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Abstract: This study employs the Element-Free Galerkin method (EFG) to characterize flexoelectricity in
a composite material. The presence of the strain gradient term in the Partial Differential Equations (PDEs)
requires C1 continuity to describe the electromechanical coupling. The use of quartic weight functions
in the developed model fulfills this prerequisite. We report the generation of electric polarization in a
non-piezoelectric composite material through the inclusion-induced strain gradient field. The level set
technique associated with the model supervises the weak discontinuity between the inclusion and
matrix. The increased area ratio between the inclusion and matrix is found to improve the conversion
of mechanical energy to electrical energy. The electromechanical coupling is enhanced when using
softer materials for the embedding inclusions.

Keywords: flexoelectricity; meshless method; composite; size effect; level set technique

1. Introduction

An energy harvester utilizing the electromechanical coupling effect has been applied in various
applications, ranging from sensors [1–3] to biomedical devices [4,5] at both micro- and nano-scales [6–8].
The well-known electromechanical coupling effect, piezoelectricity, generates the electrical polarization
under mechanical deformation only in the non-centrosymmetric material. Flexoelectricity is another
type of electromechanical coupling, which describes the coupling between the electrical potential and
strain gradient. Unlike piezoelectricity, flexoelectricity can exist in any dielectric material regardless of
the material’s inner structure. In the meantime, experimental studies [9,10] observed an unexpected
giant flexoelectric effect in barium strontium titanate, which suggested that at the micro-/nano-scale,
the flexoelectric effect outperforms the piezoelectric effect. These superior properties of flexoelectricity
at a small scale have drawn extensive research attention towards the fundamental investigation of this
electromechanical coupling from the molecular scale to the continuum scale. Atomic-level density
functional theories [11–13] and molecular dynamics simulations [14,15] explored the mechanism of
inducing flexoelectric polarization under deformation. However, continuum scale studies can lead to
better understanding of the practical applicability of the flexoelectric property in designing sensors
and actuators.

The characterization of flexoelectricity with existing numerical methods, like the Finite Element
Method (FEM), requires remarkable modifications to handle the strain gradient term. Zhang et al. [16]
used conventional FEM to evaluate the piezo- and flexo-electric effects by solving the partial differential
equations for the displacement and electric potential in a decoupled manner. The conventional
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FEM works on the basis of C0 continuity and is uncertain when higher order strain terms are
present (challenging to hold C1 continuity). Nanthakumar et al. [17,18] used the Mixed Finite
Element Formulation (MFEF) to maximize the flexoelectric effect through topology optimization
of barium titanate material. However, the MFEF method suffers from high computational cost [19,20].
Isogeometric Analysis (IGA) is another numerical method, which ensures the required C1 continuity by
employing the higher-order shape functions [21–23]; whereas, IGA strongly depends on the geometrical
symmetry conditions to reduce the computational cost [24,25]. Abdollahi et al. [26,27] developed a
meshless method to study the flexoelectric response of dielectric material both in cantilever beam and
truncated pyramid shapes. Their study further suggested that the simplified analytical model is unable
to capture the flexoelectricity in multi-dimensional geometries. These studies have used structures
with a ceramic material such as barium titanate or strontium titanate. Applications of these materials
have a limited scope due to the small operational strain and high-stress conditions [28].

Experimental studies revealed that composites made up of two or many materials are promising
to support high stress operating conditions. For example, nano-indentation tests of a bilayer
cantilever beam structure have shown good mechanical properties [29,30]. A study on the
polymer-based composite with graphene oxide has shown enhanced piezoelectric performance
with greater flexibility [31]. Synthesized polymeric composite with piezoelectric zirconia titanate
material promised to exhibit good energy-harvesting solutions [32]. However, these findings critically
depend on the piezoelectric properties of the material. On the other hand, it is possible to create
the piezoelectric composites without using a material with piezoelectric properties. The flexoelectric
fiber-reinforced composite [33,34] and multi-material-based flexoelectric composites [35] are some
example studies in this direction. The flexoelectric composites develop large strain gradients near
the material discontinuity when uniformly deformed, which generates the electrical polarization
through flexoelectricity. However, the numerical modeling other than conventional FEM requires extra
care when dealing with the material and geometry discontinuity between the composite constituents.
Lagrange multipliers [36,37] and the global enrichment approach [38,39] are the few techniques
to treat the material discontinuity. The applicability of these methods is cumbersome when using
complex geometries in 2D structures [40,41]. The Extended Finite Element Method (XFEM) has
been used for the level set technique to describe the weak discontinuity between the inclusion
and matrix composite [42–44]. In addition, the level set technique also allows using the multiple
randomly-distributed inclusions inside the matrix.

