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Abstract: China’s industrial sector, which has a significant position in the world, is the main sector
of China’s energy consumption and waste gas emission. China’s government has promulgated
a Guiding Opinion, setting key regions to establish an emission reduction target of air pollutants
during the 12th five year plan (2011–2015). Thus, there is a different regional treatment of industrial
waste gas in China. This study considers the waste gas treatment expenditure as a new input and
employs the non-radial directional distance function in the framework of the meta-frontier model to
investigate the energy and emission reduction performance of China’s industrial sectors. The study
is aimed at finding a significant and expanded technical gap between key and non-key regions in
the energy and emission reduction efficiencies. The empirical result presents an effective method to
improve the performance by increasing the emission treatment expenditure to reduce emissions.

Keywords: emission reduction; energy-saving; performance improvement; meta-frontier; non-radial
directional distance function; China’s industrial sector

1. Introduction

China is now the largest energy consumer in the world. According to Global Energy Statistical
Yearbook 2017 [1], China’s total energy consumption reached 3.123 million TCE (tons of standard coal
equivalent) in 2016, taking up about 55% of Asia’s energy consumption and nearly a quarter of the
global consumption. Meanwhile, China is also the world’s largest emitter of CO2, the emissions of
which in 2016 take up approximately 28.21% of the global total based on Statista [2]. Ke [3] evaluated
the energy efficiency of APEC member economies over 18 consecutive years (1995–2012) and found
China’s efficiency performance is relatively the worst, and indicated that a carbon reduction policy is
more urgent and more important than an energy-saving policy in China.

In China, the industrial sector (containing mining, manufacturing, and power industries) is the
main sector of energy consumption and CO2 emission. China’s industrial sector contributed 34.32%
of the national GDP, while its share of China’s energy consumption was up to 67.98% [4]. The total
waste gas emission of China’s industrial sector reached 68.52 trillion cubic meters [5]. Besides CO2,
the industrial sector’s emissions also included SO2 (accounting for 83.73% of the country’s total), NOX

(accounting for 63.79% of the country’s total), and soot (accounting for 66.59% of the country’s total).
At the same time, China’s industrial sector plays an important role in the world. Based on

U.N. National Accounts Main Aggregates Database [6], China’s manufacturing industry, the main
department of the industrial sector, achieved a value-add of 3.080 billion dollars in 2016, which was
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close to the total of the United States’ and Japan’s manufacturing industry, and exceeded one-quarter
of the global manufacturing industry’s total. As a result, it is of great practical significance to take
China’s industrial sector as a research object and analyze its energy and emission treatment efficiency,
on which scholars should place particular emphasis.

The environmental issues caused by industrial emission, such as the greenhouse effect, acid rain,
and haze, have become increasingly acute and attracted attention from the national government and
society. China’s government has promulgated Guiding Opinions [7] in 2010 to deal with waste gas
emission. The main line of the Guiding Opinions is to set key regions and establish an emission
reduction target of air pollutants during the 12th five year plan (2011–2015) for cities in the key
regions. The government measures in emission reduction for the key regions include installing waste
gas treatment equipment like desulfurization, denitrification, and dust removal equipment in the
industrial sector, imposing restrictions on high energy consumption industries that lead to air pollution
(such as steel, cement, and glass industries), and accelerating the promotion of clean energy and new
energy. The key regions include 14 provinces, as shown in Figure 1 below.
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Figure 1. Key and non-key regions under Guiding Opinions 2010.

In Figure 2, we compare the energy intensity between key and non-key regions using the
proportion of energy consumption and revenue of China’s industry sector (unit: TCE per 100 million
RMB) according to Energy Statistical Yearbook of China [8–12]. Similarly, the coal share of the total
energy consumption (including coal, petroleum, natural gas, and electricity) is compared in Figure 3
using the proportion of coal in total energy consumption (unit: 100%), because coal is the main cause
of waste gas emissions. As a result, a lower level and significant decrease trend can be found in the
key regions from 2011–2015.
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Figure 2. Energy intensity between key and non-key regions.

Energies 2018, 11, x FOR PEER REVIEW  3 of 18 

 

 
Figure 2. Energy intensity between key and non-key regions. 

 
Figure 3. Comparing coal share between key and non-key regions. 

We find there is an increase of the treatment expenditure which can reduce emission in China’s 
industry sector from 2011–2015.Considering the efforts of emission reduction, we set up a new 
indicator called treatment intensity. The definition of treatment expenditure per cubic meter of 
emission is calculated by the proportion of expenditure of industrial waste gas treatment facilities 
(including desulfurization, de-nitrification, dust removal, etc.) and the volume of industrial waste 
gas emission (including CO2, SOx, NOx, soot, etc.), according to the China Statistical Yearbook on 
Environment [5,13–16]. The treatment intensity reflects the input level of waste gas treatment. The 
local economic development is crucial to treatment intensity, but the government policy is also 
considered as a common cause of regional differences. For instance, the average treatment intensity 
value from 2011–2015 of Hunan (2.91), Hubei (2.11), Sichuan (2.37), and Chongqing (2.38), which are 

key regions, is higher than that of Anhui (1.98), Henan (1.84), and Shaanxi (1.98), which are non-key 
regions, even though they have a similar economic development level. As shown in Figure 4, we find 
the increasing trend in both key and non-key regions. However, the treatment intensity in key regions 
is higher than that in non-key regions, despite the lower energy intensity and coal share in key 
regions. So we think there is difference between the regional treatment intensities of key and non-
key regions, and the gap would not be filled in the next few years. 

