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Abstract: During the production of deepwater wells, downhole perforation safety is one of the key
technical problems. The perforation fluctuating pressure is an important factor in assessing the
wellbore safety threat. Due to difficulty in describing the downhole perforation pressure by using the
existing empirical correlations, a prediction model based on data fitting of a large number of numerical
simulations has been proposed. Firstly, a numerical model is set up to obtain the dynamic data of
downhole perforation, and the exponential attenuation model of perforation pressure in the wellbore
is established. Secondly, a large number of numerical simulations have been carried out through
orthogonal test design. The results reveal that the downhole perforation pressure is logarithmic to
the total charge quantity, increases linearly to the wellbore initial pressure, shows an exponential
relationship with downhole effective volume for perforation, and has a power relationship with
the thickness of casing and cement as well as formation elastic modulus. Thirdly, the prediction
of perforation peak pressure at different positions along the wellbore agrees well with the field
measurement within a 10% error. Finally, the results of this study have been applied in the field case,
and an optimization scheme for deepwater downhole perforation safety has been put forward.
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1. Introduction

With the improvement of oil and gas resources exploitation technology, more and more offshore
oil and gas resources have been exploited in recent years [1,2]. The exploitation of deepwater oil
and gas resources has increased gradually, and the safety of downhole perforation is an important
technical problem [3]. The shaped charge jet perforation has been widely used in deepwater completion
operations, the purpose of which is to form a channel between reservoir and wellbore that can effectively
transport oil and gas [4,5]. On the one hand, the energy released by the explosion of perforating charge
is converted into the effective energy to penetrate casing. On the other hand, part of the energy will
be released into the wellbore, resulting in the pulsation of perforation pressure in the wellbore. This
is the beginning of the wellbore dynamic effect in the process of perforation, in which the pulsating
pressure of perforation will produce strong impact loads on the downhole tools and affect the stability
of the whole perforation system [6–8]. Predicting the magnitude of downhole perforation pressure is a
critical step for the safety analysis of deepwater perforation.

Perforation testing refers to the process of connecting perforating gun, upper operating string, and
packer into a cluster for downward entry. The downhole perforation system for the deepwater wells is
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shown in Figure 1, which shows that the wellbore is filled with fluid after the packer is set. With the
increase of water depth, the perforation process of deepwater wells is more complex and difficult. This
is bound to greatly increase the downhole perforation pressure and wellbore safety risk. The normal
exploitation of oil and gas will be affected, and even some irreparable damage may be caused.
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Figure 1. Downhole perforation system.

The fluctuating pressure of perforation mainly comes from the asymmetric dynamic loads,
which are produced by the explosion of many perforating bullets arranged in a certain phase in
the perforating gun. Progress has been made in this field in recent years. Lu et al. [9] proposed a
perforation pressure equation based on reservoir conditions by using the superposition principle, with
preliminary theoretical derivation and qualitative analysis. Zhao et al. [10,11] qualitatively studied the
characteristics of perforation pressure fluctuation in the process of composite perforation by combining
theoretical research with experimental tests. Chen et al. [12] analyzed the dynamic load of downhole
perforation by using theoretical empirical formula and simulation software. Sanders et al. [13] proposed
that the pulsating pressure of downhole perforation would increase the risk of downhole equipment
damage in deepwater well. Yang et al. [14] indirectly calculated the peak pressure of downhole
perforation by calculating the energy of detonation gas based on the detonation theory. Zhou et al. [15]
used the load test system to measure perforation pressure data downhole. Bale et al. [16] developed a
commercial perforation software to simulate the dynamic downhole perforation pressure of deepwater
wells. Li et al. [17] pointed out that the change and distribution of perforation impact pressure in
the wellbore with time is not clear and needs further investigation. Liu et al. [18] set up a pressure
field model of shaped charge to study the downhole perforation impact pressure. These studies
have promoted the research progress of downhole perforation pressure. However, the functional
relationships between downhole perforation pressure and different influencing factors are not clear. The
distribution of perforation pressure along the wellbore is not clear. There is a lack of an accurate method
to predict the magnitude of perforation pressure by considering multiple downhole influencing factors.