The current work employs the Element-Free Galerkin (EFG) method [45–49] along with the level
set technique to characterize flexoelectricity in a composite. It is assumed that the composite is a
combination of embedding matrix material and a non-piezoelectric material (inclusion). The possible
generation of electrical voltage due to the compressive loading of the composite is investigated. This
study is extended to find the dependence of the electrical voltage on the concentration of inclusions in
the embedding matrix. The numerical model is validated with standard examples and then utilized
to explore the flexoelectricity in a composite. Section 2 composes the details of the EFG. Numerical
validation and example case studies are presented in Section 3. Section 4 concludes the work.

2. Simulation Method

The enthalpy density H for a dielectric solid with the piezoelectric and flexoelectric effect
is [50–52]:

H(εij, Ei, εjk,l , Ei,j) =
1
2
Cijklεijεkl − eiklEiεkl − µijklEiεjk,l −

1
2

κijEiEj , (1)

where Ei = −φ,i is the electric field; φi being the electric potential in the i direction; εij is the
mechanical strain; Cijkl is the fourth-order elastic moduli tensor; eikl is the third-order tensor of
piezoelectricity; µijkl is the fourth-order flexoelectric tensor; and κij is the second-order dielectric
tensor. Appendix A covers further details about the weak form of Equation (1) and possible boundary
conditions. The resulting governing equations are solved for unknown variables displacement u
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and electric potential φ using Moving Least Squares approximation (MLS). Belytschko et al. [53–55]
introduced the MLS approximation within the EFG. According to the MLS, the unknowns (u and φ)
for the center node are approximated by the neighboring nodes in its support domain (Figure 1a). If
the support domain encounters a material discontinuity, corresponding support nodes are enriched.
The weak discontinuity across the material interface in the composite is modeled with the level set
function with absolute sign distance function Ψ(x). Figure 1b shows the schematic illustration of
the level set function and its first-order-derivative across the interface. The local approximation of
displacement u and electric potential φ at location x are given as:

uh(x) =
N

∑
I=1

ΦI(x)uI +
M

∑
I=J

ΦJ(x)Ψ(x)uJ ;

φh(x) =
N

∑
I=1

ΦI(x)φI +
M

∑
I=J

ΦJ(x)Ψ(x)φJ ,

(2)

where Φ(x) is the shape function at position x, u and φ are the nodal displacements and electric
potential, and N and M are the number of support and enriched nodes, respectively. More details
about Φ(x) are given in Appendix B. Hereafter, we write the approximation in a simplified form
uh = Φuustd + ΦuΨuenr. The derivatives for unknowns u and φ (Equation (2)) contribute by both
support nodes (ustd, φstd) and enriched nodes (uenr, φenr ), which are given as:

∂uh

∂x
=

∂Φu

∂x
ustd +

∂Φu

∂x
Ψuenr + Φu

∂Ψ

∂x
uenr;

∂2uh

∂x2 =
∂2Φu

∂x2 ustd +
∂2Φu

∂x2 Ψuenr + Φu
∂2Ψ

∂x2 uenr + 2
∂Φu

∂x
∂Ψ

∂x
uenr;

∂φh

∂x
=

∂Φφ

∂x
φstd +

∂Φφ

∂x
Ψφenr + Φφ

∂Ψ

∂x
φenr.

(3)

Support nodes

Center node

(a) Schematic illustration of MLS approximation,

1

1

-1

Level-set function

Derivation

(b) Level-set function and its derivation cross the
interface

Figure 1. (a) Schematic illustration of Moving Least Squares (MLS) approximation and (b) the level-set
function and its derivation across the interface.

