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Abstract: Due to the wide application of model predictive control (MPC) in industrial processes,
the assessment of MPC performance is essential to ensure product quality and improve energy
efficiency. Recently, the slow feature analysis (SFA) algorithm has been successfully applied to assess
the performance of MPC. However, the disadvantage of the traditional SFA-based predictable index is
that it can only extract one-step predictable information in the monitored variables. In order to better
mine the predictable information contained in the monitored variables with large lag, an enhanced
method to assess MPC performance based on multi-step SFA (MSSFA) is proposed. Based on the
relationship between the slowness of slow features (SFs) and data predictability, an MSSFA model
SFA(τ) is built through extending the temporal derivatives of the SFs from one step to multiple steps
to extract multi-step predictable information in the monitored variables, which is used to construct
a multi-step predictable index. Then, the predictable information in the SFs is further extracted
for enhancing the multi-step predictable index to improve its sensitivity to performance changes.
The effectiveness of the proposed method has been verified through two process simulation examples.

Keywords: performance assessment; model predictive controller; multi-step slow feature analysis;
multi-step predictable index

1. Introduction

Model Predictive Control (MPC) is a mature technology that has been widely implemented for
advanced control of many processes, such as oil refining, chemical, advanced manufacturing, energy,
environment, aerospace, medicine [1,2]. At each control interval an MPC algorithm computes the
future control actions by minimizing an objective function over a finite prediction horizon according to
the historical information and future response of the process model [3]. This type of control algorithm
has the ability to handle multiple interacting variables, constraints, large delay and complex dynamic
processes [4].

MPC with good performance can achieve more efficient raw material and energy usage per unit
of product [5]. Studies have shown that it is very common to quote energy savings of 1–4% through
implementation of advanced control and other process control technologies [6]. However, in the
investigated plants over the 600,000 loops, up to 75% of the control loops are not providing benefits
due to the poor control performance [7]. In industrial applications, MPC performance will gradually
decrease over time due to various factors such as sensor failure and equipment wear, etc. [8], which can
lead to a decline in product quality and an increase in energy consumption [5]. Thus, it is important to
assess the MPC performance and maintain its performance in an optimal state.

In recent years, performance assessment techniques have received extensive attention and rapid
development in different industrial fields, such as the processing industry [9], energy and power
fields [10,11]. Among them, the control performance assessment (CPA) technique for MPC in the
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process industry is an important branch and the number of CPM tools installed in the industrial process
is increasing [12]. Over the past three decades, various CPA methods or benchmarks for MPC have been
proposed and developed. Among these methods, model-based CPA benchmarks were first proposed
for evaluating MPC performance, such as generalized-minimum variance control benchmark [13] and
linear-quadratic Gaussian benchmark [14]. Both benchmarks give a theoretical performance bound
with respect to the system output variance and the controller output variance, which helps to focus
on product quality and actuator wear. In addition, Julien et al. proposed two performance curves,
an old-controller-new-model performance curve and a new-controller-new-model performance curve
to assess the potential improvement performance of MPC [15]. However, model-based benchmarks
typically require a complete plant model to calculate performance index. Although the process model
can be estimated from closed-loop data in some cases, this method usually requires a lot of cost
and time [16] and requires the additional information such as the knowledge of the time delay or
an external excitation signal to create a sufficient signal-to-noise ratio [5]. Therefore, user-specified
CPA benchmarks were proposed to get rid of the dependence on the plant model. By comparing the
actual MPC performance with the expected performance or design performance specified by the field
engineer, the expectation-case performance index and design-case performance index were presented
separately [17,18]. Similar to the knowledge-based system, user-specified benchmarks also require
extensive knowledge and experience from the field engineer, which limits their range of applications.

Due to the development of sensor measurement and control technology, data-driven multivariate
statistical methods, such as principle component analysis (PCA) [19,20] and partial least squares
(PLS) [21,22], have been introduced into the CPA field and have been used to assess the MPC
performance. The data-driven CPA methods assess the performance by deepening the performance
information contained in the monitored variables. They have the advantages of simple implementation
and wide application range, and have received more and more attention from researchers and
engineers [23]. Zhang and Li [24] combine a PCA model and an autoregressive moving average
filter to monitor MPC performance. Zhao et al. [25] developed multiple PLS models for performance
monitoring of processes with multiple operating modes. Through utilizing historical output data,
a statistical covariance-based index was proposed by Yu and Qin [26,27]. Then, Tian et al. improved this
index and proposed an improved covariance index based on 2-norm [3]. In order to discover abnormal
changes in the distribution features of covariance matrices, a dissimilarity analysis based method [28]
and a hypothesis test based method [29] were proposed by Li et al. and Yan et al., respectively. Wu [30]
established performance monitoring index based on Kullback–Leibler divergence. Xu et al. [31,32] use
distance similarity factor-based on mahalanobis distance to assess MPC performance.

