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Abstract: For power system disaster prevention and mitigation, risk assessment and visualization 

under typhoon disaster have important scientific significance and engineering value. However, 

current studies have problems such as incomplete factors, strong subjectivity, complicated 

calculations, and so on. Therefore, a novel risk assessment and its visualization system consisting of 

a data layer, knowledge extraction layer, and visualization layer on power towers under typhoon 

disaster are proposed. On the data layer, a spatial multi-source heterogeneous information database 

is built based on equipment operation information, meteorological information, and geographic 

information. On the knowledge extraction layer, six intelligent risk prediction models are 

established based on machine learning algorithms by hyperparameter optimization. Then the 

relative optimal model is selected by comparing five evaluation indicators, and the combined model 

consisting of five relatively superior models is established by goodness of fit method with unequal 

weight. On the visualization layer, the predicted results are visualized with accuracy of 

1 km 1 km  by ArcGIS 10.4. In results, the power tower damage risk assessment is carried out in a 

Chinese coastal city under the typhoon ‘Mujigae’. By comparing predicted distribution and 

similarity indicator of the combined model with those of the other models, it is shown that the 

combined model is superior not only in quality but also in quantity. 

Keywords: typhoon; power tower; risk assessment; visualization; machine learning; intelligent 

prediction model 

 

1. Introduction 

As one of the extreme disasters, typhoon has a tremendous impact on the power system. It may 

not only cause damage to power facilities, but also lead to large scale blackouts, which will seriously 

threaten people’s production and life. Therefore, it is necessary and urgent to study the safety risk of 

power system under typhoon disaster. 

At present, several studies evaluated the reliability of power grid under extreme weather 

conditions. Zhou et al. analyzed the resilience of distribution network under extreme weather, and 

provided the distribution network resilience index and assessment idea based on information 

entropy and multiple failure model [1]. Yin et al. pointed out that most of the faults in typhoon 

weather were caused by failures of the power tower and pole, so it was necessary to pay attention to 
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the power tower and pole [2]. Based on transmission line segmentation, the dynamic safety was 

analyzed by the optimization method by Song et al. [3]. However, the segmentation of the 

transmission line was not accurate enough. Although the prediction accuracy was improved by 

establishing a micro-meteorological model by Gao et al. [4], it increased the amount of calculation. 

Aiming at the complex structure of the distribution network, a health index for system operation 

status and importance indicator for user difference were proposed by Huang et al. [5], but with strong 

subjectivity for quantification. In the risk assessment of distribution network, the reclosing success 

rate was regarded as a dichotomous variable and fitted with logistic regression, and the overall risk 

assessment speed was improved by Yang et al. [6]. However, the accuracy of the whole model was 

lower than the traditional method. The relationship between wind speed (m/sec) and transmission 

line failure rate was described with a vulnerability curve by Yang et al. [7], but the use of average 

wind speed (m/sec) of 10 min is not accurate enough for predicting, and the wind speed at turning 

point of the vulnerability curve is subjective. It can be seen that current studies still have problems 

such as incomplete factors, strong subjectivity, and complicated calculations. 

In order to visually display the risk severity and location after risk assessment of power system 

under typhoon disaster, it is necessary to visualize the risk. However, at present, the visualization 

technology is rarely used in the early warning of power system risk in China, except for the 

comprehensive disaster prevention and mitigation system and the grid icing automatic forecasting 

system of Fujian Electric Power Company [8,9], and the mountain fire prevention system for 

transmission lines of Hunan Power Company [10]. In view of the importance of visualization 

technology in disaster warnings, Wang et al. summarized the GIS-based monitoring and early 

warning technology for grid meteorological disasters [11]. In general, visualization technology has 

been applied in domestic engineering practice, but it is mainly used in emergency response after 

disasters, and still relatively rare in early warning research. There were relatively more visualization 

technologies applied in foreign early warning related research. Liu et al. employed a negative 

binomial regression model and showed the average number of power outages per square kilometer 

[12]. They also proposed the GLMM (generalized linear mixed model) to predict the number of power 

outages in the target area under hurricane and ice storm, and finally showed the predicted and actual 

number of power outages in each zip code area [13], but insufficient consideration of 

microtopography factors, such as altitude, aspect, slope, etc. Mensah et al. proposed a flexible 

evaluation framework and showed the proportion of users’ power outages in each geographic grid 

in the target area [14], but the empirical function was used to replace the actual data, which reduced 

the credibility. Han et al. used GIS technology to deal with weather conditions and environmental 

conditions, and constructed statistical models to assess the risks within the geographic grid [15]. They 

also proposed GAM (generalized addictive model) to predict the number of power outages in the 

target area before typhoon comes, and the results showed that the GAM were more precise than the 

GLM (generalized linear model) by visual comparison [16]. It can be seen that although foreign early 

warning researches applied visualization technology more generally, the risk assessment methods 

also have problems such as incomplete factors and strong subjectivity. 