The discrete equilibrium equations involving Equation (3) are given as:[
Auu Auφ

AT
uφ Aφφ

]
·
[

u
φ

]
=

[
fu

fφ

]
, (4)

where:
Auu = ∑

e

∫
Ωe
(Bu + Benr

u )C(Bu + Benr
u )TdΩe; (5)
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Auφ = ∑
e

∫
Ωe

(
(Bu + Benr

u )e(Bφ + Benr
φ )T + (Hu + Henr

u )µT(Bφ + Benr
φ )T

)
dΩe; (6)

Aφφ = −∑
e

∫
Ωe
(Bφ + Benr

φ )κ(Bφ + Benr
φ )TdΩe; (7)

fu = ∑
e

∫
Γte

NT
u tΓdΓte; (8)

fφ = −∑
e

∫
ΓDe

NT
φ wdΓDe; (9)

where e refers to element number. Further details about the individual B and H matrices are included
in Appendix C. The Lagrange multiplier method is used for imposing mechanical and electrical
boundary conditions. In this study, the plane strain condition is assumed. Material property matrices
C, κ, e, µ are given as:

C =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 ( 1

2 − ν)

 , (10)

κ =

[
k11 0
0 k33

]
, (11)

eT =

[
0 0 e15

e31 e33 0

]
, (12)

µ =

[
µ11 µ12 0 0 0 µ44

0 0 µ44 µ12 µ11 0

]
. (13)

3. Numerical Examples

In this section, we validate the numerical model with benchmark problems: electromechanical
characteristics of a cantilever beam under mechanical and electrical loading conditions and coupling
effects in a mechanically-compressed truncated pyramid. Note that these problems are free from the
material discontinuity. The obtained results are validated with the reported literature. The complete
numerical model with material discontinuity and local enrichment is employed to estimate the
characteristics of the composite material.

3.1. Cantilever Beam

Figure 2a,b shows the simulation setup for open circuit mechanical loading and close circuit
electrical loading, respectively. The length to thickness ratio L/h for the cantilever beam is 20. Table 1
reports the various material parameters [21].

(c)

F

(a) (b)

Figure 2. Schematic illustration of the cantilever beam under (a) mechanical loading and (b) electrical
loading. (c) MLS discretization with the red solid point representing the nodes.
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Table 1. Material properties.

Name Symbol Value

Poisson’s ratio ν 0.37
Young’s modulus E 100 GPa
Piezoelectric constant e31 −4.4 nC/m2

Flexoelectric constant µ12 1 µC/m
Dielectric constant κ11; κ33 11 nC/Vm; 12.48 nC/Vm
Electric susceptibility χ 1408

3.1.1. Mechanical Loading

A point load F = 100 µN is applied on the upper right edge of the cantilever beam (Figure 2a),
and the electric potential is constrained to zero. Electromechanical coupling induces the electrical
energy under point load deformation. The conversion from mechanical to electrical energy (k2

e f f ) is
defined as:

k2
e f f =

Welec
Wmech

=

∫
E · κ · E∫
ε : C : ε

. (14)

The present model is simplified by assuming that the transversal piezoelectric (e = e31) and
flexoelectric (µ = µ12) components are the only non-zero in Equations (12) and (13). The Poisson effect
is also ignored. The results of this simplified model are compared with the analytical model derived
by Majdoub et al. [50]. The analytical solution for ke f f is:

ke f f =
χ

1 + χ

√
κ

Y
(e2 + 12

(µ

h

)2
), (15)

where the normalized piezoelectric constant is:

e′ =
ke f f

kpiezo
, (16)

where kpiezo is obtained by neglecting flexoelectricity coefficient µ in Equation (15).
Figure 3a plots the comparison between the present model and the analytical solution, where

h′ = − eh/µ is the normalized beam thickness for the open circuit mechanical loading condition.
The variation between e′ and h′ from the present model agrees with the analytical solution from
Equation (16). This proves that the present model correctly estimates the electromechanical coupling
in a non-piezoelectric beam under bending deformation. The coupling between mechanical and
electric energy is strongly mediated by the flexoelectricity due to the low piezoelectric constant of the
material (refer to Table 1). Figure 3b shows the distribution of the generated electric potential under
the flexoelectric effect.
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(a) Size-dependent effective piezoelectric constant

Electric potential (V)

(b) Electric potential (V)

Figure 3. Calculation results of the (a) size-dependent effective piezoelectric constant and (b) the
electric potential profile for a fully-coupled cantilever beam.