However, above traditional CPA methods only considered the steady state information of the
process data without deeper mining of the temporal dynamic information therein. In order to solve
this problem, Shang et al. [33,34] proposed a method based on slow feature analysis (SFA) to monitor
control performance in both of the steady state and temporal dynamic dimensions. This method
was successfully applied to batch processes monitoring [35], as well as soft sensor modeling [36].
Zhao et al. [37] proposed a fine-scale assessment method of glycemic control performance by analyzing
the temporal changing speed of the monitored data. By analyzing the process dynamics directly
related to closed-loop control from quality-relevant view for industrial processes, Qin and Zhao [38]
proposed a fine-scale monitoring method of process performance status. Although the SFA-based
CPA method has the ability to monitor changes in control performance, it does not point the direction
of performance changes, that is, whether the control performance is getting better or worse [34].
For the purpose of overcoming this shortcoming, an SFA-based predictable index was presented by
Shang et al. [39]. The SFA-based predictable index assesses MPC performance on the basis of the
relationship between the slowness of slow features (SFs) and the predictability of monitored variables.
In industrial applications, MPC is usually applied to large time-delay systems, so that relevant temporal
predictable information also exists between SFs with different step intervals. For example, if a process
has two sample time delays, then the compensation control action will not take effect on the output
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until two steps later, which prevents the complete compensation of the predictable content of the output
in time. However, due to the limitation of the traditional SFA model structure, the predictable index
only extracts predictable information between adjacent points of SFs, that is, it essentially only extracts
one-step predictability in monitored variables but ignores the multi-step predictable information.

In order to extract the multi-step predictable information in monitored variables to overcome the
shortcomings of the traditional SFA-based performance assessment method, a multi-step SFA (MSSFA)
is proposed to assess MPC performance, which can be used to construct the multi-step predictable index.
Firstly, by extending the temporal derivatives of the SFs from one step to multiple steps, an MSSFA
model SFA(τ) is built and the corresponding multi-step predictable index In(τ) is constructed. Then, the
SFs of SFA(τ) can be formulated as a prediction model similar to autoregressive (AR). This prediction
model is used to predict SFs and the prediction error can be obtained. Thirdly, a new MSSFA model
SFAe(τe) with the prediction error as input is developed and the corresponding multi-step predictable
index Ine(τ) is built to extract the predictable information in prediction error. Finally, by incorporating
In(τ) and Ine(τ), an enhanced multi-step predictable index Inpre(τ) is finally established. Considering the
time-delay system that is common in industrial processes, the proposed method can effectively extract
multi-step predictable information in data for assessment of MPC performance.

The rest of this article is organized as follows. Firstly, the traditional SFA-based predictable index
is briefly reviewed. Subsequently, the multi-step predictable index for MPC performance assessment
is introduced. Afterward, simulation studies and discussions are given. Finally, the conclusions
are presented.

2. Traditional SFA-Based Predictable Index for MPC Performance Assessment

2.1. The Basic Principle of Traditional SFA

Formally, the mathematical principle of the SFA algorithm can be stated as follows: given an
m-dimensional stochastic and ergodic time series x(t) = [x1(t), · · · , xm(t)]

T, the slow feature s j(t) is
extracted from x(t) by using a feature function g j(x)( j = 1, · · · , m) as below:

s j(t) = g j(x(t)), (1)

where the output signal s j(t) varies as slowly as possible by minimizing the average squared
temporal variation:

min
g j(•)

∆(s j) = min
g j(•)
〈

.
s2

j 〉t
(2)

under the constraints:
〈s j(t)〉t = 0, (3)

〈s2
j (t)〉t = 1, (4)

∀i , j, 〈si(t)s j(t)〉t = 0, (5)

where ∆(·) is defined as slowness of a time series. The symbol 〈·〉t stands for an expectation with
respect to time.