There are three main methods to study the dynamic pressure of downhole perforation, which are
the empirical formula calculation, laboratory test, and numerical simulation [19]. However, due to the
asymmetric load of perforating bullets and the complexity of the downhole dynamic environment, it is
difficult to comprehensively describe the whole perforation process by relying solely on the existing
empirical formulas. The data obtained by the laboratory test for perforation is limited. Therefore, the



Energies 2019, 12, 3795 3 of 21

numerical simulation method of non-linear dynamics can be applied to describe the three-dimensional
dynamic process of downhole perforation.

In this study, the parameters setting of the model materials and the state equations have been
explored. By setting the fluid-structure coupling, the modeling method of multiple perforating bullets
is formed. The complex perforating conditions are successfully simulated by LS-DYNA software on a
large computer. The physical process of perforation with hundreds of perforating bullets has been
innovatively simulated. Based on the simulated data, the functional relationships between perforation
peak pressure and different influencing factors have been obtained. A prediction model to calculate
the downhole perforating peak pressure has been proposed. The perforation peak pressure at different
positions in the wellbore can be obtained.

2. Empirical Formulas of Perforation Pressure

At present, the calculation of downhole perforation pressure is mainly based on the empirical
formulas of the explosive explosion. One of them is referring to the method of measuring explosive
performance in an isolated container. It is assumed that the perforating charge is put in the sealed
casing and the remaining space of which is filled with air. The empirical formula of explosive explosion
pressure is used to calculate perforation pressure, as shown in [20]:

P =
fω

V − αω
(1)

where P is the explosive pressure, MPa; f is the explosive specific energy, J/kg; ω is the perforating
charge quantity, kg; V is the effective volume of the casing, L; α= 0.001v, v is the Hexogen specific
volume, L/kg.

By equating the perforating charge explosion with the underwater explosion test, the perforating
pressure at different locations is calculated by [21]:

P = K
(
ω1/3

R

)β
(2)

where K is the tested coefficient, 44.5 for spherical TNT explosive, dimensionless; ω is the explosive
quality, kg; R is the distance from the detonation center, m; β is the attenuation coefficient, 1.5 for
spherical TNT explosive, dimensionless.

Based on the detonation theory, the energy of detonation products is determined according to the
detonation parameters of the perforating charge. The explosion pressure of perforation is obtained
by [22]:

P = 1.558ρ2N
√

MQ (3)

where ρ is the explosive density, g/cm3; N is the molar number of the detonation gas products per unit
mass of explosive, mol/g; M is the average molar mass of detonation gas components, g/mol; Q is the
detonation heat, KJ/mol.

Assuming that a certain proportion of explosive energy will be converted into wellbore fluid
internal energy, a certain increment of pressure can be produced in the wellbore. After perforation, the
wellbore pressure is obtained as [23]:

P = P0 + ϕ(δ− 1)
n
V

m
M

Q (4)