3.1.2. Electrical Loading

In this section, we study a cantilever beam (Figure 2b) under pure electric loading, which served
as an actuator. The bottom edge of the cantilever beam (Figure 2b) enforced an electrical loading of
−20V and grounded the top edge. There is no external mechanical loading in the cantilever beam.
Figure 4 displays the displacement and electric potential profiles. The electric field across the beam in
the y-direction is plotted in Figure 5. The electric field gradients near the top (negative sign) and bottom
(positive sign) surface of the cantilever beam are due to the effect of converse flexoelectricity. This
phenomenon generates mechanical stress at the top and bottom surface and thus deforms the beam.
The displacement and electric potential distribution on the cantilever beam are in good agreement
with earlier findings based on IGA analysis [21].
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x direction displacement (m)

y direction displacement (m)

(a) Displacement in the x and y directions (m)

Electric potential (V)

(b) Electric potential (V)

Figure 4. Calculation result of the cantilever beam under electric loading: (a) beam displacement;
(b) electric potential profile.

3.2. Compress Truncated Pyramid

In this section, we have extended the validation for the compression of a truncated pyramid
(Figure 6). Due to its different top (a1) and bottom (a2) edge lengths, the applied uniform force
F generates different tractions at the top and bottom edges, which results in a longitudinal strain
gradient. The top edge of the pyramid is grounded, and a uniform force of −6e6 N is applied to it.
The aspect ratio h of the pyramid is set as 75 µm, and the bottom edge length is 225 µm. The remaining
material parameters are listed in Table 1. Figure 7 shows the developed strain in the y-direction and
the electromechanical coupling-induced electric potential profiles. The numerical values and the field
distributions are in good agreement with earlier reports [21]. This represents that the present model
accurately estimated the electromechanical coupling.
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Figure 5. Calculation result of the electric field profile across the beam in the y direction at the mid-length of
the beam.

F

a2

a1

(a) (b)

h

Figure 6. Schematic illustration of: (a) the pyramid case and its boundary condition; (b) MLS
discretization with the red solid point representing the nodes.

Strain yy

(a) Strain profile in the y direction

Electric potential (V)

(b) Electric potential (V)

Figure 7. Calculation result of the compressed truncated pyramid: (a) strain profile in the y direction;
(b) electric field profile.

3.3. Flexoelectricity in Composite

In this section, we demonstrate the possibility of inducing electric polarization in a composite
system. The composite system is a combination of an embedding matrix in a square shape and a
non-piezoelectric material (inclusion) in a circular shape, as shown in Figure 8. The composite under a
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uniform mechanical loading induces electrical polarization due to the local strain gradients near the
material discontinuity. The dielectric constant of the inclusion material is about 10% of the embedding
matrix. It is assumed that the Young’s modulus of the matrix material (Emat) is lower than the Young’s
modulus of the inclusion material (Einc). Three different Young’s modulus ratios ( Einc

Emat
= 10, 100, 1000)

are used to understand its influence on the energy transfer ratio between mechanical energy and
electrical energy. The edge length of the square domain is L = 10 µm with center inclusion radius
r1 = 1.5 µm. The remaining parameters (Table 1) for both materials are similar.

(a) (b)
F

Figure 8. Schematic illustration of: (a) the square domain with center inclusion and its boundary
condition; (b) MLS discretization with the red solid point representing the nodes and the blue asterisk
representing the enriched nodes.

Figure 9 presents the strain and electric potential profile for the domain with a center inclusion.
The non-uniform strain field near the inclusion boundary generates the polarization gradient and
electric potential. Figure 10 plots the strain gradient profile: εyy,y and εxx,x along the horizontal and
vertical center line of the square domain, respectively. In both directions, a high strain gradient is
seen near the boundary of the inclusion, which is due to the different material toughness of the matrix
and the inclusion. Since the inclusion material is a non-piezoelectric material, the induced electrical
potential is a consequence of flexoelectricity. Therefore, the linear relationship between electrical
potential and strain gradient generates the strong potential near the inclusion, as seen from Figure 9b.