In summary, the current risk assessment methods for power system security under typhoon 

disasters have problems such as incomplete factors, strong subjectivity, complex calculation, and less 

application of visualization techniques to power system risk warnings, and so on. Therefore, based 

on a machine learning algorithm, this paper presents a novel method that comprehensively considers 

spatial multi-source heterogeneous information such as equipment operation information, 

meteorological information, and geographic information. First, by using hyperparameter 

optimization and goodness of fit method with unequal weight, six single intelligent models, and a 

combined model for power tower damage predicting are established. Second, these models are 

applied to predict damage risk under a specific typhoon. Finally, predicted results are compared to 

actual damage and the best model is selected. 

The combined model utilizes advantages of different learning strategies, so it is more objective 

and reliable than a single intelligent model. It is easy to calculate and can visually exhibit predicted 

results with an accuracy of 1 km × 1 km. Therefore, the research results can provide a theoretical basis 
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and practical guidance for the decision making of disaster prevention and mitigation for the power 

sector. 

2. Study Area 

In recent years, the typhoon had huge impact on China’s coastal power grids [17–19]. Taking the 

typhoon ‘Mujigae’, no. 22 of 2015, as an example, it was strengthened from the tropical depression 

that was originally located near the Philippines. It entered eastern part of the South China Sea around 

noon on 2 October 2015, and its intensity gradually strengthened. It landed on the coast of the Potou 

District of Zhanjiang City around 14:10 on 4 October, 2015, and affected as far as the Pearl River Delta. 

At the time of landing, the maximum wind near the typhoon center was 15 class (about 50 m/s), and 

the lowest pressure in the center was 940 hPa. For the first time, the gust in Zhanjiang reached 18 

class and set a historical record. ‘Mujigae’ was the strongest typhoon that landed on China since 

October 1949. It caused 256 trips to lines of 35 kV and above, and damaged 80 towers [20]. 

In order to reveal the connection between typhoon disaster and tower damage and provide 

support for the power sector in disaster prevention and mitigation, the tower damage data of main 

network under typhoons ‘Rammasun’ [17] and ’Hato’ [19] are utilized to train intelligent models. 

Then the tower damage risk in a Chinese coastal city under typhoon ‘Mujigae’ is predicted and 

visualized. Finally, the predicted results of intelligent model and combined model are compared. 

3. Framework for Risk Assessment and Its Visualization 

This paper proposes a risk assessment and its visualization method of power tower under 

typhoon disasters based on machine learning algorithms. The overall framework is shown in Figure 

1. It is divided into three layers: the data layer, knowledge extraction layer, and visualization layer. 

Spatial multi-source heterogeneous 
data 

The 
data 
layer

Missing value,  reference conversion, 
normalization, , distribution, etc.

The
knowledge 
extraction

layer

Oversampling + 
Undersampling

ArcGIS 
extraction

Model side Target side

Modeling data

The 
visualization 

layer

The relative optimal model, combined 
model

Hyperparameter optimization, 
goodness of fit method

Target area data

Preprocessing

Stage 1

The tower damage probability and risk 
in target area

Stage 2

ArcGIS: 
Visaulization

Typhoon information, the tower 
information, geographic information

 

Figure 1. Overall structure of the method. 
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The first layer is the data layer, which first preprocesses the data, mainly including missing 

values filling, reference conversion, normalization, distribution, and so on. The model side mainly 

deals with historical disaster data, which is used to build intelligent models. The target side mainly 

processes the target area data for actual prediction. The data consists of spatial multi-source 

heterogeneous information such as equipment operation information, weather information, 

geographic information, etc. 

The second layer is the knowledge extraction layer, which is divided into two stages: modeling 

and predicting. Firstly, based on machine learning algorithms, the power tower damage prediction 

model is established on the model side through hyperparameter optimization. Then, on one hand, 

the relative optimal model is selected by comparing the model evaluation indicators, on the other 

hand, the combined model is constructed by goodness of fit method with unequal weights. Secondly, 

an actual prediction on the target side is made. 

The third layer is the visualization layer, which visualizes the predicted results of models in the 

second layer and provides a theoretical basis and practical guidance for the decision-making in 

disaster prevention and mitigation. 

4. Construction of Power Tower Risk Assessment System 

4.1. Data Layer 

The spatial multi-source heterogeneous database contains equipment operational information 

including V’ (design wind speed), meteorological information including V (maximum gusts), and 

geographic information such as H (altitude), A (slope direction), S (slope), P (slope position), U 

(underlying surface type), R (surface roughness), and so on. 

4.1.1. Data Preprocessing 

The missing value is filled with the median and V and V’ are converted to 10 m high. According 

to China’s current wind load specification [21], the variation of wind speed along the height can be 

calculated by exponential law 

1
1

z

z
V V

z


 

  
   

(1) 

where Vz (m/s) denotes the wind speed at height z, V1 (m/s) denotes the wind speed at height z1, α 

denotes the surface roughness coefficient, which can be chosen from Table 1 [21] that derives from 

relevant materials and specifications. 

Table 1. Ground roughness factor 

Class Surface Features α 

A Offshore seas, islands, coasts, lakeshores, and desert areas 0.10–0.13 

B 
Fields, villages, jungles, hills, small and medium size towns, 

and suburbs of large cities where housing density is sparse 
0.13–0.18 

C Urban areas with dense buildings 0.18–0.28 

D Urban area of a large city with dense buildings and tall houses 0.28–0.44 

Meteorological stations are generally located in open plains, and the surface roughness is 

generally classified as Class B. V1 in this study is V or V’, and z1 is the monitoring height or reference 

height of design wind. In this study, α is set as 0.16. 