where P0 is the wellbore initial pressure, MPa; ϕ is the explosive energy transfer rate, dimensionless; δ
is the imaginary gas-liquid ratio in the wellbore, dimensionless; n the number of perforating bullets; m
is the charge per hole, g; M is the average molar mass of detonation gas components, g/mol; V is the
wellbore effective volume, m3; Q is the detonation heat, KJ/mol.
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The idea of the above empirical formulas is to calculate the explosion pressure of perforation by
the equivalent explosion of explosives. It is assumed that other calculation parameters remain constant:
charge density is 1.80 g/cm3; inner diameter of casing is 0.157 m; casing length is 2.5 m; inner diameter
of tubing is 0.059 m; tubing length is 1 m; inner diameter of perforating gun is 0.105 m; gun length
is 1 m; residual volume of charge is 0.83 L/kg; explosive specific energy is 1181861 J/kg; molecular
mass of explosive is 222.12 g/mol; molar number of explosive per unit mass is 0.03377; detonation heat
is 6205.23 KJ/mol. The initial wellbore pressure is 10 MPa, with 30% of explosive energy converted
into wellbore pressure during perforation. The total charge quantity of perforation is calculated as a
variable by Equations (1)–(4), which is changed as 2 kg, 4 kg, 6 kg, 8 kg, 10 kg. The calculation results
are shown in Figure 2.
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Based on the above calculation results, it can be seen that the perforation pressure increases with
the increase of the total charge quantity. The pressure values of perforation calculated Equations (1)–(4)
are quite different. The actual downhole perforation conditions are complex, with many factors
affecting the fluctuating pressure of perforation. The above empirical formulas cannot consider the
factors comprehensively, especially for the influence of formation conditions. The calculation results
of the above empirical formulas are inaccurate. It is important to account for the reservoir condition
since it can act as an absorber or reflector (based on porosity, permeability, etc.) of shock waves that
eventually affects the propagation and strength of shock waves within the wellbore [24,25]. Therefore,
these theoretical empirical formulas can only be used as a preliminary reference for qualitative analysis
of downhole perforation pressure. The above analysis shows that the charge of perforation, the effective
space of the wellbore, the wellbore initial pressure, and so on are the important factors affecting the
explosion pressure of perforation. Therefore, further research is needed to explore a more accurate
calculation model for perforating pressure.

Due to high flexibility and ability, the technologies of numerical simulation have been widely
applied for the study of complex non-linear problems in recent years. The simulation of perforation
completion has undergone a process from simple to complex, and the perforation model has gradually
developed from two-dimensional to three-dimensional. At present, the perforation simulation analysis
has entered the stage of finite element simulation calculation with the further development of computer
technologies. Some complex non-linear problems with high calculation accuracy have been solved
with the premise of adapting to various complex mathematical models. The numerical simulation has
many advantages and has become an effective means of piercing engineering analysis, in which the
whole dynamic process can be presented by numerical simulation [26,27].
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3. Modeling and Meshing

The whole process of perforation includes charge explosion, jet formation, casing penetration,
and fluid-solid coupling. The sequential explosion of perforating bullets has an extremely complex
coupling superposition effect with increasing shock loads in the wellbore. At present, the finite element
software of LS-DYNA or AUTODYNA has been widely used to simulate the whole dynamic process.
Lee [28] simulated the process of jet formation and penetration into the casing wall based on the 2D
Euler coding, the foundation of perforation numerical simulation was laid. Han et al. [29] studied
the process of explosive explosion forming jet and penetrating casing wall during perforation by
numerical simulation. Kang et al. [30] used the software of LS-DYNA to study the dynamic response
of the perforating gun, and few numbers of perforating bullets were simulated in three-dimensional.
Yang [31] simulated a single perforating bullet of the horizontal well perforation by the software of
LS-DYNA, and the state equations and model parameters during perforation were explored. Li [32]
simulated the fluctuation of perforation pressure by the software of AUTODYN using spherical
explosive instead of perforating bullets. Yan et al. [33] studied the process of perforation to cement
damage by the software of LS-DYNA, and the ALE (Arbitrary Lagrange–Euler) algorithm was used to
describe the fluid-structure coupling phenomenon in the perforation process. The above researches
have laid the foundation for modern perforation completion simulation and promoted its rapid
development. The selection of state equations, the setting of model parameters, and the fluid-structure
coupling phenomenon in the perforation process have been preliminarily studied. However, previous
work often focused on a single or a few numbers of perforation bullets due to the complexity of
perforation modeling and meshing with huge workloads. Without considering the influence of multiple
factors on downhole perforation pressure, the simulation cannot reflect the actual working conditions
of perforation.

In this section, the perforation model, with hundreds of perforating bullets, has been innovatively
established. Several trial calculations have been carried out by exploring the parameters of the model
materials and state equation and setting the fluid-solid coupling interface. The numerical simulations
have been carried out smoothly.