In general, the volume percentage of the inclusions has a vast impact on the overall composite
properties [56]. In order to investigate the volume percentage effect on the electromechanical coupling,
we have repeated the simulations with many inclusions under the same loading condition. The number
of inclusions is varied according to the area ratio from 0.5–2.5%. The area ratio is defined as the total
area of inclusions divided by the area of a square domain. For each area ratio, several inclusion
configurations (center location for inclusions) are examined, and later, the results are averaged. Note
that, for inserting many inclusions, the radius is decreased to 0.4 µm. Figure 11a shows the strong
electric potential near the inclusion boundary for a domain with 10 randomly-distributed inclusions.
This is due to the non-uniform strain distributions near the inclusion boundary. A strong electric
potential is noted in the region between the nearby inclusions. This corresponds to the interaction
of the non-uniform strain fields around the neighboring inclusions. Figure 11b shows the mesh
configuration. Figure 12 plots the variation of the total electrical energy transfer rate with the area ratio.
The energy transfer increases with the increase of the inclusion area ratio. This behavior is expected
since higher irregularities of strain are induced when many inclusions are present. Figure 12 also
indicates that domains with an identical inclusion area ratio with higher Einc

Emat
induce higher energy
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conversion from mechanical to electrical energy. This suggests that softer matrix materials enhance the
electromechanical coupling characteristics.

Strain yy

(a) Strain profile in the y direction

Electric potential (V)

(b) Induced electric potential (V)

Figure 9. Calculation results of a square composition under compression: (a) strain profile in the y
direction; (b) induced electric potential.

Figure 10. Strain gradient profile at the horizontal center line (εyy,y) and the vertical center line (εxx,x).



Energies 2019, 12, 271 11 of 18

Electric potential (V)

(a) Electric potential profile with ten inclusions (area ratio = 5.0%) (b) Mesh configuration

Figure 11. Calculation results of the square domain with randomly-distributed inclusions under
compression: (a) electric potential profile for the domain with ten inclusions; (b) MLS discretization
with the red solid point representing the nodes and the blue asterisk representing the enriched nodes.

Figure 12. The energy conversion rate calculated by (Equation (14)) vs. the inclusion area ratio. Several
setups are created for each configuration; hereafter, the averaged results are plotted. The error bar
represents the upper and lower boundary of the calculation results.

4. Conclusions

In this study, the proposed model demonstrates the possibilities of inducing electromechanical
coupling in a nano-composite material without the presence of the piezoelectric effect.
The electromechanical coupling is modeled using the EFG method. Strain gradient involving partial
differential equations is numerically solved using the MLS approximation. The C1 continuity due
to the strain gradient term is fulfilled by choosing the special weight function in the EFG. The level
set techniques are employed to handle the weak discontinuity between the inclusion and matrix.
The present numerical model captures the finite size flexoelectric effect for a mechanically-loaded
cantilever beam. The converse flexoelectric effect-induced mechanical deformation of an electrically
loaded cantilever beam is in good agreement with earlier reports. The results of the truncated pyramid
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further validate the current model. The non-uniform strain fields near the inclusion boundary induce
the electrical polarization and thus electric potential due to flexoelectricity. We also found that the
magnitude of the electromechanical coupling is largely dependent on the area ratio between the
inclusion and the matrix. The higher the inclusion area ratio, the stronger the electromechanical
coupling. Furthermore, a softer matrix material can also enhance the electromechanical coupling
when compared to a stiff material. These findings help in designing a nano-composite utilizing the
flexoelectric effect.
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Appendix A. Theory of Flexoelectricity

The enthalpy densityH for a dielectric solid with piezoelectric and flexoelectric effects is [50,51]:

H(εij, Ei, εjk,l , Ei,j) =
1
2
Cijklεijεkl − eiklEiεkl + (dijklEi,jεkl + fijklEiεjk,l)−

1
2

κijEiEj, (A1)

where Ei = −φ,i is the electric field; φi is the electric potential; εij is the mechanical strain; Cijkl is the
fourth-order elastic moduli tensor; eikl is the third-order tensor of piezoelectricity; fil jk and dijkl are
the fourth-order direct and converse flexoelectric tensors; and κ is the second-order dielectric tensor.
Sharma et al. [52] defined the flexoelectric tensor µijkl as the difference between dil jk and fijkl by the
application of integration by parts and Gauss divergence theorem to Equation (A1), which is:∫