Figure 3. Comparing coal share between key and non-key regions.

We find there is an increase of the treatment expenditure which can reduce emission in China’s
industry sector from 2011–2015.Considering the efforts of emission reduction, we set up a new
indicator called treatment intensity. The definition of treatment expenditure per cubic meter of
emission is calculated by the proportion of expenditure of industrial waste gas treatment facilities
(including desulfurization, de-nitrification, dust removal, etc.) and the volume of industrial waste
gas emission (including CO2, SOx, NOx, soot, etc.), according to the China Statistical Yearbook on
Environment [5,13–16]. The treatment intensity reflects the input level of waste gas treatment. The local
economic development is crucial to treatment intensity, but the government policy is also considered
as a common cause of regional differences. For instance, the average treatment intensity value from
2011–2015 of Hunan (2.91), Hubei (2.11), Sichuan (2.37), and Chongqing (2.38), which are key regions,
is higher than that of Anhui (1.98), Henan (1.84), and Shaanxi (1.98), which are non-key regions,
even though they have a similar economic development level. As shown in Figure 4, we find the
increasing trend in both key and non-key regions. However, the treatment intensity in key regions is
higher than that in non-key regions, despite the lower energy intensity and coal share in key regions.
So we think there is difference between the regional treatment intensities of key and non-key regions,
and the gap would not be filled in the next few years.
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Based on the background and analysis above, this study is aimed at investigating performance
of energy and emission reduction of China’s industrial sector through employing the non-radial
directional distance function in the framework of the meta-frontier model, and to divide China into
key and non-key regions under the regional treatment differences.

Non-radial directional distance function is one kind of Data Envelopment Analysis (DEA). As for
the DEA approach, a large number of studies apply radial DEA models, like the CCR model by
Charnes et al. [17] and BCC model by Baker et al. [18]. But these models also ignore that most DMUs
(Decision-Making Units) in business always want to maximize their profit. Chambers et al. [19]
introduced a directional distance function that can estimate the efficiency scores by incorporating all
types of inputs and outputs. The directional technology distance function generalizes radial measures
in terms of input and output efficiency, because it allows the radial and non-radial increase of outputs
and reduction of inputs. Besides, Färe and Grosskopf [20] pointed out that the directional technology
distance function can be applied in an estimation of industrial inefficiency under the assumption that
the resources can be efficiently allocated, whereas the directional technology distance function could
be easily affected by the slack in the technological constraints. As mentioned by Färe and Lovell [21],
efficiency measurement under an isoquant subset instead of an efficient subset may lead the unit’s
identification to be technically efficient, while it is actually not. Therefore, many scholars pay attention
to the non-radial models, such as Fukuyama and Weber [22,23], Färe and Grosskopf [24], Mahlberg
and Sahoo [25], Zhou et al. [26], and Barros and Managi [27]. In this study, we employ the non-radial
directional distance function, because non-radial DEA-based models seem to be more effective in
estimating the industrial performance due to the higher discriminating power of non-radial efficiency
measures in evaluating the efficiencies of DMUs.

The earliest application of DEA approach in energy and environment can be traced back to
Färe et al. [28]. Using data from U.S. fossil-fuel-fired electric utilities, they established an environmental
performance indicator through decomposing the overall factor productivity into a pollution index and
an input-output efficiency index.

In the literature focusing on estimating and comparing the energy efficiency of macro economies
by DEA, labor, capital, and energy consumption are widely accepted as inputs, and GDP and CO2,
respectively, represent the desirable and undesirable outputs. This method first appeared in the
comparison among OECD countries. For instance, Zaim et al. [29] used non-parametric techniques to
build an environmental efficiency index for the OECD countries. Färe et al. [30] provided a formal
index number of environmental performance using a sample of OECD countries for 1990.
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Afterwards, this method was rapidly promoted internationally. The relevant follow-up
literature position the following as the analysis objects: OECD (Zhou et al. [31], Zhou and
Ang [32], Agergis et al. [33], Guo et al. [34]), APEC (Hu and Kao [35], Zhou et al. [36], Ke [3]),
EU (Bampatsou et al. [37], Chang [38], Gómez-Calvet [39], Robaina-Alve et al. [40]), and BRICs
(Song et al. [41]). In addition, there are many other studies applying this method to make comparisons
between different countries, involving Ramanathan [42], Zhang et al. [43], Cui [44], and Jebali et al. [45].

With China’s economic growth, an increasing amount of research has been dedicated to examining
the energy and emission efficiency of China. Hu and Wang [46] first used the above method of
comparing countries to analyze energy efficiencies of 29 administrative regions in China from 1995 to
2002, considering labor, capital, and energy consumption as the three inputs, and GDP as the single
output. Since then, many scholars have adopted similar input-output variables to compare the energy
and emission efficiencies of China across different regions through DEA, such as Chang and Hu [47],
Wu et al. [48], and Li and Lin [49].

Furthermore, CO2, a common concern of the world, was accepted as the undesirable output by
several scholars and was introduced into the model to analyze China’s energy and emission efficiency
(Choi et al. [50], Li and Hu [51], Wang et al. [52], Lin and Du [53]). Some other scholars introduced
both CO2 and SO2, which are of more concern in China, into the efficiency model as the undesirable
outputs (Yeh et al. [54], Wang and Feng [55], Zhang and Choi [56], Yu and Choi [57]).