3.1. Physical Model

A number of perforating bullets are distributed in the gun at a certain phase. The downhole
perforation system of deepwater wells has many components, as shown in Figure 1. The physical
model needs to be simplified for the convenience of simulation calculation. Make the following
assumptions: Firstly, the cement or reservoir is assumed as isotropic materials by ignoring their
heterogeneity; Secondly, all the downhole components in the perforation string system are regarded
as isotropic tubing string materials. Through the above assumptions, a 3D physical model can be
established by simplification, as shown in Figure 3. The perforating gun, tubing string, and casing are
involved in the model with 300 perforating bullets with phase 45◦, 63 g charge per hole. The air fills
inside the remaining space of the gun. The wellbore fluid fills the annulus space of tubing and casing
with the initial pressure of 15 MPa. The packer restrains the upper end of the string radially, and the
circumference of the string is restrained by the casing with reservoir surrounding.



Energies 2019, 12, 3795 6 of 21
Energies 2019, 12, x FOR PEER REVIEW 6 of 21 

 

 

Figure 3. 3D physical model. 

3.2. Model Meshing 

The physical process of perforation includes complex fluid-structure interaction with a high 

strain rate, which is commonly solved by the BEM (boundary element method) and FEM (finite 

element method). The BEM is suitable for solving linear homogeneous problems, while FEM is 

suitable for solving nonlinear problems with complex boundaries [34,35]. Therefore, the finite 

element method can be used to simulate perforation. In LS-DYNA, there are mainly ALE (Arbitrary 

Lagrange–Euler) algorithm and SPH (Smoothed Particle Hydrodynamics) algorithm for fluid-

structure interaction calculation. The mesh deformation caused by meshless can be avoided for the 

SPH algorithm [36]. However, the ALE algorithm is more stable under perforation conditions, 

accurately describing the deformation response of perforated string, cement, and reservoir without 

mesh non-convergence. The ALE algorithm can accurately simulate the formation and penetration of 

a shaped charge jet with a high strain rate and large deformation, which can be used in RDX (Royal 

Demolition Explosive) explosives, air, and fluid. The spatial position of the ALE grid remains 

unchanged with the material flows among the grids. The Lagrange algorithm is used in the downhole 

string. The Lagrange algorithm can be firstly executed by the ALE algorithm at each time step [37].  

Since the model meshing is complex, the grid is built on the cylindrical boundary to make the 

whole area transition into a cuboid structure. The remaining 3/4 models can be obtained by rotating 

the replication command. The fluid area model of the perforating bullet and the torsion model are 

connected by twisting the air area model between the cylindrical segments, in which different 

perforating bullets are located. The twisting model is connected by replicating rotation. The fluid area 

model of several perforating bullets can be obtained. Through the above methods, the geometric 

parameters of the liner, charge, the height of the upper end face of the cuboid, and the number of 

corresponding meshes can be adjusted. Different sizes of the perforating bullets can be quickly 

established by changing the parameters. Multiple perforating bullets can be obtained by simple 

replication with the distance that can be quickly adjusted. Figure 4a shows the vertical section of the 

mesh model, and the vertical section of the mesh model of the perforating bullet is shown in Figure 

4b. 

Figure 3. 3D physical model.

3.2. Model Meshing

The physical process of perforation includes complex fluid-structure interaction with a high strain
rate, which is commonly solved by the BEM (boundary element method) and FEM (finite element
method). The BEM is suitable for solving linear homogeneous problems, while FEM is suitable for
solving nonlinear problems with complex boundaries [34,35]. Therefore, the finite element method
can be used to simulate perforation. In LS-DYNA, there are mainly ALE (Arbitrary Lagrange–Euler)
algorithm and SPH (Smoothed Particle Hydrodynamics) algorithm for fluid-structure interaction
calculation. The mesh deformation caused by meshless can be avoided for the SPH algorithm [36].
However, the ALE algorithm is more stable under perforation conditions, accurately describing the
deformation response of perforated string, cement, and reservoir without mesh non-convergence.
The ALE algorithm can accurately simulate the formation and penetration of a shaped charge jet with
a high strain rate and large deformation, which can be used in RDX (Royal Demolition Explosive)
explosives, air, and fluid. The spatial position of the ALE grid remains unchanged with the material
flows among the grids. The Lagrange algorithm is used in the downhole string. The Lagrange
algorithm can be firstly executed by the ALE algorithm at each time step [37].