The data is normalized 

   min max minX x x x x   
 

(2) 
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where, X* is the normalized feature; x is the original feature; xmin and xmax are the minimum and 

maximum values of the original feature, and they are set to be integer for convenient. The processed 

features are shown in Table 2. 

Table 2. Feature interpretation table. 

Feature Name Meaning Value Range 

V10 (m/s) Maximum gust at 10 m 0–70 

V′10 (m/s) Design wind at 10 m 0–50 

H (m) Altitude −102–2483 

A (°) Aspect −1–360 

S (°) Slope 0–90 

P Slope position 0–3 

U Underlying surface 70–79 

R (m) Surface roughness 0–30 

Finally, conduct homogeneous and completeness analysis by use of k-means clustering in 

Python 3.6. Provide distribution of the data. 

4.1.2. Processing of Model Side Data 

On the model side, since the amount of damaged towers are much less than undamaged ones, 

the model training is faced with seriously unbalanced classes. Therefore, all the towers tend to be 

predicted as undamaged, thus reducing the credibility of the model. This problem can be solved by 

improving the sampling method, mainly including oversampling and undersampling. Oversampling 

is used to enlarge small class, and undersampling is used for partial sampling of large class. 

In this paper, two sampling methods are synthesized. On one hand, the data of damaged towers 

are copied, on the other hand, the data of undamaged towers are randomly sampled with the same 

amount. Therefore, a space multi-source heterogeneous database on the model side is constructed. 

The class label is set to be dichotomous (y = 0 means the tower is not damaged, and y = 1 means the 

tower is damaged).  

4.1.3. Processing of Target Side Data 

On the target side, ArcGIS 10.4 is used to mesh and extract data from the target area through the 

following actions: 

 Geographically mesh (rectangular grid constructed with latitude and longitude lines, hereinafter 

referred to as grid) the target area. 

 Covert the maximum gust to 10 m high by method in Section 4.1.1 at each monitoring station 

under a typhoon, and the gust map is generated by the inverse distance weight interpolation 

method [22,23], and Vi,10 (the maximum gust at 10 m) in each grid is extracted, where i (i = 1,2,…, 

n) represents the grid serial number. 

 Load the coordinates of the main network tower in the target area by ArcGIS 10.4, and extract 

Ni (the total number of towers), Vi,10 (design wind speed) from grid i. 

 Extract geographic information within the grid, including Hi, Ai, Si, Pi, Ui, Ri, and so on. 

4.2. Knowledge Extraction Layer 

4.2.1. Introduction to Algorithms 

This layer is used to establish predicting models for damage probability prediction on the target 

side. Machine learning algorithms can be divided into individual learning and ensemble learning 

according to learning strategies. Individual learning uses a single model for predicting, while 

ensemble learning employs multiple models and calculates final results by combining predictions of 

each model. 
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Typical individual learning regression algorithms include LR (logistic regression) [24], SVR 

(support vector regression) [25], CART (classification and regression tree) [26,27], and so on. Typical 

ensemble learning regression algorithms include Adaboost iteration [28,29], GBRT (gradient 

regression tree) [30], RF (random forest) [31], and so on. 

Here is brief introduction to the six algorithms: 

LR is a classical method in statistical learning. The common binomial logistic regression model 

is defined by Equations (3) and (4) 
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where, x ∈ Rn is the input, Y ∈ {0,1} is the output, w ∈ Rn and b ∈ R are parameters, w ∈ Rn is called the 

weight vector, b is the bias, and w·x is the inner product of w and x. It can not only predict class, but 

also provide the probability. 

SVR transforms the problem into a high-dimensional feature space through nonlinear mapping 

and constructs a linear regression function in this space to replace the nonlinear function in original 

space [32]. A training set is established 

      1 1 2 2, , , ,..., ,N NT x y x y x y
 

(5) 

where xi ∈ Rn, yi ∈ R, and SVR use the regression function 

   y f x w x b     (6) 

where φ(x) is the nonlinear mapping of the input space to the high-dimensional feature space; w ∈ Rn 

is the weight vector, and b ∈ R is the bias, the way to obtain these 2 parameters is shown in Appendix 

B.  

CART is a decision tree learning method that can be used for classification and regression. 

Assume that x and y are input and output variables, respectively, and y is a continuous variable, 

given a data set as shown in Equation (5). A regression tree divides the input space and specify an 

output value on each unit. Assuming that the input space has been divided into M units R1, R2,…, RM 

and there is a fixed output value cm on each unit Rm , a regression tree is obtained 

   
1

M

m m
m

f x c I x R


 
 

(7) 

Solving the optimal output on each unit with the squared error minimum criterion

  
2

i m

M

i i
x R

y f x



. Detailed derivation of the algorithm is shown in Appendix B.  

The Adaboost algorithm is a boosting algorithm, which aims to obtain a strong classifier from 

the weak classifier through iteration learning. The core of this algorithm is that each iteration uses 

updated data weights. Each iteration training gives greater weight to the data with large prediction 

errors in the previous training round, so that each weak classifier minimizes predicting error of some 

data. Finally, linear weights are used to combine weak classifiers. Detailed derivation of the algorithm 

is shown in Appendix B.  