.
s j(t) denotes the temporal derivative of s j(t). For discrete time series,

.
s j(t) can be

calculated as:
.
s j(t) = s j(t) − s j(t− 1). (6)

The role of constraints Equation (3) and Equation (4) is to ensure zero mean and unit variance
for each SF and to avoid the trivial solution. The goal of constraint in Equation (5) is to make SFs
independent of each other. Descending order of

{
s j
}m

j=1
is adopted, so that s1 is the slowest SF, and s2 is

the second slowest SF, etc.
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For linear SFA algorithm, SFs can be computed as:

s j(t) = wT
j x(t) =

m∑
i=1

w jixi(t), (7)

where w j( j = 1, · · · , m) is the feature vector of s j(t). The original input data is normalized in the data
preprocessing stage, substitute Equation (7) into Equation (1) and Equation (4) to yield:

∆(s j) = 〈
.
s j(t)

2
〉

t
= wT

j 〈
.
x(t)

.
x(t)T

〉tw j = wT
j Aw j, (8)

〈s2
j (t)〉t = wT

j 〈x(t)x(t)
T
〉tw j = wT

j Bw j = 1, (9)

where A = 〈
.
x(t)

.
x(t)T

〉t, B = 〈x(t)x(t)T
〉t. According to Equation (8) and Equation (9), the optimal

objective function in Equation (2) of SFA can be rewritten as:

min
w j

∆(s j) = min
w j

〈
.
s j(t)

2
〉

t

〈s2
j 〉t

= min
w j

wT
j Aw j

wT
j Bw j

. (10)

From Equation (10), it can be seen that solving the objective function in Equation (2) is equivalent
to solving the following generalized eigenvalue problem [33]:

AW = BWΩ, (11)

where W = [w1, · · · , wm]
T, Ω = diag{ω1, · · · ,ωm}, ω j is the generalized eigenvalue and ω1 < ω2 <

· · · < ωm. The generalized eigenvalue can be used as a measure of slowness:

∆(s j) =
wT

j Aw j

wT
j Bw j

=
wT

jω jBw j

wT
j Bw j

= ω j. (12)

The smallest eigenvalue corresponds to the slowest SF.

2.2. Predictable Index Based on Traditional SFA

As pointed out in [40], if a closed-loop output is highly predictable, then one should design a
better controller to compensate for the predictable content. Should a better controller be implemented,
then the closed-loop output would have been less predictable [40]. Therefore, the high predictability of
a closed-loop output implies the potential to improve its performance. In addition, for MPC controllers,
the accuracy of the model is one of the main factors affecting MPC performance. If the model is
completely accurate, the future output of the process can be predicted completely accurately. At this
situation, the model prediction error is only driven by random measurement noise, and its predictability
is very low. On the contrary, its predictability will be higher. Therefore, the model prediction error can
also reflect the performance of the MPC controller [39]. Thus, if the closed-loop output and model
prediction error are highly predictable, the performance of this MPC controller is poor, and vice versa.

The higher the predictability, the worse the control performance [39,40]. Based on this idea,
the traditional predictable index based on SFA was proposed. The graphical structure of traditional
SFA is shown in Figure 1:
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For discrete input data, the slowness in objective function Equation (2) can be further derived
as [39]:

∆
(
s j
)

= 〈
.
s2

j 〉t
= 〈(s j(t + 1) − s j(t))

2
〉t

=
{
2〈s j(t)

2
〉t − 2〈s j(t + 1)s j(t)〉t

}
= 2− 2ρs

j(1)

, (13)

where ρs
j(1) is lag-1 autocorrelation of s j. By substituting Equation (12) into Equation (13):

ω j = 2− 2ρs
j(1), (14)

where ρs
j(1) ∈ [−1, 1] and ω j ∈ [0, 4].

According to Equation (13), the objective function Equation (2) can be reformulated as follows:

max
w j

∆(s j) =max
w j

{
1−

1
2

∆
(
s j
)}

= max
w j

{
1−

1
2
ω j

}
= max

w j
ρs

j(1). (15)

According to Equation (15), the slowest SF has the largest lag-1 autocorrelation. The time
series with large autocorrelation is highly predictable. Thus, the slowest SF series has the greatest
predictability. If ρs

j(1) is close to 0, and ω j is close to 2, the corresponding SF s j is close to the white
noise sequence and its predictability is close to zero.