Bettese et al. [58] and O’Donnell et al. [59] develop the meta-frontier model, which makes it
possible to compare the performance of DMUs belonging to different contexts. This model decomposes
the DMU’s attainment into its own management (efficiency) and technical gaps. It is assumed that all
DMUs have potential access into a common frontier. Considering the regional disparities in China,
some studies use Chinese provinces as DMUs to measure energy efficiency, under the assumption it is
unrealistic and unfair that all provinces possess a consistent technology. So some scholars classified
Chinese provinces into different groups, usually eastern, central, and western regions. Based on
regional classification, they adopted the meta-frontier model to evaluate China’s energy efficiency and
found that the technology efficiency gap between regional efficiencies is significant (Lin and Du [60],
Wang et al. [61], Du et al. [62], Yao et al. [63]).

Some scholars have paid close attention to the energy and emission of China’s industrial sector.
For instance, Cole et al. [64] found that China’s industrial emissions have a positive effect on energy use
and human capital intensity and have a negative effect on productivity. Xu and Lin [65] derived that
economic growth dictated the industrial CO2 emissions and its impact varied across regions. Then they
also proposed policy recommendations to mitigate CO2 emissions in the manufacturing industry.
Liu and Wang [66] applied network DEA to assess the energy efficiency of China’s provincial industrial
sector by means of dividing the energy-producing department and energy-consuming department.

This study is different from the previous studies mentioned above, as follows. On the one
hand, based on the traditional input-output variables, this paper adds expenditure of industrial
waste gas treatment facilities as a new input variable affecting the emission reduction efficiency.
Given that, the energy efficiency is revised and redefined as energy and emission reduction efficiencies
in this paper. On the other hand, in contrast with previous studies, such as Lin and Du [60] and
Wang et al. [61], which divided China into three groups (eastern, central, and western areas in China),
this paper considers grouping under regional treatment differences, and applies the meta-frontier
model to find the technical gap between key and non-key regions, making the results more convincing
in evaluating the government’s efforts of emission reduction. Section 2 shows the methodology.
Section 3 presents the empirical study. Section 4 offers discussion. Section 5 ends with conclusions and
policy recommendation.
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2. Methodology

2.1. Non-Radial Directional Distance Function

DEA has been heavily used in the past two decades on energy, environmental, and ecological
efficiencies and productivity analysis. Farrell [67] firstly raised the concept of measuring efficiency
with the production frontier, which has since been modified and expanded. Charnes et al. [17]
extended the theoretical results of Farrell and applied them to multiple inputs and multiple outputs in
a constant-returns-to-scale scenario. Banker et al. [18] incorporated the concept of a linear combination
of convexity constraints and adjusted constant-returns-to-scale to variable-returns-to-scale. Both of
them are able to measure radial efficiency, and it is assumed that the input and output variables are
able to proportionally increase or decrease. Tone [68] then proposed a non-radial Slacks-Based Measure
(SBM) to solve the problem that an input or output cannot be adjusted by an equal proportion in order
to reach optimal efficiency.

Many of these conventional DEA methods, however, could not involve undesirable outputs.
To introduce undesirable outputs to the DEA model, Luenberger [69] and Chung et al. [70] presented
a radial directional output distance function, by extending the output distance function concept
in Shephard’s input and output distance function. The radial directional output distance function
provides both desirable and undesirable outputs under the same production basis, thus allowing one
to analyze both increasing output and decreasing bad output.

According to Chung et al. [70], the directional distance function of the undesired output is
expressed as follows:

maxβ

s.t.Xλ + βgx ≤ xk,
Yλ− βgy ≤ yk,
Bλ− βgb ≤ bk,

λ ≥ 0

(1)

Here,
(
−gb, gy

)
is the distance direction measured by the distance function. At the same time,

the DMU requires increasing βgy as a desirable output variable and decreasing βgb as an undesirable
output variable to achieve the productive production boundary.

The radial efficiency models neglect the variance of the variables, which may result in estimation
errors. To overcome this defect, Färe and Grosskopf [24] set up a non-radial directional distance
function, which is better compared with other methods because its estimation results are more
reasonable and accurate. Other scholars have applied non-radial directional distance functions
to assess energy and environmental efficiency analysis, such as Zhou et al. [26], Chiu et al. [50],
Zhang and Choi [56], and Zhang et al. [71].

This study assumes that there are N provinces (N decision making units, DMUs), and each
province employs four inputs of capital (K), labor (L), and energy (E) and expenditure (EX) to produce
a desirable output of Revenue (R) and one undesirable output of Industrial waste gas emission (Em).
The production technology set (T) is defined below (Färe et al. [72]).

T = {(K, L, E, EX, R, Em) : (K, L, E, EX) can produce (R, Em)} (2)

The production technology follows the standard axioms of production theory (Färe et al. [72]).
Here, T is usually considered as a closed and bounded set, which possesses finite inputs that produce
finite outputs. In order to model joint-production technology, it is assumed that T possesses the
properties of weak disposability and null jointness.

Färe and Grosskopf [24] established the radial directional distance function as the below
Equation (2).

⇀
D(K, E, EM : g) = Sup{βE + βY + βEM : (K, L, E− βEgE, Y− βYgY, EM− βEMgEM )∈ T} (3)
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In Equation (2), g = (−gE, gY,−gEM) represents the direction vector that is required to reduce
energy and CO2 emissions and increase GDP, under the corresponding ratio of β = (βE, βY, βEM).
If β = βE = βY = βEM, then Equation (2) allows for an increase of GDP and a reduction of both energy
and CO2 emissions as much as possible by a common scalar β. Since the non-radial directional distance
function allows for a more flexible calculation of slacks, it has discrimination power to identify slacks
of energy, CO2 emissions, and GDP compared to the radial directional distance function.