Since the model meshing is complex, the grid is built on the cylindrical boundary to make the
whole area transition into a cuboid structure. The remaining 3/4 models can be obtained by rotating
the replication command. The fluid area model of the perforating bullet and the torsion model
are connected by twisting the air area model between the cylindrical segments, in which different
perforating bullets are located. The twisting model is connected by replicating rotation. The fluid
area model of several perforating bullets can be obtained. Through the above methods, the geometric
parameters of the liner, charge, the height of the upper end face of the cuboid, and the number
of corresponding meshes can be adjusted. Different sizes of the perforating bullets can be quickly
established by changing the parameters. Multiple perforating bullets can be obtained by simple
replication with the distance that can be quickly adjusted. Figure 4a shows the vertical section of the
mesh model, and the vertical section of the mesh model of the perforating bullet is shown in Figure 4b.
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3.3. Material Model and State Equation

The selection of material parameters and the related equation of state have been briefly introduced
in the section. The state equation of EOS_JWL (Jones-Wilkins-Lee) is adopted for RDX explosive, and
the expression is shown in [38]:

P = A(1−
ω

R1V
)e−R1V + B(1−

ω
R2V

)e−R2V +
ωE
V

(5)

where p is the pressure of detonation product, MPa; V = 1
ρ is the specific volume, cm3/g; A, B,ω, R1, R2

are material constants; E is the explosive internal energy of unit volume, J/m3. The parameters’ values
are listed in Table 1.

Table 1. Parameters’ values of RDX (Royal Demolition Explosive).

ρ (g/cm3) D (cm/µs) A (GPa) B (GPa) R1 R2 ω E (J/m3)

1.78 0.65 3.71 0.074 4.15 0.95 0.3 9 × 109

The MAT_NULL material model and state equation of EOS_GRUNEISEN are used for describing
the wellbore fluid (water) dynamic response. The equation is shown in [39]:

P =
ρ0C2µ

[
1 +

(
1− γ0

2

)
µ− a1

2 µ
2
][

1− (S1 − 1)µ− S22 µ2

µ2+1 − S3
µ3

(µ+1)2

] + (γ0 + a1µ)E (6)

where C is the sound velocity in water, cm/µs; S1, S2, S3 are the constant coefficients, dimensionless; γ0

is the Gruneisen constant, dimensionless; µ =
ρ
ρ0
− 1 is the water compressibility, dimensionless; a1 is

the first-order volume correction of γ0,µ, dimensionless. The main parameter values are shown in
Table 2.

Table 2. Water parameters of the Gruneisen state equation.

C(cm/µs) S1 S2 S3 γ0 a1 A E0 V0

0.165 1.92 –0.0096 0 0.35 0.47 0 0 0.9925
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The EOS of material air is shown as [40]:

P = (C0 + C1µ+ C2µ
2 + C3µ

3) + (C4 + C5µ+ C6µ
2)E (7)

where C0, C1, C2, C3, C4, C5, C6 are the EOS parameters, dimensionless. The values of the parameters
are shown in Table 3.

Table 3. Air parameters.

ρ (g/cm3) C0 C1 C2 C3 C4 C5 C6

0.001225 0 0 0 0 0.4 0.4 0

The Cowper–Symonds model is adopted for the shell and perforated string (gun, tubing, casing),
as shown in [41]:

σy =

1 + (
ε
Q

) 1
P
(σ0 + βEpε

e f f
P

)
(8)

where ε is the strain rate of materials, dimensionless; Q and P are the strain rate parameters,
dimensionless; σ0 is the initial value of yield stress, MPa; EP = EtanE

E−Etan
is the plastic hardening modulus

of materials, GPa; Etan is the tangent modulus of materials, GPa; E is the young modulus of materials,
GPa; εe f f

P is the effective plastic strain of materials, dimensionless. According to the API (American
Petroleum Institute) standard, the material parameters of the perforated string are shown in Table 4 [42].

Table 4. Parameters of perforated string.

