] [PubMed]

13. Wei, L.; Hu, J.; Li, F.Y.; Song, J.N.; Su, R.; Zou, Q. Comparative analysis and prediction of quorum-sensing
peptides using feature representation learning and machine learning algorithms. Briefings Bioinform. 2018.
[CrossRef]

14. Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. PIP-EL: A New Ensemble Learning Method for Improved
Proinflammatory Peptide Predictions. Front. Immunol. 2018, 9, 1783. [CrossRef]

http://dx.doi.org/10.1016/j.jclepro.2017.06.016
http://dx.doi.org/10.7763/IJESD.2013.V4.327
http://dx.doi.org/10.1002/for.2395
http://dx.doi.org/10.1080/10042857.2015.1005344
http://dx.doi.org/10.1016/j.enpol.2017.03.046
http://dx.doi.org/10.1016/j.omega.2012.06.005
http://dx.doi.org/10.1016/j.eneco.2013.06.017
http://dx.doi.org/10.1016/j.iref.2018.09.006
http://dx.doi.org/10.1016/j.csbj.2018.10.007
http://www.ncbi.nlm.nih.gov/pubmed/30425802
http://dx.doi.org/10.1093/bib/bby107
http://dx.doi.org/10.3389/fimmu.2018.01783


Energies 2019, 12, 277 26 of 27

15. Manavalan, B.; Govindaraj, R.G.; Shin, T.H.; Kim, M.O.; Lee, G. iBCE-EL: A New Ensemble Learning
Framework for Improved Linear B-Cell Epitope Prediction. Front. Immunol. 2018, 9, 11. [CrossRef]

16. Wei, L.; Chen, H.; Su, R. M6APred-EL: A Sequence-Based Predictor for Identifying N6-methyladenosine
Sites Using Ensemble Learning. Mol. Ther. Nucl. Acids 2018, 12, 635–644. [CrossRef]

17. Manayalan, B.; Subramaniyam, S.; Shin, T.H.; Kim, M.O.; Lee, G. Machine-Learning-Based Prediction of
Cell-Penetrating Peptides and Their Uptake Efficiency with Improved Accuracy. J. Proteome Res. 2018, 17,
2715–2726. [CrossRef]

18. Manavalan, B.; Lee, J. SVMQA: Support-vector-machine-based protein single-model quality assessment.
Bioinformatics 2017, 33, 2496–2503. [CrossRef]

19. Wei, L.; Tang, J.; Zou, Q. SkipCPP-Pred: An improved and promising sequence-based predictor for predicting
cell-penetrating peptides. BMC Genom. 2017. [CrossRef]

20. Manavalan, B.; Basith, S.; Shin, T.H.; Choi, S.; Kim, M.O.; Lee, G. MLACP: Machine-learning-based prediction
of anticancer peptides. Oncotarget 2017, 8, 77121–77136. [CrossRef]

21. Dao, F.Y.; Lv, H.; Wang, F.; Feng, C.Q.; Ding, H.; Chen, W.; Lin, H. Identify origin of replication in
Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2018. [CrossRef]

22. Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. AIPpred: Sequence-Based Prediction of Anti-inflammatory
Peptides Using Random Forest. Front. Immunol. 2018, 9, 276. [CrossRef] [PubMed]

23. Wei, L.Y.; Zhou, C.; Chen, H.R.; Song, J.N.; Su, R. ACPred-FL: A sequence-based predictor using effective
feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 2018, 34, 4007–4016.
[CrossRef] [PubMed]

24. Manavalan, B.; Shin, T.H.; Lee, G. DHSpred: Support-vector-machine-based human DNase I hypersensitive
sites prediction using the optimal features selected by random forest. Oncotarget 2018, 9, 1944–1956.
[CrossRef] [PubMed]

25. Liu, Z.Y.; Sun, Z.D. The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural
Network. Int. J. Econ. Manag. Eng. 2017, 11, 623–629.

26. Zhang, J.L.; Li, D.Z.; Hao, Y.; Tan, Z.F. A hybrid model using signal processing technology, econometric
models and neural network for carbon spot price forecasting. J. Clean. Prod. 2018, 204, 958–964. [CrossRef]

27. Tsai, M.T.; Kuo, Y.T. Application of Radial Basis Function Neural Network for Carbon Price Forecasting.
Appl. Mech. Mater. 2014, 590, 683–687. [CrossRef]

28. Gao, Y.; Li, J. International Carbon Finance Market Price Prediction Based on EMD-PSO-SVM Error
Correction Model. China Popul. Resour. Environ. 2014, 24, 163–170.

29. Razak, I.A.W.A.; Abidin, I.Z.; Yap, K.S.; Abidin, A.A.Z.; Rahman, T.K.A.; Nasir, M.N.M. A novel hybrid
method of LSSVM-GA with multiple stage optimization for electricity price forecasting. IEEE Int. Conf.
Power Energy 2017, 390–395. [CrossRef]

30. Zhu, B.Z.; Ye, S.X.; Wang, P.; He, K.J.; Wei, Y.M. A novel multiscale nonlinear ensemble leaning paradigm for
carbon price forecasting. Energy Econ. 2018, 70, 143–157. [CrossRef]

31. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489–501. [CrossRef]

32. Shrivastava, N.A.; Panigrahi, B.K. A hybrid wavelet-ELM based short term price forecasting for electricity
markets. Int. J. Electr. Power Energy Syst. 2014, 55, 41–50. [CrossRef]