Following Färe and Grosskopf [24], Zhou et al. [26], and Zhang et al. [71], the non-radial directional
distance function is expressed as below.

maxβE + βY + βEM
N
∑

n=1
λnKn ≤ K0,

N
∑

n=1
λnLn ≤ L0,

N
∑

n=1
λnEMn ≤ EM0,

N
∑

n=1
λnEn ≤ (1− βE)E0,

N
∑

n=1
λnYn ≥ (1 + βY)Y0,

N
∑

n=1
λnEMn ≤ (1− βEM)EM0,

1 > βE ≥ 0; βY ≥ 0; 1 > βEM ≥ 0; λn ≥ 0; n = 1, 2, . . . . . . N

In Equation (3), λn is an intensity variable, β = (βE, βY, βEM) denotes a weight vector,
and g = (−gE, gY,−gEM) denotes an explicit directional vector.

2.2. Meta-Frontier and Non-Radial Directional Distance Function

Hayami and Ruttan [73] first put forward that DMUs do not possess a common production
technology due to the differences in geographic location, market condition, economic development,
and some other factors. Battese and Rao [74] and Battese et al. [58] noted the comparison of the technical
efficiency (TEE) between different groups is feasible through a meta-frontier model. In other word,
the countries tend to have hetero production technology, which is the basic idea of the meta-frontier
(Battese et al. [58], O’Donnell et al. [59]). But the DMUs evaluated are often supposed to have the same
production technology level as the traditional DEA models, although they actually have heterogeneous
technology because of diverse geographic locations, public policies, socio-economic level, etc. Hence,
on account of the non-radial directional distance function (Färe and Grosskopf [24], Zhou et al. [26],
and Zhang et al. [71]) and meta-frontier model (O’Donnell et al. [59]), the meta-frontier non-radial
directional distance function model is set as Equation (4).

According toFäre and Grosskopf [24], Zhou et al. [26], and Zhang et al. [71], the value of
D
(

Xm, Ys, Zj, g
)

can be obtained through the following DEA model.

D
(

Xm, Ys, Zj, g
)
= maxwx

mθx
m + wy

sθ
y
s + wz

j θ
z
j

s.t.
H
∑

h=1

N
∑

n=1
λnxmn ≤ xm − θx

mgxm, m = 1, · · · , M,

H
∑

h=1

N
∑

n=1
λnysn ≤ ys − θ

y
s gys, s = 1, · · · , S,

H
∑

h=1

N
∑

n=1
λnZjn ≤ zj − θz

j gzj, j = 1, · · · , J,

h = 1 . . . H, θx
m, θy

s , θz
j ≥ 0

(4)
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Because the meta-frontier is an envelope curve of the group frontier, it has more reference objects
and represents the best production frontier. Given this, the technical efficiency value under the Group
Frontier Efficiency (GFE) is higher than that under the Meta-Frontier Efficiency (MFE). The Technical
efficiency Gap Ratio (or technology gap ratio, TGR) is calculated from the ratio value of MFE to GFE,
as Equation (5) showed.

TGR =
ρ∗

ρ
∗g
o

=
MFE
GFE

(5)

3. Empirical Study

3.1. Data and Variables

When the previous studies assessed the energy efficiency through DEA, labor, capital, and energy
consumption are generally taken as inputs, and GDP and CO2, respectively, refer to the desirable and
undesirable outputs. As mentioned above, Guiding Opinions promulgated by the Chinese government
in 2010 have a mandatory requirement that the enterprises in industrial sectors should achieve emission
reduction targets during the 12th five year plan (2011–2015). We find that the number of industrial
waste gas treatment facilities (i.e., facilities) in China’s industrial sector has increased obviously during
the five years, and annual expenditure for operation of industrial waste gas treatment facilities (i.e.,
expenditure) also has a significant expansion. Figure 5 shows the trends of facilities and expenditure
from 2011–2015.Aremarkable rise is found in revenue of China’s industrial sector from 2011–2015,
while emission relatively maintains a stable level, as shown in Figure 6. So we believe expenditure has
played a positive role in restraining the growth of emission but increase the company’s cost of input.
This general trend provides an objective basis in introducing expenditure as a new input variable in
this study.

Energies 2018, 11, x FOR PEER REVIEW  8 of 18 

 

h =1… H,θ୫୶ , θୱ୷, θ୨୸   ≥ 0 

Because the meta-frontier is an envelope curve of the group frontier, it has more reference objects 
and represents the best production frontier. Given this, the technical efficiency value under the Group 
Frontier Efficiency (GFE) is higher than that under the Meta-Frontier Efficiency (MFE). The Technical 
efficiency Gap Ratio (or technology gap ratio, TGR) is calculated from the ratio value of MFE to GFE, 
as Equation (5) showed.  TGR = ρ∗ρ୭∗୥ = MFEGFE  (5) 

3. Empirical Study 

3.1. Data and Variables  

When the previous studies assessed the energy efficiency through DEA, labor, capital, and 
energy consumption are generally taken as inputs, and GDP and CO2, respectively, refer to the 
desirable and undesirable outputs. As mentioned above, Guiding Opinions promulgated by the 
Chinese government in 2010 have a mandatory requirement that the enterprises in industrial sectors 
should achieve emission reduction targets during the 12th five year plan (2011–2015). We find that the 
number of industrial waste gas treatment facilities (i.e. facilities) in China’s industrial sector has 
increased obviously during the five years, and annual expenditure for operation of industrial waste 
gas treatment facilities (i.e. expenditure) also has a significant expansion. Figure 5 shows the trends 
of facilities and expenditure from 2011–2015.Aremarkable rise is found in revenue of China’s 
industrial sector from 2011–2015, while emission relatively maintains a stable level, as shown in 
Figure 6. So we believe expenditure has played a positive role in restraining the growth of emission 
but increase the company’s cost of input. This general trend provides an objective basis in introducing 
expenditure as a new input variable in this study. 