GBRT is an ensemble learning algorithm. Its basic classifier is boosting tree, and its learning 

method is gradient boosting. The negative gradient of the loss function is used as the approximation 

of the residual, and a regression tree is fitted for the residual [30]. Each training will reduce the 

residual in the previous training round. Finally, all the classifiers are added up. Detailed derivation 

of the algorithm is shown in Appendix B. 
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RF is an algorithm based on decision tree and Bagging (a parallel ensemble learning). Bagging 

is a bootstrap based sampling and performs a put back sampling on a given data set, thereby 

generating a series of data subsets. It trains a base learner on each subset, and finally combining the 

base learner. RF not only uses the data subset, but also randomly selects partial features to train the 

base decision tree [33]. When dividing the input space, traditional decision tree like CART selects an 

optimal feature from the features (assuming there are d features) of current node. However, RF only 

randomly selects a subset including k features. Aforementioned dual perturbations ensure the 

differentiation between classifiers. Therefore, the final model is more adaptive in predicting. 

Parameter k controls the degree of randomness. When k = d, the base decision tree is the same as the 

traditional decision tree. Generally recommended as 2logk d
.  

4.2.2. Single Intelligent Model 

Six algorithms are used to establish the intelligent prediction model for tower damage 

probability. The main processes include original model evaluation, hyperparameter optimization, 

relative optimal model selection, full data fitting, actual prediction, and so on. 

The flowchart of original model evaluation is shown in Figure 2.  

K=99?

Start

End

K=0

Training data set：
80% Modeling

Test data set：20% 
Evaluation

MSE+=MSE/100; MAE+=MAE/100;
R2+=R2/100; MEAE+=MEAE/100;

EVS+=EVS/100

Randomly divide the 
data set by 4:1

K+=1

NO

MSE, MAE, R2, MEAE, EVS 

YES

 

Figure 2. Model evaluation process. 

As shown in Figure 2, firstly, the model side data is randomly divided into training set and test 

set according to a ratio of 4:1, and the model is built on training set by using default hyperparameters 

[34] in Python 3.6. Because this study uses regression methods, regression evaluation indicators are 

employed to evaluate the models. Five indicators including MSE (mean squared error), MAE (mean 

absolute error), R2 (R–squared), MEAE (median absolute error), and EVS (explained variance score) 

are evaluated on test dataset. The cycle index K is set as 100, and the average value of each indicator 

is taken as the evaluation result of the original model. 

The five indicators are displayed in Equations (8)–(12) 

  
2

1
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j j
j
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where j is the sequence number of test set data, N is the total number of test set data, yj is the class 

label of data j, f(xj) is the predicted value of xj, y is the mean of true class label on test set, median (·) 

is a function to obtain the median, var(·) is a function to obtain the variance. 

Optimization of hyperparameters. Hyperparameters are parameters that need to be set in 

advance, not obtained through training. With the goal of minimizing –R2, use the “hyperopt” in 

Python 3.6 to optimize part hyperparameters of each model and evaluate the model by method in 

Figure 2. The hyperparameters of each model are shown in Appendix A. 

Selection of relatively optimal model. Determine the relative optimal model by comprehensively 

comparing five indicators. 

For full data fitting, all the data is used to train models with optimized hyperparameters for 

target side predicting use. 

According to risk assessment theory [35], risk is defined as the product of probability and 

severity. It is worth noting that this paper simply takes density of power towers in each grid as the 

severity index. Therefore, the grid risk is defined as Equation (13) 

i i ir PN
 

(13) 

where Pi is the damage probability of grid i, and Ni is the density of towers in grid i. 

Actual predicting. On the target side, the spatial multi-source heterogeneous information is 

input into intelligent models to predict the damage probability. The risk value of the grid is calculated 

by Equation (13). 

4.2.3. Combined Model 

Combination forecasting is a method of predicting the same problem by using different 

methods, and it includes equal weighting combination and unequal weighting combination: equal 

weighting combination uses predictions of different methods have equal weight; the unequal 

weighting combination uses predictions of different methods have unequal weight. In this paper, 

different intelligent models are combined by the goodness of fit method with unequal weight. The 

corresponding combination model is 

1

ˆ ˆ
L

k k
k

Y W Y


 
 

(14) 

1

1
L

k
k

W



 

(15) 

where Wk is the weight of each model, which satisfies the constraint of Equation (15); 
ˆ

kY
 is 

prediction model k, and L is the amount of models. According to the goodness of fit method, the 

weight of model k is 
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where SEk is the standard error of prediction model k 
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k j j
j
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   (17) 

where j denotes the sequence number of test set data, N denotes the amount test set data, yj denotes 

the class label of data xj, and f(xj) is the predicted value of data xj. When the prediction results are 

scattered, this method can assign the largest weight to model with the smallest prediction standard 

error, so that the prediction result can guarantee goodness of fit. Noting that Equation (17) is the 

square root of Equation (8), thus Equation (16) becomes 
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k k
k

k L

k
k

MSE MSE

W
L
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(18) 

where MSEk is the mean squared error of model k. 