Based on Equation (7), the correlation functions of SFs can be computed as follows:

ρs
pq(τ) = 〈wT

p x(t + τ)wT
q x(t)〉

t

= 〈(
m∑

j=1
wpjx j(t + τ))(

m∑
i=1

wqixi(t))〉
t

=
m∑

p=1

m∑
q=1

wpjwqi〈x j(t + τ)xi(t)〉t

=
m∑

i=1
wpiwqiρ

x
i (τ) 1 ≤ p ≤ m, 1 ≤ q ≤ m

, (16)

where ρs
pq(τ) is the lag-τ correlation between sp and sq, ρx

i (τ) is the lag-τ autocorrelation of xi.
Let p = q = j, τ = 1, and substitute Equation (16) into Equation (15) to obtain the following formula:

max
w j

∆(s j) = max
w j
ρs

j(1)

= max
w j

m∑
i=1

w2
jiρ

x
i (1)

= max
w j

{
w2

j1ρ
x
1(1) + w2

j2ρ
x
2(1) + . . .+ w2

jmρ
x
m(1)

} (17)

From Equation (17), it can be seen that if ρx
1(1), ρ

x
2(1), . . . , ρ

x
m(1) are close to 0, i.e., the overall

predictable information in monitored variables is low. ρs
j(1) is close to 0, i.e., the predictability of s j is
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also low, and vice versa. Thereby, the predictability of s j can be used to express the predictability of
monitored variables. Based on the distance relationship between the slowness of the slowest SF and
the value 2, the traditional SFA-based predictable index is defined as [39]:

In(1) = 1−
(
ωmin − 2

2

)2
, (18)

whereωmin is the slowness of the slowest SF and 0 ≤ In(1) ≤ 1. When In(1) is close to 1, the predictability
of monitored variables is low, and current control performance is good. When In(1) is close to 0,
the predictability of monitored variables is high, and current control performance is poor.

3. The Proposed Enhanced Multi-Step Predictable Index Based on Multi-Step SFA Method

However, according to Equation (6) and Equation (17), the traditional SFA method only focuses on
the autocorrelation between adjacent points of SFs, that is, the traditional SFA-based predictable index
only reveals one-step predictable information of monitored variables. In practice, for large time-delay
systems, there is also predictable information between SFs with different step intervals. In order to
mine the multi-step predictable information, a multi-step predictable index is proposed.

Firstly, the interval between the slow feature in Equation (6) is extended from one-step to multiple
steps, and Equation (6) is redefined as:

.
sτj (t) = s j(t) − s j(t− τ), 0 < τ < f (19)

where τ is the interval step, f is the truncation step. Then multi-step SFA model SFA(τ) is built as

min
w j

∆(sτj ) = min
w j
〈

{ .
sτj

}2
〉

t

= min
w j

{
2− 2ρs

j(τ)
}

= min
w j
ω j(τ)

(20)

where ρs
j(τ) is lag-τ autocorrelation of sτj , ω j(τ) is the slowness of SFA(τ). The equivalent objective

function is as follows:

max
w j

∆(sτj ) = max
w j
ρs

j(τ)

= max
w j

{
w2

j1ρ
x
1(τ) + w2

j2ρ
x
2(τ) + . . .+ w2

jmρ
x
m(τ)

} (21)

where ρx
j (τ) is the lag-τ autocorrelation of xi. The graphical structure of MSSFA is shown in Figure 2.
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Based on the MSSFA model SFA(τ), the multi-step predictable index is defined as:

In(τ) = 1−
(
ωmin(τ) − 2

2

)2

(22)

where ωmin(τ) is the slowness of the slowest SF of SFA(τ) and 0 ≤ In(τ) ≤ 1.
Secondly, according to the relationship between the slowness ω j(τ) and the autocorrelation

coefficients ρs
j(τ) of the SFs in Equation (20). The SF s j(t) of SFA(τ) can be formulated as an AR-like

prediction model:
s j(t) = ŝ j(t) + eτj (t) = ρs

j(τ)s j(t− τ) + eτj (t) (23)

where s j(t) is the real value, ŝ j(t) is the prediction value, and eτj (t) is the prediction error:

eτj (t) = s j(t) − ρs
j(τ)s j(t− τ)

=
.
sτj (t) +

ω j(τ)

2 s j(t− τ)
(24)

Similarly, predictable information is also included in prediction error eτj (t). If the prediction model
in Equation (23) can predict the value of SFs well, then eτj (t) is almost white noise and its predictability
is very low, and vice versa. For a certain τ value, prediction error eτj (t) can be computed using
Equation (24). Then, with eτj (t) as input data, let τe traverse the integer in interval [1, τ] to create new
MSSFA model SFAe(τe) and obtain the corresponding slownessωe

j (τe). Thus the multi-step predictable
information in eτj (t) can be extracted by ωe

j (τe) under different τe. The multi-step predictable index
based on prediction error eτj (t) is built as:

Ine(τ) =
τe=τ∑
τe=1

{
1−

(
ωe

min(τe)/2− 1
)2

}
/τ (25)

where ωe
min(τe) is the slowness of the slowest SF in SFAe(τe), τe ≤ τ, 0 ≤ Ine(τ) ≤ 1.