 
Figure 5. The trends of facilities and expenditure from 2011–2015. Figure 5. The trends of facilities and expenditure from 2011–2015.



Energies 2019, 12, 237 9 of 18

Energies 2018, 11, x FOR PEER REVIEW  9 of 18 

 

 
Figure 6. Trends of revenue and emission from 2011–2015. 

We list 30 of China’s provinces (except Tibet and Taiwan) as DMUs, collect data from 2011–2015 
according to the Industry Statistical Yearbook of China [75–79], Energy Statistical Yearbook of China 
[5,13–16], and Statistical Yearbooks on Environment of China [8–12]. Variables are described as 
follows. 

Input variables: 

Annual average employees (Labor): Unit is one million persons. 
Labor refers to the number of industrial companies’ employees in each province at the end of 

each year.  
Total asset (Capital): Unit is one trillion RMB. 

Capital represents the industrial companies’ total assets in each province. 
Total energy consumption (Energy): Unit is one million TCE. 

The coal, petroleum, natural gas, and electricity consumed by industrial companies are added 
together as total energy consumption of each province. 
Expenditure of industrial waste gas treatment facilities (Expenditure): Unit is billion RMB. 

Expenditure of industrial waste gas treatment facilities indicates the annual operating cost of 
waste gas treatment equipment, such as desulfurization, denitrification, and dust removal 
equipment. 

Desirable output variable: 

Revenue from principal business (Revenue): Unit is one trillion RMB 
Revenue represents the main business income of industrial enterprises in each province. 

Undesirable output variable: 

Industrial waste gas emission (Emission): Unit is one trillion cubic meters. 
Industrial waste gas emission represents the total emissions of CO2, SO2, NOX, and soot, which 

is measured by the volume of emissions. 

Descriptive statistics of input and output variables is reported in Table 1. 

Table 1. Descriptive statistics of inputs and outputs. 

Year Variable Unit Average SD Min Max 

2011 

(I)Labor million persons 3.148  3.273  0.181  14.511  
(I)Capital trillion renminbi 2.252  1.872  0.175  7.626  
(I)Energy million tons of standard coal equivalent 58.841  36.713  8.636  163.490  

(I)Expenditure billion renminbi 4.459  3.552  0.371  14.390  
(O)Revenue trillion renminbi 2.806  2.799  0.160  10.703  

(OB)Emission trillion cubic meters 2.248  1.657  0.168  7.718  

Figure 6. Trends of revenue and emission from 2011–2015.

We list 30 of China’s provinces (except Tibet and Taiwan) as DMUs, collect data from 2011–2015
according to the Industry Statistical Yearbook of China [75–79], Energy Statistical Yearbook of
China [5,13–16], and Statistical Yearbooks on Environment of China [8–12]. Variables are described
as follows.

Input variables:

Annual average employees (Labor): Unit is one million persons.
Labor refers to the number of industrial companies’ employees in each province at the end of

each year.
Total asset (Capital): Unit is one trillion RMB.
Capital represents the industrial companies’ total assets in each province.
Total energy consumption (Energy): Unit is one million TCE.
The coal, petroleum, natural gas, and electricity consumed by industrial companies are added

together as total energy consumption of each province.
Expenditure of industrial waste gas treatment facilities (Expenditure): Unit is billion RMB.
Expenditure of industrial waste gas treatment facilities indicates the annual operating cost of

waste gas treatment equipment, such as desulfurization, denitrification, and dust removal equipment.

Desirable output variable:

Revenue from principal business (Revenue): Unit is one trillion RMB
Revenue represents the main business income of industrial enterprises in each province.

Undesirable output variable:

Industrial waste gas emission (Emission): Unit is one trillion cubic meters.
Industrial waste gas emission represents the total emissions of CO2, SO2, NOX, and soot, which is

measured by the volume of emissions.
Descriptive statistics of input and output variables is reported in Table 1.

Table 1. Descriptive statistics of inputs and outputs.

Year Variable Unit Average SD Min Max

2011

(I)Labor million persons 3.148 3.273 0.181 14.511
(I)Capital trillion renminbi 2.252 1.872 0.175 7.626
(I)Energy million tons of standard coal equivalent 58.841 36.713 8.636 163.490

(I)Expenditure billion renminbi 4.459 3.552 0.371 14.390
(O)Revenue trillion renminbi 2.806 2.799 0.160 10.703
(OB)Emission trillion cubic meters 2.248 1.657 0.168 7.718
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Table 1. Cont.