33. Liu, H.; Mi, X.; Li, Y. An Experimental Investigation of Three New Hybrid Wind Speed Forecasting Models
Using Multi-decomposing Strategy and ELM Algorithm. Renew. Energy 2018, 123, 694–705. [CrossRef]

34. Rocha, H.R.O.; Silvestre, L.J.; Celeste, W.C.; Coura, D.J.C.; Junior, L.O.R. Forecast of Distributed Electrical
Generation System Capacity Based on Seasonal Micro Generators using ELM and PSO. IEEE Latin Am. Trans.
2018, 16, 1136–1141. [CrossRef]

35. Fan, W.; Tian, L.; Wang, C.; Feng, Z.M.; Wu, D.L.; Li, C.F. Short-term power load forecasting based on
PSO-ELM model. J. Nanyang Inst. Technol. 2017, 9, 12–15.

36. Saber, T.; Miadreza, S.K.; Gerardo, J.O.; Wang, F.; Alireza, H.; Catalão, J.P.S. Price Forecasting of Electricity
Markets in the Presence of a High Penetration of Wind Power Generators. Sustainability 2017, 9, 2065.

37. Li, W.; Lu, C. The research on setting a unified interval of carbon price benchmark in the national carbon
trading market of China. Appl. Energy 2015, 155, 728–739. [CrossRef]

http://dx.doi.org/10.3389/fimmu.2018.01695
http://dx.doi.org/10.1016/j.omtn.2018.07.004
http://dx.doi.org/10.1021/acs.jproteome.8b00148
http://dx.doi.org/10.1093/bioinformatics/btx222
http://dx.doi.org/10.1186/s12864-017-4128-1
http://dx.doi.org/10.18632/oncotarget.20365
http://dx.doi.org/10.1093/bioinformatics/bty943
http://dx.doi.org/10.3389/fphar.2018.00276
http://www.ncbi.nlm.nih.gov/pubmed/29636690
http://dx.doi.org/10.1093/bioinformatics/bty451
http://www.ncbi.nlm.nih.gov/pubmed/29868903
http://dx.doi.org/10.18632/oncotarget.23099
http://www.ncbi.nlm.nih.gov/pubmed/29416743
http://dx.doi.org/10.1016/j.jclepro.2018.09.071
http://dx.doi.org/10.4028/www.scientific.net/AMM.590.683
http://dx.doi.org/10.1109/PECON.2016.7951593
http://dx.doi.org/10.1016/j.eneco.2017.12.030
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.ijepes.2013.08.023
http://dx.doi.org/10.1016/j.renene.2018.02.092
http://dx.doi.org/10.1109/TLA.2018.8362148
http://dx.doi.org/10.1016/j.apenergy.2015.06.018


Energies 2019, 12, 277 27 of 27

38. Zhu, B.Z.; Han, D.; Wang, P.; Wu, Z.C.; Zhang, T.; Wei, Y.M. Forecasting carbon price using empirical mode
decomposition and evolutionary least squares support vector regression. Appl. Energy 2017, 191, 521–530.
[CrossRef]

39. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method.
Adv. Adapt. Data Anal. 2009, 1, 1–41. [CrossRef]

40. Wang, Y.H.; Yeh, C.H.; Young, H.W.V.; Hu, K.; Lo, M.T. On the computational complexity of the empirical
mode decomposition algorithm. Phys. A 2014, 400, 159–167. [CrossRef]

41. Heng, J.; Wang, C.; Zhao, X.; Xiao, L. Research and Application Based on Adaptive Boosting Strategy
and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting. Sustainability 2016, 8, 235.
[CrossRef]

42. Sun, W.; Liu, M.H. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China.
Energy Convers. Manag. 2016, 114, 197–208. [CrossRef]

43. Sun, W.; Liu, M.H.; Liang, Y. Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat
Algorithm. Energies 2015, 8, 6585–6607. [CrossRef]

44. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neutral Networks (ICNN’95), Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

45. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circul. Physiol. 2000, 278, 2039–2049. [CrossRef] [PubMed]

46. Beoing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits
of Prediction. Systems 2016, 4, 37. [CrossRef]

47. Wolf, A.; Jack, B.; Swift, H.L.; Swinney, J.A.V. Determining Lyapunov exponents from a time series.
Phys. D-Nonlinear Phenom. 1985, 16, 285–317. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apenergy.2017.01.076
http://dx.doi.org/10.1142/S1793536909000047
http://dx.doi.org/10.1016/j.physa.2014.01.020
http://dx.doi.org/10.3390/su8030235
http://dx.doi.org/10.1016/j.enconman.2016.02.022
http://dx.doi.org/10.3390/en8076585
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://www.ncbi.nlm.nih.gov/pubmed/10843903
http://dx.doi.org/10.3390/systems4040037
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	The Particle Swarm Optimization Algorithm 
	Extreme Learning Machine 
	Fast Ensemble Empirical Mode Decomposition and Sample Entropy 
	Phase Space Reconstruction and the Maximal Lyapunov Exponent 

	The Framework of the Proposed Model 
	Empirical Analysis 
	Data 
	Case Study of the Beijing Carbon Price 
	Carbon Price Decomposition 
	The Calculation of Sample Entropy 
	Input and Output Selection 
	Forecasting Evaluation Criteria 
	Beijing Carbon Price Forecasting 

	Case Studies of Other Typical Pilot Carbon Prices 
	Additional Case Study of the Beijing Carbon Market 

	Conclusions 
	
	References