Finally, based on the proposed MSSFA method, the enhanced multi-step predictable index is
constructed by incorporating In(τ) and Ine(τ):

Inpre(τ) = Ine(τ) · In(τ) (26)

where, 0 ≤ Inpre(τ) ≤ 1. In this enhanced multi-step predictable index, Ine(τ) is a positive number
less than one. Therefore, it can be used as a scaling factor to enhance sensitivity of Inpre(τ) to control
performance changes. According to the relationship between predictability and SFs autocorrelation,
it can be known that as τ increases, the amount of predictable information extracted from the data
becomes less and less. After τ reaches a certain value, there is very little predictable information that can
be extracted. At this time, the predictable information extracted from the data is saturated. From the
point of view of the multi-step predictable index, after τ is greater than this value, In(τ) changes little
and tends to be stable. Therefore, the value can be selected as the truncation step f [41]. Calculation flow
of the enhanced multi-step predictable index is shown in Figure 3.

Within the CPM framework, the control performance index (CPI) is generally defined as a ratio of
the actual and the benchmark performance [3,26,28]. Thus, in order to compare the performance of
In(τ) and Inpre(τ), two CPIs are constructed as:

Q =
∑ f
τ=1 (In

act(τ)/Inben(τ))/ f
Qpre =

∑ f
τ=1 (In

act
pre(τ)/Inben

pre (τ))/ f
(27)
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where Inact(τ) and Inact
pre(τ) are actual performance, Inben(τ) and Inben

pre (τ) are benchmark performance.
Q and Qpre are the ratios between actual performance and benchmark performance. When Q and
Qpre are close to 1, the actual MPC performance is close to the benchmark performance. When Q
and Qpre are greater than 1, the actual MPC performance is better than the benchmark performance.
When Q and Qpre are less than 1, the actual MPC performance is degraded compared to the benchmark
performance. The differences between these two CPIs and value 1 indicate the sensitivity of the two
multi-step predictable indices to performance changes. For the same performance change, the greater
the difference, the multi-step predictable index is more sensitivity to this performance change.
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According to the above analysis, the predictable information extracted by the multi-step predictable
index is based on the autocorrelation of monitored variables. Thus, the proposed CPA method does
not depend on the data distribution characteristics of monitored variables and can be applied to the
performance assessment where the data is non-Gaussian distribution.

4. Performance Assessment Procedure of Enhanced Multi-Step Predictable Index Based
on MSSFA

The proposed enhanced multi-step predictable index based on MSSFA method applied to MPC
performance assessment including three parts: calculation of benchmark performance and actual
performance, determination of actual performance status. The performance assessment flow chart
as shown in Figure 4. Generally, benchmark data could be a period of “golden” operation data from
the process data contained in the DCS database with satisfactory control performance. For example,
the benchmark data could be a period of operation data after a satisfactory controller tuning or
updating [26,28].

The performance assessment procedure can be described in detail as follows:
The calculation of benchmark performance:

(1) The monitored variables when the MPC is in a good state are selected from the historical data
contained in the DCS database for calculating the benchmark performance of the MPC.

(2) Normalize the selected monitored variables so that the variable data is zero mean and unit variance.
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(3) Based on the benchmark monitored variables, build the MSSFA model SFA(τ) and SFAe(τe) under
benchmark performance using Equation (20).

(4) Based on the MSSFA model, calculate the enhanced multi-step predictable index Inben
pre (τ) as the

benchmark performance.

The calculation of actual performance:

(1) Collect actual monitored variables xact from the MPC system and built MSSFA model SFA(τ)
under actual performance.

(2) Calculate the multi-step predictable index In(τ) using Equation (22) and build the prediction
model using Equation (23) to predict the SFs of SFA(τ).

(3) According to the prediction error of the SFs, build MSSFA model SFAe(τe) and calculate the
corresponding multi-step predictable index Ine(τ) using Equation (25).

(4) Calculate the enhanced multi-step predictable index Inact
pre(τ) using Equation (26) as the

actual performance.