Year Variable Unit Average SD Min Max

2012

(I)Labor million persons 3.224 3.588 0.122 15.576
(I)Capital trillion renminbi 2.560 2.056 0.202 8.455
(I)Energy million tons of standard coal equivalent 60.892 36.621 8.522 170.668

(I)Expenditure billion renminbi 4.840 4.565 0.556 22.438
(O)Revenue trillion renminbi 3.097 3.085 0.170 11.929
(OB)Emission trillion cubic meters 2.118 1.474 0.196 6.765

2013

(I)Labor million persons 3.262 3.426 0.127 14.558
(I)Capital trillion renminbi 2.834 2.240 0.233 9.208
(I)Energy million tons of standard coal equivalent 57.990 34.370 8.606 161.11

(I)Expenditure billion renminbi 4.992 3.640 0.364 13.316
(O)Revenue trillion renminbi 3.430 3.423 0.164 13.232
(OB)Emission trillion cubic meters 2.231 1.615 0.369 7.912

2014

(I)Labor million persons 3.325 3.458 0.116 14.705
(I)Capital trillion renminbi 3.187 2.514 0.244 10.126
(I)Energy million tons of standard coal equivalent 59.292 35.435 8.973 174.868

(I)Expenditure billion renminbi 5.769 4.349 0.687 16.352
(O)Revenue trillion renminbi 3.690 3.706 0.176 14.314
(OB)Emission trillion cubic meters 2.313 1.648 0.264 7.273

2015

(I)Labor million persons 3.257 3.451 0.116 14.638
(I)Capital trillion renminbi 3.408 2.686 0.279 10.706
(I)Energy million tons of standard coal equivalent 59.374 33.434 8.762 156.134

(I)Expenditure billion renminbi 6.219 4.713 0.732 18.435
(O)Revenue trillion renminbi 3.699 3.826 0.166 14.707
(OB)Emission trillion cubic meters 2.229 1.721 0.234 7.857

3.2. Empirical Results

As shown in Figure 1, the key regions in Guiding Opinions 2010 contains 14 provinces, including
Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hubei,
Hunan, Chongqing, and Sichuan. In response to this regional disparity, we divide the 30 DMUs into
two groups, such as key regions and non-key regions.

Applying the non-radial Directional Distance Function (DDF) model, we estimate the energy and
emission reduction efficiencies of 30 of China’s provinces (DMUs). In addition, it is worth pointing out
that Slacks Based Measure (SBM) is another non-radial model, and we compare the results measured
by DDF and SBM methods in Table 2. The distribution of average values measured by DDF and SBM
methods are illustrated in Figures 7 and 8.

Table 2. Measured by Directional Distance Function (DDF) and Slacks Based Measure (SBM)
from 2011–2015.

Decision-Making Units (DMUs)
2011 2012 2013 2014 2015

DDF SBM DDF SBM DDF SBM DDF SBM DDF SBM

Beijing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Tianjin 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Hebei 0.958 0.503 0.939 0.487 0.915 0.448 0.879 0.436 0.871 0.422

Liaoning 0.974 0.733 0.964 0.693 0.945 0.711 0.917 0.631 0.814 0.434
Shanghai 1.000 1.000 1.000 1.000 0.946 0.740 0.960 0.833 0.954 0.810
Jiangsu 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Zhejiang 0.934 0.765 0.916 0.691 0.893 0.645 0.886 0.661 0.865 0.643
Fujian 0.985 0.771 0.936 0.689 0.885 0.627 0.952 0.704 0.981 0.766

Shandong 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Guangdong 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hubei 0.892 0.594 0.884 0.615 0.886 0.625 0.908 0.659 0.933 0.679
Hunan 0.994 0.786 0.964 0.680 0.980 0.696 0.966 0.743 0.994 0.720

Chongqing 0.865 0.546 0.813 0.501 0.816 0.520 0.885 0.613 0.941 0.679
Sichuan 0.818 0.535 0.801 0.523 0.819 0.512 0.875 0.596 0.920 0.653
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Table 2. Cont.

Decision-Making Units (DMUs)
2011 2012 2013 2014 2015

DDF SBM DDF SBM DDF SBM DDF SBM DDF SBM

Hainan 0.708 0.260 0.943 0.408 0.877 0.344 0.942 0.358 0.899 0.301
Jilin 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Heilongjiang 0.850 0.554 0.833 0.527 0.869 0.471 0.880 0.494 0.805 0.436
Shanxi 0.742 0.316 0.711 0.313 0.684 0.299 0.667 0.255 0.593 0.229

Inner Mongolia 1.000 1.000 0.974 0.432 0.961 0.426 0.947 0.370 0.929 0.350
Anhui 0.894 0.561 0.892 0.552 0.871 0.545 0.877 0.570 0.898 0.576
Jiangxi 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Henan 1.000 1.000 0.945 0.688 0.958 0.651 0.949 0.705 0.946 0.735

Guangxi 0.842 0.449 0.876 0.461 0.856 0.464 0.890 0.533 0.927 0.569
Guizhou 0.654 0.243 0.661 0.236 0.665 0.234 0.700 0.273 0.741 0.313
Yunnan 0.750 0.312 0.757 0.309 0.727 0.280 0.760 0.293 0.745 0.299
Shaanxi 0.820 0.467 0.793 0.457 0.777 0.410 0.765 0.425 0.779 0.417
Gansu 0.879 0.408 0.880 0.404 0.905 0.388 0.888 0.398 0.875 0.380

Qinghai 0.806 0.288 0.761 0.244 0.732 0.221 0.760 0.241 0.744 0.228
Ningxia 0.730 0.241 0.762 0.253 0.762 0.242 0.762 0.230 0.754 0.221
Xinjiang 0.889 0.406 0.843 0.326 0.850 0.298 0.845 0.277 0.795 0.261
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From Table 2, we find that the benchmark is mainly in the key regions, such as Beijing, Tianjin,
Shanghai, Jiangsu, Shandong, and Guangdong. Only 2 DMUs, Jilin and Jiangxi, are the benchmark
in the non-key regions. Comparing Figures 7 and 8, we find the efficiency value measured by SBM
is generally lower, because SBM looks for the farthest benchmark as room for improvement, and the
room for improvement estimated by SBM is generally larger. On the contrary, DDF can take into
account both desirable and undesirable outputs and find the optimal benchmark for improvement.
Thus, we believe that the efficiency values estimated by DDF are more consistent with reality.