Parameters
Steel

Grade
-

Length
(m)

Density
(kg/m3)

Size
(mm)

Yield
Stress
(MPa)

Elastic
Modulus

(GPa)

Poisson’s
Ratio

-

Tubing N80 20 7800 93/62 536 206 0.3
Casing N80 35 7800 245/221 460 206 0.25

Gun N80 9 - 178/153 550 206 0.3

The cement and reservoir can be described by the material model of Holmquist–Johnson–Cook
model [38]:

σ = fc
[
Q1(1−Q2) + Q3P∗N

]
[1 + Q4 ln(ε∗)] (9)

where fc is the uniaxial compression strength, MPa; P∗N is the normalized pressure value, dimensionless;
ε∗ is the normalized strain rate, dimensionless; Q1, Q2, Q3 are the constants of the material,
dimensionless; Q4 is the damage value, dimensionless. In order to reduce the amount of calculation, the
cement and reservoir model is only established near the perforation section. The modeling parameters
are shown in Table 5.

Table 5. Cement and reservoir parameters.

Parameters Density
(kg/m3)

Length
(m)

Thickness
(m)

Inner Diameter
(mm)

Elastic Modulus
(GPa)

Poisson’s Ratio
-

Cement 2560 20 0.03 245 206 0.3
Reservoir 2210 20 3 545 1.27 0.35

The numerical model is input into the LS-DYNA program in the form of a K file for calculation.
The parameters of numerical simulation are defined by keywords. * INCLUDE and * INCLUDE
TRANSFORM: importing the grid model information; * INITIAL_DETONATION: defining the
initiation point and time of explosives; * ALE_MULTI-MATERIAL_GROUP: making the material flows
with each other in the fluid domain grid; * CONSTRAINED_LAGRANGE_IN_SOLID: realizing the
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fluid-solid coupling; * SECTION_SOLID and * SECTION_SOLID_ALE: setting the grid cell algorithms;
* CONTROL_TERMINATION and *CONTROL_TIMESTEP: controlling the simulation time and the
output step of the model calculation [37].

4. Numerical Analysis

In this section, numerical simulation has been carried out on a large computer based on the above
modeling and calculation methods. The simulation data can be extracted through post-processing.
The total explosion time during perforation of 0–5000 µs has been simulated.

4.1. Simulation Results

The perforation pressure in the wellbore distribution from 800 µs to 1400 µs with an interval of
100 microseconds can be obtained, as shown in Figure 5. When the perforator has not been detonated,
there is no fluctuation of the pressure in the wellbore. When the shock wave is formed by the explosion
of perforating bullets, the perforation pressure in the wellbore increases sharply upward along the
wellbore. When the shock wave reaches the position of the packer at the top of the wellbore, it reaches
the peak value, which is caused by the reflection of the packer. The reflected shock wave gradually
propagates downward along the wellbore, showing a trend of attenuation. The wellbore pressure-time
curve can be drawn by extracting the simulated data, as shown in Figure 6.
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Figure 6. Simulated perforation pressure-time curve.

It can be seen from the simulated perforation pressure-time curve that the wellbore pressure
reaches peak instantaneously with the detonation of the perforating bullets. Then, the oscillation
occurs when shock waves are reflected back and forth in the wellbore. The attenuation occurs with
propagation in the wellbore fluid. Finally, the pressure value tends to be stable after perforation.
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The changing trend is similar to the field measured data curve, as shown in Section 5. It can be seen
from Figure 6 that the peak pressure of deepwater perforation is as high as 110 MPa, which is a very
important index for downhole wellbore safety. The high peak perforation pressure will cause the
direct damage of downhole tools, such as the fracture of perforated string, the failure of the packer,
etc. The peak value of perforation pressure can be used as the test index of the downhole safety for
deepwater wells [43,44]. Before the shock wave reaches the packer, the contour of annulus pressure is
captured along the different positions of the wellbore from bottom to top, as shown in Figure 7.
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Figure 7. Perforation pressure distribution at different positions of the wellbore (unit: 1011 Pa).