4.3. Visualization Layer 

The visualization of damage probability or risk will make the decision-making process of power 

sector intuitive, simple, and specific in disaster prevention and mitigation, and is of great significance 

for promoting efficiency and reducing cost. Therefore, in this paper, the predicted damage results are 

visualized by use of z score method in ArcGIS 10.4, as shown in Equation (19) 

x
z








 
(19) 

where x is the original data, which refers to damage probability or risk, μ is mean and σ is standard 

variance of all data. The damage probability interval (0,1) is divided into 10 equal classes by 0.1, and 

the risk is divided into 10 classes by natural discontinuous grading. 

5. Materials and Methods 

5.1. Processing of Model Side Data 

Using the historical data of typhoons ‘Rammasun’ and ‘Hato’ to establish a spatial multi-source 

heterogeneous database on the model side. All the data are from the power sector. 

The missing values are filled with the median. Because the features have different unit of 

measurement, they need to be normalized before homogeneity and completeness detection. Then the 

features are normalized by Equation (2). 

Because the dataset is not large, the homogeneity and completeness are analyzed by means of 5-

fold k-means clustering. The homogeneity score and completeness score are 1.0 respectively, which 

means all of clusters contain only data points of a single class and all the data points of a given class 

are elements of the same cluster. 

The model side data distribution is depicted in Figure 2. 
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Figure 2. Distribution of the model side data. 

Figure 2 illustrates distribution of the model side data. As seen from it, V10 shows a bimodal 

distribution, V10 and R illustrate unimodal distribution, H, A, S, P and U are consistent with 

exponential distribution. 

The parallel coordinates visualization of features is shown in Figure 3. The abscissa represents 

normalized features, and the ordinate represents their value. Y = 0 and Y = 1 represent the undamaged 

state and the damaged state, respectively. Using parallel coordinate visualization, the relationship 

between each feature and Y can be initially diagnosed. 

 

Figure 3. Parallel coordinates for eight features. 

It can be seen in Figure 3 that the damage event is prone to occur in areas with smaller V’10 and 

R, indicating that smaller design wind speed and surface roughness contribute to tower damage. The 

feature correlation is shown in Figure 4. 



Energies 2019, 12, 205 11 of 23 

 

 

Figure 4. Correlation analysis of features. 

It can be seen that some feature pairs such as H and V10, R and S, H and S have strong positive 

correlations, and there is a strong negative correlation between U and V10. Therefore, this study 

should not use linear model, and it can be foreseen that the prediction of LR is not accurate. According 

to the engineering experience, the higher the altitude, the greater the wind speed, because the air 

friction coefficient decreases with the increase of height. Generally, high altitude areas are 

mountainous areas, so the slope will increase accordingly, and the roughness will be greater than 

plain. Therefore, it is reasonable that H and V10, R and S, H and S have strong positive correlations.  

It is shown in Figure 4 that U is in negative correlation with H, and it has been shown that H is 

in positive correlation with V10, so it is understandable that U and V10 have negative correlation.  

Finally, the feature importance is analyzed by utilizing RF classification algorithm, as shown in 

Figure 5. 

 

Figure 5. Feature importance ranking. 

Figure 5 provides the importance ranking of eight features. H is the most important feature in 

this dataset and P is the least important feature. The importance of geographic information is more 

important than meteorological information and equipment operational information. Importance of 

DW and P are ranked at the last 2, because according to the entropy theory [36], the more diverse the 

data, the more useful information it provides, and the more important the feature is. As seen from 

Figure 2, V10 and P contain little differences in data, so these two features are relatively less important 

than the others. However, the feature importance ranking is only suitable for this dataset and should 

be evaluated again on a new dataset. 

5.2. Processing of Target Side Data 

The maximum gust of typhoon ‘Mujigae’ at 10 m and main network tower distribution are as 

shown in Figure 6. 
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(a) (b) 

Figure 6. Distribution of maximum gust and main network tower. (a) The maximum gust of ‘Mujigae’ 

at 10 m. (b) The main network tower distribution 

Figure 6a shows that windspeed at the upper right (actually in the northeast) area is the highest, 

indicating that this area is close to the landing point of typhoon ‘Mujigae’. The gust distribution 

reveals that the typhoon track is from the lower right (the southeast) area to the upper left (the 

northwest) area. Figure 6b presents the distribution of the main network tower. 

The maximum gust, number of towers, and geographic information are extracted by 1 km × 1 

km grid and normalized, and a multi-source heterogeneous information database on the target side 

is established.  

The distribution of the target side data is shown in Figure 7. 

 

Figure 7. Distribution of the target side data. 

As observed in Figure 7, V10 and U shows a bimodal distribution, R illustrates unimodal 

distribution, V10, H, A, S and P are consistent with exponential distribution. It is worth noting that 

most values of V10 are 0.0, because the design wind of grids with no power towers are set to be 0.0. It 

can be seen that the target side data distribution in Figure 7 is similar to the model side data 

distribution in Figure 2. 

6. Results 
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6.1. Knowledge Extraction Layer 

6.1.1. Single Intelligent Model 

In this paper, six machine learning algorithms in Section 4.2.2 are used for modeling, and some 

hyperparameters are selected for optimization. The optimized hyperparameters are shown in 

Appendix A. Table 3 and Figure 8 show five indicators of six models before and after optimization.  