We find Sichuan, Chongqing, and Hubei, which are included in the key regions, have a clear trend
of performance improvement during the five years. Particular emphasis should be placed on Hebei,
Liaoning, and Zhejiang, the performance of which has decreased annually over the five years.
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In non-key regions, Guangxi and Guizhou also show a distinct increase in their performance over
the five years. However, the performances of DMUs is worse in 2015 than that in 2011, such as for
Heilongjiang, Shanxi, Inner Mongolia, Shaanxi, Qinghai, and Xinjiang.Energies 2018, 11, x FOR PEER REVIEW  12 of 18 
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4. Discussion

4.1. The Technical Gap between Key Regions and Non-Key Regions

Based on the above estimates, it is already observed that there is a distinction of energy and
emission reduction performances between the key and non-key regions. In this case, we further discuss
whether the technical efficiency gap between the two regional groups is significant. The ratio of MFE
to GFE is used to indicate the technical efficiency gap, as Equation (5) showed.

Table 3 shows the results of the DMUs’ MFE, GFE, and TGR in key and non-key regions. It presents
that there is a different in efficiency and gaps in the country’s industries between the two regions.
First, the country’s industries in key regions show outperforming efficiency, with 0.946 on average,
compared with those in non-key regions (0.847) under the meta-frontier model. Second, turning to
results under the group frontier, we find that the key regions have better performance, with an average
value of 0.950, than those in non-key regions, with 0.887. This result indicates the DMUs in key regions
are closer to their own frontier than those in non-key regions. It also means the DMUs in non-key
regions have a higher technical gap, which can be inferred by the results of TGR. Third, the TGR of
non-key regions has reached 0.940 in 2015, lower than that in 2011 (0.960), which reflects that there
was an expansion of the gap between key and non-key regions from 2011 to 2015.
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Table 3. of MFE, GFE, and TGR from 2011–2015.

Meta-Frontier Efficiency (MFE)

Year 2011 2012 2013 2014 2015 mean

key regions 0.959 0.944 0.935 0.945 0.948 0.946
non-key regions 0.848 0.852 0.843 0.852 0.839 >0.847

Group Frontier Efficiency (GFE)
Year 2011 2012 2013 2014 2015 mean

key regions 0.962 0.951 0.937 0.950 0.950 0.950
non-key regions 0.882 0.883 0.892 0.887 0.891 >0.887

Technical efficiency Gap Ratio (TGR)
Year 2011 2012 2013 2014 2015 mean

key regions 0.996 0.992 0.997 0.994 0.998 0.996
non-key regions 0.960 0.964 0.944 0.960 0.940 0.954

A wilcoxon score test is applied to further test the difference of the energy and emission treatment
efficiencies between key and non-key regions. The p-value is compared with the confidence level αset
as 0.01, 0.05, and 0.1, to testify whether there is significant distinction of TGR between two regional
groups. From the results of the wilcoxon score test in Table 4, it shows that the p-values of the two
groups’ average TGR are all less than α = 0.01 from 2011 to 2015, proving the average TGR between
the two groups is distinct at the significance level of 99%.

Table 4. Wilcoxon scorer test of technical efficiency gap.

Years Mean TGR of Key Regions Mean TGR of Non-Key Regions Wilcoxon Scorer Test

2011 0.996 0.960 0.0057 ***
2012 0.992 0.964 0.0048 ***
2013 0.997 0.944 0.0006 ***
2014 0.994 0.960 0.0009 ***
2015 0.998 0.940 0.0005 ***

Note: * On behalf of the two-tailed test, the confidence interval 0.1 is significant; ** On behalf of the two-tailed
test, the confidence interval 0.05 is significant; *** On behalf of the two-tailed test, the confidence interval 0.01
is significant.

From the above result, the energy saving and emission reduction policy for the key regions
implemented by China’s government has achieved some success, but has simultaneously led to the
significant efficiency gap between key and non-key regions. In the key regions, China’s government
imposes restrictions on the high energy consumption industries and raises the requirement of installing
emission reduction equipment in the companies, making the high energy consumption industries
transferred into the non-key region. The transfer is an important reason accounting for the expansion
of technical efficiency gap. To increase the overall energy and emission reduction efficiencies in the
future, it should be an important goal for China to narrow the technical efficiency gap.

4.2. Room for Improvement of Energy and Emission Reduction Efficiencies

We estimate the room for improvement of 30 DMU inputs and outputs by using the non-radial
directional distance function under the meta-frontier model, the results of which are in Table 5. We find
that the country industrial sectors in key and non-key regions both have a larger room for improvement
on the undesirable output variable (emission) than that on the input variable (energy and expenditure).
It is vital to improve energy efficiency to mitigate global emissions, but this study indicates that the
emission reduction effort is more important than an energy-saving effort in China’s industrial sector.
On the other hand, to improve the over all performance, the effect of increasing expenditure, which
can reduce emissions, is better than curbing expenditure, which can save cost.
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Table 5. Room for improvement of variables as average values from 2011–2015 unit: %.