Ω

(
dijklEi,jεkl + fijklEiεjk,l

)
dΩ =

∫
Ω

dijklEi,jεkldΩ +
∫

Ω
fijklEiεjk,ldΩ

=
∫

∂Ω
dijklEiεkldS−

∫
Ω

dijklEiεkl,jdΩ +
∫

Ω
fijklEiεjk,ldΩ

= −
∫

Ω

(
dijklEiεkl,j − fijklEiεjk,l

)
dΩ +

∫
∂Ω

dijklEiεkldS

= −
∫

Ω

(
dil jk − fijkl

)
Eiεjk,ldΩ +

∫
∂Ω

dijklEiεkldS

= −
∫

Ω
µijklEiεjk,ldΩ +

∫
∂Ω

dijklEiεkldS.

(A2)

Rewriting Equation (A1) leads to Equation (1).
The stress (σ̂ij) and electric displacement (D̂i) from Equation (1) when considering the

piezoelectricity effect is given as:

σ̂ij =
∂H
∂εij

; D̂i = −
∂H
∂Ei

. (A3)

Due to the presence of flexoelectricity, the higher-order stress (σ̄ijk) and electric displacement
(D̄ij) read:

σ̄ijk =
∂H

∂εij,k
; D̄ij = −

∂H
∂Ei,j

. (A4)

The total stress and electric displacement from piezoelectric and flexoelectric effects are summarized as:

σij = σ̂ij − σ̄ijk,k = Cijklεkl − ekijEk + µlijkEl,k;

Di = D̂i − D̄ij,j = eiklεkl + κijEj + µijklεjk,l .
(A5)
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The essential and natural electric boundary condition are:

φ = φ̄ on Γφ;

Dini = −w on ΓD;

Γφ ∪ ΓD = ∂Ω and Γφ ∩ ΓD = ∅,

(A6)

where φ̄ and w are the applied electric potential and surface charge density, ∂Ω represents the boundary
of the domain, and ni is the unit normal to the boundary ∂Ω. The mechanical boundary conditions are
given as:

u = ū on Γu;

tk = t̄k on Γt;

Γu ∪ Γt = ∂Ω and Γu ∩ Γt = ∅,

(A7)

where ū and t̄k are prescribed mechanical displacement and traction. The remaining boundary
conditions (normal derivation of displacement and higher-order tractions) resulting from the strain
gradient have been set to zero under the assumption of a homogeneous condition.

Rewrite Equations (A3) and (A4) as:

∂H = σ̂ij∂εij

∂H = σ̄ijk∂εij,k

∂H = −D̂i∂Ei

, (A8)

and integration over the domain Ω gives:

H =
1
2

∫
Ω

(
σ̂ijεij + σ̄ijkεij,k − D̂iEi

)
dΩ, (A9)

where H is the total electrical enthalpy. The external work by surface mechanical and electrical forces
is given by:

Wext =
∫

Γt
t̄iuidS−

∫
ΓD

wφdS. (A10)

Finally, the weak form of the mechanical and electrical equilibrium derived from the Hamilton
principle for the static problem yields:

0 =
∫

Ω

(
σ̂ijδεij + σ̄ijkδεij,k − D̂iδEi

)
dΩ−

∫
Γt

t̄iδuidS−
∫

ΓD

wδφdS. (A11)

Substituting Equations (A3)–(A5) into Equation (A11) yields:∫
Ω

(
Cijklδεijεkl − ekijEkδεij − µlijkElδεij,k − κijδEiEj − eiklδEiεkl − µijklδEiεjk,l

)
dΩ

−
∫

Γt
t̄iδuidS−

∫
ΓD

wδφdS = 0 .
(A12)

The unknowns (displacement and electric potential) in Equation (A12) are approximated
using MLS.
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Appendix B. Details of the Shape Function

The shape function ΦI(x) associates with Node I and a point x under MLS is:

ΦI(x) = pT(x) [A(x)]−1 w (x− xI) p(xI), (A13)

where p(x) is the second-order polynomial, which is:

pT(x) =
[
1 x y x2 xy y2

]
. (A14)