Table 3. Evaluation results of six models before and after optimization. 

Model 
Before Optimization   After Optimization   

MSE MAE R2 MEAE ESV MSE MAE R2 MEAE ESV 

RF 0.0296 0.0529 0.880 0.000 0.886 0.0196 0.0503 0.920 0.007 0.922 

GBRT 0.0267 0.0843 0.892 0.035 0.896 0.0213 0.058 0.914 0.003 0.916 

CART 0.0451 0.0527 0.817 0.000 0.822 0.033 0.033 0.866 0.000 0.871 

SVR 0.196 0.395 0.206 0.386 0.256 0.0502 0.131 0.796 0.076 0.803 

Adaboost 0.0794 0.206 0.678 0.160 0.677 0.0577 0.165 0.766 0.182 0.769 

LR 0.297 0.297 0.204 0.000 −0.180 0.154 0.154 0.375 0.000 0.375 

 

Figure 8. Evaluation results of six models before and after optimization. 

It can be seen from Table 3 and Figure 8 that the 5 indicators of each model have been greatly 

improved after optimizing. However, the five indicators of LR (the green column) are not ideal 

because it occupies the maximum of MSE and minimum of R2 and EVS, indicating the necessity and 

correctness of the correlation analysis in Figure 4. Meanwhile, as shown in Figure 8, RF (the dark blue 

column) occupies the minimum of MSE and maximum of R2 and EVS after optimization, so RF is 

relative optimal model. Therefore, the model ranking is: RF, GBRT, CART, SVR, Adaboost, LR. 

After the full data fitting, the target side data is input into the model to predict the tower damage 

probability, and the risk is calculated by Equation (13). 

6.1.2. Combined Model 

According to R2 in Table 3, LR is inferior to the other models even after optimization. Therefore, 

this paper excludes LR when constructing the combined model.  

According to Equation (18) and Table 3, the weight of each model is shown in Table 4. The 

damage probability and risk of each grid are calculated by Model Equation (14) and Equation (13). 

Table 4. Weight of each model. 

Model RF GBRT CART SVR  Adaboost 

weight 0.212 441 0.210 846 0.201 265 0.189 891 0.185 557 

6.2. Visualization Layer 
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6.2.1. Single Intelligent Model 

Visualize the predicted damage probability and risk of RF, as shown in Figure 9. 

  
(a) (b) 

Figure 9. Prediction results of RF. (a) Predicted damage probability. (b) Predicted damage risk. 

Figure 9a moderately illustrates the trend that damage probability is higher in the upper right 

area, and this trend consistence to the maximum gust distribution in Figure 6a. Therefore, the 

predicted damage probability is reasonable. Figure 9b shows that the highest risk grids are mainly 

distributed around the landing point, which is in line with the engineering experience. There are 

several discrete grids with high risk distributed at the lower left area. 

The predicted damage probability and risk of GBRT are visualized, as shown in Figure 10. 

  
(a) (b) 

Figure 10. Prediction results of GBRT. (a) Predicted damage probability. (b) Predicted damage risk. 

Figure 10a shows that the grids with highest damage probability are distributed along the 

coastline and typhoon track, which conforms to engineering experience. The highest damage 

probability is mainly distributed at the upper right area, in line with gust distribution. Some of the 

highest risk grids in Figure 10b distribute mainly around landing point and the others spread around 

the lower left area, consistent with the gust distribution. 

The predicted damage probability and risk of CART is visualized, as shown in Figure 11. 
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(a) (b) 

Figure 11. Prediction results of CART. (a) Predicted damage probability. (b) Predicted damage risk. 

It can be seen from Figure 11a that all the grids contain towers are predicted to be high 

probability, so Figure 11b can only provide both density distribution of the power tower and 

predicted damage probability distribution.  

The predicted damage probability and risk of SVR are visualized, as shown in Figure 12. 

  
(a) (b) 

Figure 12. Prediction results of SVR. (a) Predicted damage probability. (b) Predicted damage risk. 

Figure 12a illustrates a general low probability distribution and only exhibit the moderate 

tendency that damage probability at the upper right area is higher than the lower left area. The high-

risk grids are mainly distributed around landing point, which is consistent with the gust distribution 

and engineering experience. 

The predicted damage probability and risk of Adaboost are visualized, as shown in Figure 13. 
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(a) (b) 

Figure 13. Prediction results of Adaboost. (a) Predicted damage probability. (b) Predicted damage risk. 

Figure 13a,b are almost the same as Figure 11a,b, but the risk is lower than CART at the lower 

left area.  

The predicted damage probability and risk of LR are visualized, as shown in Figure 14. 

  
(a) (b) 

Figure 14. Prediction results of LR. (a) Predicted damage probability. (b) Predicted damage risk. 

Figure 14a proves that LR cannot even identify features related to the power tower because its 

probability distribution is not similar to the power tower distribution in Figure 6b. Therefore, Figure 

14b can only provide information as Figure 11b dose. Because the predicted probability including 

both true and false predicted results, it is hard to determine how much Figure 11b or Figure 14b 

reflect the true prediction results. However, according to indicators of the contrast between CART 

and LR in Table 3, Figure 11b should present more true prediction than Figure 14b. 
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6.2.2. Combined Model 

The predicted damage probability and risk of the combined model are visualized, as shown in 

Figure 15. 