The determination of actual performance status:

(1) Calculate the CPI Qpre using Equation (27).
(2) Determine the actual performance: if Qpre > 1, the actual performance is improved relative to the

selected benchmark performance; if Qpre ≈ 1, the actual performance is equivalent to the selected
benchmark performance; if Qpre < 1, the actual performance is degraded relative to the selected
benchmark performance.
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5. Case Study

In this section, we demonstrate the results of the proposed multi-step predictable index with two
processes. One is a numerical example [28,39], while the other is a continuous stirred tank heater
(CSTH) simulation model, which is a benchmark model proposed by Thornhill et al. [42].

5.1. Numerical Example

A numerical example is given by [28,39]:

y(k) = Gpu(k) + Gda(k) (28)

where

Gp =


q−1

1−0.4q−1
K12q−1

1−0.4q−1

0.3q−1

1−0.1q−1
q−2

1−0.8q−1

 (29)

Gd =

 1
1−0.5q−1

−0.6
1−0.5q−1

0.5
1−0.5q−1

1
1−0.5q−1

 (30)

are the process transfer function and disturbance transfer function, respectively; q−1 is the
backshift operator. The noise a(k) follows a standard Gaussian distribution with the covariance
Σa = diag{0.01, 0.01}. K12 is a constant parameter that can be resized to change the process model.
When K12 = 0, the MPC controller is designed and the MPC system operates under the optimal state.
The parameters of the MPC controller are P = 20, M = 1, Q = I, and R = 0.1I.

In this case, let K12 increase from 0 to 10, which makes the MPC performance gradually deteriorate.
2000 samples are collected for establishing SFA(τ) and SFAe(τe) models. When K12 increases from 0 to
10, the trajectories of the slowness of the slowest SF under the SFA(τ) and SFAe(τe) models are shown
in Figure 5. In Figure 5, under the same K12, as τ and τe increase, the values of ωmin(τ) and ωe

min(τe)

gradually approach the value 2, which implies that the extracted predictable information is getting less
and less. When τ reaches a certain value f , the predictable information that can be extracted by the
slowness is negligible, and the value of f can be selected as the truncation step.
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Figure 5. The trajectories of the slowness of the slowest SF: (a) the trajectories of ωmin(τ) in SFA(τ),
(b) the trajectories of ωe

min(τe) in SFAe(τe).

The more predictable information in the monitored data, the higher its predictability, which
means the poorer the MPC control performance. The predictable information can be measured by the
distance between the value 2 and the slowness of the slowest SF. The smaller the distance, the lower
the predictability, which means the better the control performance. From Figure 5a, it can be seen that
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when τ = 1, 2 , · · · , 7, the trajectories of ωmin(τ) decrease significantly and get farther from the value 2.
This means an increase in predictability. When τ = 8, 9, 10, the changes of the trajectories of ωmin(τ)
are not obvious and ωmin(τ) are very close to 2. This means that predictability is low and does not
change much. From Figure 5b, it can be seen that when τe = 1, 2, · · · , 10, the trajectories of ωe

min(τe)

decrease significantly and get away from the value 2. By comparing the trends of the trajectories
of ωmin(τ) and ωe

min(τe), it can be seen that ωe
min(τe) can further mine predictable information in

monitored variables. In addition, the original one-step predictable index uses only ωmin(1) in Figure 5a
to extract predictable information from the monitored variables. Obviously, the multi-step predictable
index can more fully extract predictable information in the monitored variables by selecting the
appropriate value of the truncation step f.

The multi-step predictable indices In(τ) and Inpre(τ) are shown in Figure 6. It can be seen that as
τ increases, In(τ) and Inpre(τ) are closer and closer to the value 1, which means that the predictability
is getting lower. This is consistent with the conclusion drawn from Figure 5. After τ increases to a
certain value, the values of In(τ) and Inpre(τ) change little and enter a stable area. A good choice for
the truncation step of τ is just falling in this flat area [41]. In this example, the value of the truncation
step f is chosen as 20.
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Figure 6. Performance assessment trajectories under different K12 values: (a) multi-step predictable
index of In(τ), (b) multi-step predictable index of Inpre(τ).