The quadratic spline weight function w ensures C3 continuity inside an element and C2 continuity
between elements [40]. The mathematical expression for w is:

w(r) =

{
1− 6r2 + 8r3 − 3r4 if r ≤ 1
0 if r > 1

(A15)

where:

r =
‖ xI − x ‖

d
, (A16)

d is the predefined search radius of the support domain and d equals three-times the nodal spacing.
The moment matrix A(x) has the form:

A(x) =
N

∑
I=1

w(x− xI)p(xI)pT(xI) . (A17)

A sufficient number of support nodes ensures the non-singularity of matrix A(x). The enrichment
function Ψ(x) has the form [42]:

Ψ(x) = abs(ψ(x)); where ψ(x) = min
i=1,2,...,nc

{
‖ x− xi

c ‖ −ri
c

}
(A18)

where nc is the total number of inclusions inside the domain, xi
c is the center coordinate of the ith

circular inclusion, and ri
c is the radius of the ith circular inclusion.

Appendix C. Mathematical Expression for the Elements in Equation (4)

Bu = ∂Φu =

[
∂

∂x 0 ∂
∂y

0 ∂
∂y

∂
∂x

]
; (A19)

Bφ = ∂Φφ =
[

∂
∂x

∂
∂y

]
; (A20)

Hu = ∂∂Φu =

 ∂2

∂x2 0 ∂2

∂x∂y
∂2

∂x∂y 0 ∂2

∂y2

0 ∂2

∂x∂y
∂2

∂x2 0 ∂2

∂y2
∂2

∂x∂y

 ; (A21)

Benr
u = ∂ΦuΨ + Φu∂Ψ ; (A22)

Benr
φ = ∂ΦφΨ + Φφ∂Ψ ; (A23)

Henr
u = ∂∂ΦuΨ + Φu∂∂Ψ + 2∂Φu∂Ψ ; (A24)
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Benr
u =


∂

∂x ψ(x) + sign(ψ(x)) (x−xc)
d 0

0 ∂
∂x ψ(x) + sign(ψ(x)) (y−yc)

d
∂

∂x ψ(x) + sign(ψ(x)) (y−yc)
d

∂
∂x ψ(x) + sign(ψ(x)) (x−xc)

d


T

; (A25)

Benr
φ =

[
∂

∂x ψ(x) + sign(ψ(x)) (x−xc)
d

∂
∂x ψ(x) + sign(ψ(x)) (y−yc)

d

]T

; (A26)

Henr
u =



∂2

∂x2 ψ(x) + 2 ∂
∂x sign(ψ(x)) (x−xc)

d + sign(ψ(x)) (y−yc)2

d(
3
2 )

0

0 ∂2

∂y∂x ψ(x) + ∂
∂y sign(ψ(x)) (x−xc)

d + ∂
∂x sign(ψ(x)) (y−yc)

d + sign(ψ(x))−(x−xc)∗(y−yc)

d(
3
2 )

∂2

∂y∂x ψ(x) + ∂
∂y sign(ψ(x)) (x−xc)

d + ∂
∂x sign(ψ(x)) (y−yc)

d + sign(ψ(x))−(x−xc)∗(y−yc)

d(
3
2 )

∂2

∂x2 ψ(x) + 2 ∂
∂x sign(ψ(x)) (x−xc)

d + sign(ψ(x)) (y−yc)2

d(
3
2 )

∂2

∂y∂x ψ(x) + ∂
∂y sign(ψ(x)) (x−xc)

d + ∂
∂x sign(ψ(x)) (y−yc)

d + sign(ψ(x))−(x−xc)∗(y−yc)

d(
3
2 )

0

0 ∂2

∂y2 ψ(x) + 2 ∂
∂y sign(ψ(x)) (y−yc)

d + sign(ψ(x)) (x−xc)2

d(
3
2 )

∂2

∂y2 ψ(x) + 2 ∂
∂y sign(ψ(x)) (y−yc)

d + sign(ψ(x)) (x−xc)2

d(
3
2 )

∂2

∂y∂x ψ(x) + ∂
∂y sign(ψ(x)) (x−xc)

d + ∂
∂x sign(ψ(x)) (y−yc)

d + sign(ψ(x))−(x−xc)∗(y−yc)

d(
3
2 )



T

. (A27)
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