  
(a) (b) 

Figure 15. Prediction results of the combined model. (a) Predicted damage probability. (b) Predicted 

damage risk. 

Figure 15a shows a clear trend that damage probability around landing point and along typhoon 

track are higher than most other places, which is most consistent with gust distribution in Figure 6a. 

High-risk grids in Figure 15b are mainly clustered around landing point and along typhoon track, 

which is also in line with engineering experience.  

6.2.3. Discussion 

Figure 16 exhibits the actual damage situation. 

       

Figure 16. Actual damage situation. 

As shown in Figure 16, actual damage occurred mainly around the landing point, and a few on 

the typhoon track. Furthermore, the damage around the landing point mainly distributed at the left 

bank of the bay because water surface will have an acceleration effect on typhoons. 
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As seen from Figure 9 to Figure 16, only RF, GBRT, and the combined model can provide better 

prediction. Furthermore, only predicted risk of the combined model is most similar to actual situation. 

On one hand, predicted risk of the combined model are mainly distributed around the landing point 

and along the typhoon track as GBRT and RF do, on the other hand, the combined model has lower 

predicted risk than GBRT and RF at the lower left area, which is better consistent with the actual 

situation. As shown in Figures 9b and 10b, RF and GBRT overestimated risk at the lower left area. 

Comparing Figure 15b and Figure 16, it can be seen that the combined model reduces the predicting 

error at the lower left area and at the same time maintains the accuracy around the landing point.  

Therefore, the combined model is superior to the others. For contrast convenience, predicted risk 

of the combined model around landing point is depicted in detail in Figure 17. 

    

Figure 17. Predicted damage risk of the combined model. 

As observed from Figure 9 to Figure 16, predicted damage probability cannot effectively reflect 

actual damage situation. Because a grid with high damage probability may has low density of power 

towers, so that the risk will be small; but a grid with relative low damage probability and high density 

of power towers will have big risk. Therefore, risk is more appropriate to be used in engineering than 

damage probability. 

In order to compare the combined model with the original models quantitively, this paper 

defines the cosine similarity indicator 

  1

2 2

1 1
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(20) 

where S(a,b) denotes the similarity between vector a and vector b, 
,a b

denotes the inner product 

of a and b, 


 denotes Frobenius-2 norm of a vector, ai and bi are elements in vector a and b 

respectively, i = 1,2,…,I denotes the sequence numbers of the elements. 

First, extract actual damage information from target area to grids and construct an actual risk 

vector with shape N × 1 , where N denotes the amount of grids. Each other model predicts a risk 

vector with shape N × 1. The vector element is then normalized, and similarity between actual risk 

vector and predicted risk vectors is calculated. The results are shown in Table 5. 
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Table 5. Similarity index of each model. 

Model RF GBRT CART SVR Adaboost LR Combined Model 

S 0.202 999 0.197 771 0.190 429 0.125 620 0.202 631 0.203 927 0.210 829 

As observed in Table 5, the similarity of the combined model is the biggest, indicating that its 

predicted risk is more similar to the actual damage situation than the others. Therefore, the combined 

model is superior to the others. 

However, as illustrated in Figure 16, there are still some high-risk grids distributed at the lower 

left area, where the windspeed is not high. This can be explained in two respects: data quantity and 

data quality. Limited to information collected by the power sector, this paper merely uses information 

of two historical typhoons to train models, and only eight features are employed in the dataset. Even 

though oversampling is adopted to enlarge the dataset, it seems to be not enough. Furthermore, due 

to the low coverage of relevant monitoring equipment at that time, the information collected is 

inaccurate enough. As a result, there is uncertainty existing in prediction. However, this problem is 

sure to be solved in the near future because the power sector is addressing the difficulties that hinder 

information collection.  

7. Conclusions 

This paper comprehensively considers spatial multi-source heterogeneous information such as 

meteorological information, equipment operation information, and geographic information, and 

proposes a method for estimating the tower damage risk under typhoon disaster by using machine 

learning algorithms and visualization techniques. This method is divided into three layers by 

function: the data layer, knowledge extraction layer, and visualization layer. 

The intelligent models are trained with the historical data of typhoon ‘Rammasun’ and ‘Hato’. 

By hyperparameter optimization and comparison of MSE, MAE, R2, MEAE, and EVS, it shows that 

the relative optimal model is RF. After excluding LR, the combined model is established by using the 

goodness of fit method with unequal weight. Finally, the risk assessment of the main network tower 

of a Chinese coastal city under typhoon ‘Mujigae’ is carried out with the accuracy of 1 km × 1 km. 

(1) Different machine learning algorithms have different adaptability to data, and LR is not suitable 

for this study according to Table 3 and Figure 14. 

(2) Both the single intelligent model and combined model can identify the high-risk grids, but the 

combined model can reduce the predicting error at the low gust area while maintain the 

predicting accuracy around landing point and along typhoon track. 

(3) RF, GBRT, and the combined model perform better than other models, but predicted risk 

distribution of the combined model is the most similar to the actual situation. 