From Figure 6a, we can see that the traditional one-step predictable index is only displayed as
a point in the solid blue box, while the multi-step predictable index is displayed as a performance
trajectory. Therefore, the multi-step predictable index can provide more comprehensive assessment
information. However, from the red dashed box in Figure 6a, it can be seen that there is some
overlap between the performance trajectories under different K12 values. That is, the sensitivity of
the predictable index In(τ) is poor. In Figure 6b, as K12 increases, the trajectories of predictable index
Inpre(τ) gradually move down. The MPC performance decreases along the direction of the arrow in
Figure 6b, and it can tell the direction of performance changes. Compared with In(τ), the performance
trajectories of Inpre(τ) are separated from each other without overlapping. This indicates that the
predictable index Inpre(τ) is more sensitive to performance changes. In order to calculate the CPIs Q
and Qpre, we chose the MPC performance under K12 = 0 as the benchmark performance. The results
of the CPIs Q and Qpre are shown in Table 1. When K12 increases, both Q and Qpre are less than 1,
that is, both indices detect a performance deterioration. However, the value of the CPI Qpre is smaller
than that of the CPI Q at the same K12 value, and this confirms the above conclusion that Inpre(τ) is
more sensitive than In(τ).
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Table 1. Two CPIs under different K12 values.

K12 0 2 4 6 8 10

Q 1.0000 0.9673 0.9307 0.9074 0.8888 0.8729
Qpre 1.0000 0.9316 0.8488 0.7963 0.7575 0.7268

5.2. Continuous Stirred Tank Heater

In this section, the proposed multi-step predictable index is applied to a CSTH process, which is
proposed by Thornhill et al. [42]. The CSTH is a hybrid simulation which uses measured data captured
from a process to drive a first principles model. It has a complete characterization of the sensors
and valves and the heat exchanger therefore have more complex and more realistic characteristics.
Its structure is shown in Figure 7.
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In CSTH, u1 and u2 are valve positions of the cold water and the steam in mA, respectively.
u3 and u4 are valve positions of the hot water and the water outlet in mA, respectively. y1 is the level
measurement in mA and y3 is the temperature measurement in mA. In the experiment, u1 and u2 are
manipulated variables, y1 and y3 are controlled variables.

The dynamic volumetric and heat balances are shown below [42]:

dV(x)
dt

= fcw + fhw − fout(x) (31)

dH
dt

= Wst + hhwρhw fhw + hcwρcw fcw − houtρout fout(x) (32)

where the parameters in the formula are described in Table 2. The operating condition of the CSTH
system is shown in Table 3.

The parameters of the MPC controller are P = 100, M = 1, Q = I, and R = 0.1I. In order to
study the effectiveness of the proposed multi-step predictable index for Gaussian distribution and
non-Gaussian distribution, five different performance changes as shown in Table 4 are designed. Among
them, the noise in the first three cases follows the Gaussian distribution with standard deviation 0.03
and the noise in the other two cases follows the non-Gaussian distribution with standard deviation 0.03.
2000 samples under normal operating condition are collected to calculate the benchmark performance
of the MPC system. According to the selection method of the truncation step, the value of f is chosen
as 400. The truncation step f in the CSTH example is much larger than that in the numerical example.
The reason can be derived from the autocorrelation plot of the four monitored variables the CSTH
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system, which is shown in Figure 8. From Figure 8, we can observe that x1, x2, and x3 show higher
autocorrelation, and the time lag is very large.

Table 2. Description of the parameters.

Parameter Description Parameter Description

x the level of water V the volume of water
fcw the cold water flow into the tank fhw the hot water flow into the tank
fout the outflow from the tank H the total enthalpy in the tank
hhw the specific enthalpy of hot water feed hcw the specific enthalpy of cold water feed
ρhw the density of incoming cold water ρcw the density of incoming hot water
ρout the density of water leaving the tank Wst the heat inflow from steam

Table 3. Operating condition of the continuous stirred tank heater system.

Variable Operating Points

Level/cm 20.48
Cold water flow/cm3/s 90.38
Cold water valve/mA 12.96

Temperature/◦C 42.52
Steam valve/mA 12.57

Hot water valve/mA 0
Hot water flow/cm3/s 0

Table 4. Parameter setting for performance changes.

Case Parameter Variation Range

Case one Outlet flow +1.4 cm3/s
Case two Hot water flow +0.3 cm3/s

Case three Sensor bias in tank level +1cm
Case four Hot water flow +0.6 cm3/s
Case five Hot water flow +0.6 cm3/s→ +1.5 cm3/s
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In case one, by changing the outlet valve u4, the outlet flow increases by 1.4 cm3/s,
which deteriorates the control performance. The performance assessment results are shown in Figure 9.
In Figure 9a, when τ < 116, the trajectory of In(τ) is higher than the benchmark performance trajectory.
This is inconsistent with the actual performance change. However, when τ > 116, the trajectory of In(τ)
is lower than the benchmark performance trajectory. In Figure 9b, the trajectory of the proposed Inpre(τ)



Energies 2019, 12, 3799 14 of 18

is always lower than the trajectory of benchmark performance, that is, the performance degradation is
completely detected.
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Figure 9. Performance assessment trajectories under case one: (a) multi-step predictable index of In(τ),
(b) multi-step predictable index of Inpre(τ).