DMU Labor Capital Energy Expenditure Revenue Emission

Beijing 0 0 0 0 0 0
Tianjin 0 0 0 0 0 0
Hebei 8.758 8.758 35.210 63.600 8.758 137.681

Liaoning 7.718 7.718 19.068 18.018 7.718 72.197
Shanghai 2.813 2.813 2.813 9.348 2.813 11.980
Jiangsu 0 0 0 0 0 0

Zhejiang 12.577 10.112 10.112 21.773 10.112 10.112
Fujian 22.739 5.244 14.089 5.244 5.244 31.098

Shandong 0 0 0 0 0 0
Guangdong 0 0 0 0 0 0

Hubei 10.384 9.945 23.141 10.487 9.945 28.032
Hunan 12.654 2.046 30.004 12.646 2.046 22.871

Chongqing 14.934 13.603 41.228 14.057 13.603 20.649
Sichuan 16.520 15.326 26.532 16.937 15.326 22.981

Key Regions 7.793 5.397 14.443 12.294 5.397 25.543

Hainan 25.501 33.212 72.987 60.673 12.628 121.947
Jilin 0 0 0 0 0 0

Heilongjiang 19.057 15.277 33.026 15.277 15.277 62.381
Shanxi 32.062 32.564 50.488 68.683 32.062 117.793

Inner Mongolia 3.775 26.261 49.150 55.491 3.775 124.656
Anhui 11.358 11.358 17.736 29.676 11.358 84.939
Jiangxi 0 0 0 0 0 0
Henan 12.225 4.034 7.496 4.034 4.034 44.880

Guangxi 12.171 12.171 38.247 33.251 12.171 111.664
Guizhou 31.610 31.610 65.227 72.804 31.610 122.934
Yunnan 25.241 32.706 66.116 57.548 25.241 119.402
Shaanxi 21.326 21.515 43.059 27.302 21.326 83.775
Gansu 11.489 21.387 57.576 49.137 11.489 129.660

Qinghai 23.937 52.432 76.831 60.805 23.937 135.448
Ningxia 24.597 39.765 77.225 78.365 24.597 137.640
Xinjiang 15.563 39.007 79.167 55.014 15.563 146.303

Non-Key Regions 16.869 23.331 45.896 41.754 15.317 96.464

Comparing the key and non-key regions, the biggest difference is reflected in the room for
improvement in emission. For instance, the room for improvement in emission of Hubei, Hunan,
Chongqing, and Sichuan (which are included in key regions but located in the central or western area
of China) is significantly lower than DMUs with a similar level of economic development, such as
Anhui, Henan, and Shaanxi. It is the reason why these 4 DMUs maintain high or increasing efficiency
values. This is different from Lin and Du [60] and Wang et al. [61], who pointed out that the central
and western area of China had lower energy efficiency.

However, 3 DMUs in key regions, containing Hebei, Liaoning, and Zhejiang, have decreasing
energy and emission reduction efficiencies from 2011–2015. As the results show in Table 5, Hebei and
Liaoning have a larger room for improvement in emission. We believe that it is related to the heavy
industry transfer from Beijing and Tianjin. Zhejiang is the only one that has a larger room for
improvement in expenditure among the 30 DMUs. Zhejiang should put more emphasis on the input
of emission treatment expenditure, so as to avoid the company’s cost pressure caused by the rapid
increase of treatment expenditure.

In the non-key regions, most DMUs have a gap between the room for improvement in emission
and the other variables. To improve the performance of energy and emission reduction, a more effective
method is needed to reduce emission by increasing the emission treatment expenditure, especially
for DUMs with a lower room for improvement in expenditure, such as Heilongjiang, Anhui, Henan,
and Shaanxi.
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5. Conclusions and Policy Recommendation

China’s industrial sector is the main sector of China’s energy consumption and waste gas
emission, which has a significant position in the world. Therefore, the energy and emission reduction
performance of China’s industrial sector has attracted much attention from government and society.
In 2010, the Chinese government released Guiding Opinions, where the industrial sector is the emphasis
and key areas are set. In order to improve energy and emission reduction performance, the government
has implemented an energy saving and emission reduction policy, and strengthened governance in the
period of 2011–2015.

From the analysis results in this paper, we find DMUs in the key regions maintain a better
performance, such as Beijing, Tianjin, Shandong, Jiangsu, Guangdong, and Hunan, or have significantly
increasing efficiency values, such as Hubei, Chongqing, and Sichuan. Thus, we believe that the efforts
made by the Chinese government have achievement some success. Meanwhile, the technical efficiency
gap between key and non-key regions is significant and showed an expanded trend during 2011–2015.
Instead of narrowing the technical efficiency gap, the setting of key areas is one of the reasons for
the expansion of the gap. Given this, bridging the technical efficiency gap should become China’s
future goal.

On the basis of the results in this study, it is argued that the level of treatment intensity of key
regions is higher than that of non-key regions, which generally leads to better performance of emission
reduction, such as Hubei, Hunan, Chongqing, and Sichuan in the central or western area of China.
This is different from the results derived by Du [60] and Wang et al. [61], which indicate that DMUs in
the central and western area of China have worse energy performance.

The main methods to improve the energy and emission reduction performance involve
energy-saving, curbing expenditure of emission treatment, and reducing emission. We find that
emission reduction efforts are more important than energy saving efforts in China’s industrial sector,
and the effect of increasing expenditure on reducing emission is better than curbing expenditure. Thus,
to improve the performance of energy and emission reduction, a more effective method is needed to
reduce emission by increasing the emission treatment expenditure, especially for non-key regions,
such as Hainan, Inner Mongolia, Guizhou, Gansu, Qinghai, Ningxia, and Xinjiang.
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