(4) The similarity indicator of predicted risk of the combined model is 0.210 829, which is the biggest 

among all the models, so the combined model is the optimal model. 

(5) This study verifies the feasibility and scientificity of the presented method and can provide 

support for the power sector in disaster prevention and mitigation.  

(6) The uncertainty existing in the model should be tackled in the future for higher predicting 

accuracy, and it is necessary to extend the evaluation object to other power equipment such as 

transmission lines and transformers, and further raise from the equipment level to the system 

level. 
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Energies 2019, 12, 205 20 of 23 

 

Table A1. Model hyperparameters and their optimization combination. 

Model 
Hyperparameters 

for Optimization 
Range Optimized Hyperparameters 

RF 
criterion; 

n_estimators. 

mse, mae; 

1–100. 

mae; 

69. 

GBRT 

learning_rate; 

loss; 

n_estimators. 

0.01–1.0; 

ls, lad, huber, quantile; 

1–200. 

0.203 578; 

huber; 

190. 

CART 

criterion; 

presort; 

splitter. 

mse, mae, friedman_mse; 

0/1; 

best, random. 

mae; 

1; 

best. 

SVR 

C;  

coef0; 

degree; 

epsilon; 

gamma; 

kernel; 

shrinking. 

0–5; 

0–10; 

0–10; 

0–10; 

0–10; 

linear, poly, rbf, sigmoid; 

0/1. 

3.894 502; 

7.335 600; 

3; 

0.076 037; 

5.350 016; 

rbf; 

0. 

Adaboost 

learning_rate; 

loss; 

n_estimators. 

0.01–1; 

linear, 

square, 

exponential; 

1–100. 

0.176 719; 

linear; 

58 

LR 
C; 

penalty. 

0–10; 

l1,l2. 

3.765 847; 

l1. 

Appendix B 

Appendix B.1. SVR 

Set up training set 

      1 1 2 2, , , ,..., ,N NT x y x y x y
 

(B1) 

where xi ∈ Rn, yi ∈ R, and SVR uses regression function 

   y f x w x b   
 

(B2) 

where φ(x) is the nonlinear mapping of the input space to the high-dimensional feature space; w ∈ Rn 

is the weight vector, and b ∈ R is the bias, and these two parameters are solved by minimizing the 

structural risk 
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(B4) 

 

where c is a constant; ξi and ξi* are slack variables, and the expression of Equation (B2) can be 

obtained by solving Equations (B3) and (B4). 
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Appendix B.2. CART 

Assume that x and y are input and output variables, respectively, and y is a continuous variable, 

given a data set as shown in Equation (B1). A regression tree corresponds to a division of the input 

space and an output value on each unit. Assuming that the input space has been divided into M units 

R1, R2,…, RM and there is a fixed output value cm on each unit Rm, a regression tree is obtained 

   
1

M

m m
m

f x c I x R


 
 

(B5) 

Solving the optimal output on each unit with the squared error minimum criterion 

  
2

i m

M

i i
x R

y f x



, the optimal value 

ˆ
mc

 of mc
 on unit Rm is the mean of the output yi of all input 

instances xi on Rm 

 m i i mc ave y x R 
 

(B6) 

when dividing the input space, assume that x(j) (the variable j) and s (the value of variable j) are the 

splitting variable and the splitting point, and define two regions 

    1 ,
j

R j s x x s 
, 

    2 ,
j

R j s x x s 
 

(B7) 

then solve j and s 
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2 2

1 2
,

, ,

min min + min

i i

i i
j s c c

x R j s x R j s

y c y c
 

 
  
  

 
 

(B8) 

Iterate through all the input variables to find the optimal segmentation variable, then form a pair 

(j,s) that divides the input space into two regions. Repeat the above process for each subregion until 

the stop condition is met, and finally generate a regression tree. 

Appendix B.3. Adaboost 

Taking the classification problem as an example, given a dichotomous training data set as shown 

in Equation (B1). Where 
n

ix   R
, 

 1, 1iy    
, x and γ are input and output spaces 

respectively. First, the weight distribution of the training data is initialized 

 1 11 1 1 1

1
,..., ,..., ,i N iD w w w w

N
 

 
(B9) 

where i = 1,2,…, N. Assuming that m = 1,2,…, M, basic classifiers are obtained by learning from 

training data set with weight distribution Dm 

   : 1, 1mG x    
 

(B10) 

Assign a coefficient to each classifier 

11
ln

2
m

m
m

e

e





 
(B11) 

where em is the classification error rate. Then update the weight distribution of the training set 

 1 1,1 1, 1,, , , ,m m m i m ND w w w     
 

(B12) 

Finally, construct a linear combination of basic classifiers 
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Appendix B.4. GBRT 

Set the training data set as shown in Equation (B1), where 
n

ix   R , iy   R
, the loss 

function is L(y,f(x)). First, initialize 

   0
1
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i
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(B14) 

For m = 1,2,…, M, i = 1,2,…, N, calculate 
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(B15) 

Fit a regression tree for rmi to get the leaf node area of tree m. For j = 1,2,…, J, calculate 

  1arg min ,
i mj

N

mj i m i
c

x R

c L y f x c


 
 

(B16) 

Update 

     1
1

J

m m mj mj
j

f x f x c I x R


  
, get the regression tree 
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