In case two, by changing the valve u3, the hot water flow increases by 0.3 cm3/s, which deteriorates
the control performance. The performance assessment results are shown in Figure 10. From Figure 10a,
it can be seen that when τ > 350, the trajectory of In(τ) is higher than the trajectory of benchmark
performance. This is inconsistent with the actual performance change. In Figure 10b, the trajectory
of the proposed Inpre(τ) is always lower than the trajectory of benchmark performance and the
performance degradation is completely detected.
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Figure 10. Performance assessment trajectories under case two: (a) multi-step predictable index of
In(τ), (b) multi-step predictable index of Inpre(τ).

In case three, the sensor of the tank level has a bias of 1 cm. The performance assessment results
are shown in Figure 11. In Figure 11, the trajectories of In(τ) and Inpre(τ) are significantly lower than
that of the benchmark, indicating that both have detected a deterioration in performance. In addition,
from the CPIs of In(τ) and Inpre(τ) under case three in Table 5, it can be seen that the change of Inpre(τ)
is more obvious than that of In(τ).
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Figure 11. Performance assessment trajectories under case three: (a) multi-step predictable index of
In(τ), (b) multi-step predictable index of Inpre(τ).

Table 5. Two CPIs under different cases.

CPIs Case One Case Two Case Three Case Four

Q 0.9486 0.9018 0.8404 0.9706
Qpre 0.8425 0.8310 0.7720 0.8715

In case four, process noise follows a uniform distribution with standard deviation 0.03. By changing
the valve u3, the hot water flow increases by 0.6 cm3/s. The performance assessment results are shown
in Figure 12. In Figure 12a, the trajectory of In(τ) and the benchmark performance trajectory are very
close, and when 166 < τ < 250, the trajectory of In(τ) is higher than the benchmark performance
trajectory. In Figure 12b, the trajectory of the proposed Inpre(τ) is always lower than the benchmark
performance trajectory.
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Figure 12. Performance assessment trajectories under case four: (a) multi-step predictable index of
In(τ), (b) multi-step predictable index of Inpre(τ).

In case five, process noise follows a uniform distribution with standard deviation 0.03. By changing
the valve u3, and the hot water flow is gradually increased from 0.6 cm3/s to 1.5 cm3/s. The performance
assessment results of Inpre(τ) are shown in Figure 13. In Figure 13, as the hot water flow increases,
the trajectories of Inpre(τ) gradually move down. The direction of the arrow in Figure 13 indicates
the direction of decline in MPC performance, and it can tell the direction of performance changes.
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Besides, from the results in case four and case five, it can be seen that the proposed index can effectively
assess the deterioration of control performance under non-Gaussian distribution.
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Two CPIs Q and Qpre under the first four cases are shown in Table 5. From Table 5 and the
experimental results of the five cases, it can be seen that the proposed multi-step predictable index has
better sensitivity to performance changes, can give the change direction of the MPC performance and be
applied to both Gaussian and non-Gaussian distributions. It should be noted that the method proposed
in this paper is suitable for linear time-invariant processes. It does not consider other characteristics of
the process such as nonlinear, multi-mode and time-varying characteristics. The above characteristics
of the process are also not considered in the case study. This will also be a problem that needs further
research in the future.

6. Conclusions

Deterioration in MPC performance can lead to a decline in product quality and an increase in
energy consumption. In this article, based on proposed MSSFA, an enhanced multi-step predictable
index for evaluating the MPC performance is proposed. Due to the large time-delay that exists in the
chemical industry process, there is considerable predictable information between the process variables
with different step intervals. Compared with the traditional predictable index, the proposed method can
effectively extract multi-step predictable information of monitored variables, and can better refine the
predictable information in the process variables with a large lag. The experimental results demonstrate
that the proposed CPA method provides a more-informative MPC performance assessment index,
which can effectively indicate the direction of the performance change and improve the sensitivity to
performance changes. Furthermore, the method is suitable for non-Gaussian distribution.
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Abbreviations

SFA slow feature analysis
MSSFA multi-step SFA
SF slow feature
MPC model predictive controller
PCA principle component analysis
CPA control performance assessment
CSTH continuous stirred tank heater
CPI control performance index
AR autoregressive
PLS partial least squares
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