The position of perforating gun is regarded as the starting position of perforating explosive
load. From Figure 7, it can be seen that the farther away from the source of the explosion, the lower
the perforating pressure is. It means that the propagation of perforating pressure in wellbore fluid
shows an attenuation trend. The peak perforation pressure at different positions in the wellbore
can be extracted [45–49]. By using the extremum method, the simulated data can be dimensionless.
The change trend curve of peak perforation pressure at different wellbore positions has been obtained,
as shown in Figure 8.
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Figure 8. Perforation peak pressure at different positions of the wellbore. The abscissa l/lmax is the ratio
of the distance along the wellbore from the source of the explosion and the distance from the packer to
the source of the explosion. The ordinate Pw/Pmax is the ratio of the peak pressure of perforation and
the maximum peak pressure of perforation.

The ultra-high pressure detonation products formed by perforation bullets rapidly expand in
wellbore fluid in the form of gas. Since the pressure of the detonation products is far greater than the
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static pressure of surrounding wellbore fluid, the shock waves and perforation pressure pulsation have
been formed in the wellbore. There will be a decaying trend with the propagation of shock waves in
the wellbore fluid. The physical process is very similar to the underwater explosion. The mathematical
model of the underwater pressure attenuation is usually obtained by fitting the experimental data.
Cole [50] first proposed the theory to describe the pressure attenuation of underwater explosion; it is
considered that the propagation attenuation law of underwater explosion accords with exponential
attenuation. Through the above analysis, the attenuation coefficient model of the downhole perforation
pressure in the wellbore is proposed by the undetermined coefficient method:

Pw = K × Ps× eβk (10)

where Pw is the peak pressure of perforation at different positions of the wellbore, MPa; Ps is the
initial pressure of the explosive source of perforation bullets, MPa; K is the undetermined coefficient,
dimensionless; β is the attenuation index, dimensionless; k = l/lmax is the ratio of the distance along
the wellbore from the source of the explosion and the distance from the packer to the source of the
explosion, dimensionless.

Based on the numerical simulation data in Figure 8, the model of the undetermined coefficient in
the equation can be solved, K = 1.18 and β = −0.37. In order to obtain the pressure of the source of the
explosion of perforating bullets, a large number of numerical simulation analysis is carried out for
different factors based on the orthogonal test.

4.2. Orthogonal Test

The orthogonal test is a scientific, effective, and simple method to study the influence of multiple
factors, which is applicable to a certain index affected by these factors, with each factor taking more
than one value. As we know, there are many factors affecting the pulse pressure of perforation, such as
perforation-related parameters, pressure in the initial wellbore fluid, wellbore size, the thickness
of casing and cement sheath penetrated, reservoir conditions, and so on. In this study, in order to
obtain the variation law of downhole perforation pressure under different perforation conditions, the
orthogonal test method has been used to carry out a series of numerical simulation calculations on a
large computer for the influence of different factors on perforation pressure. Five correlative factors
have been considered: total charge quantity, wellbore initial pressure, downhole effective volume for
perforation, the thickness of casing and cement, formation elastic modulus. The designed orthogonal
test table is shown in Table 6.

Table 6. Orthogonal test level table.

Orthogonal
Test Level

Total Charge
Quantity (kg)

Wellbore
Initial

Pressure (MPa)

Downhole
Perforation

Effective
Volume (m3)

Thickness of
Casing and
Cement (m)

Formation
Elastic

Modulus
(MPa)

Level 1 4 15 1.5 0.03 5
Level 2 8 50 2 0.05 10
Level 3 12 85 2.5 0.07 15
Level 4 16 120 3 0.09 20

The perforating peak pressure is the index affected by the factors; the results of orthogonal
numerical simulation tests can be obtained in Table 7. Through range analysis, the order of importance
of each factor to test index can be judged. The range can be calculated by the formula, as shown in [28]:

Ri =
{
Max(Ki) −Max(Ki)

}
/n (11)
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where Ri is the range formula of the ith column, dimensionless; Ki j is the sum of the test indices
corresponding to the ith column (factor) and jth level (value), dimensionless; Ki j is the average value
of the test indices corresponding to the ith column (factor) and jth level (value), which can be used to
obtain the optimum combination of factors to make the test index, dimensionless.

Table 7. Results of orthogonal tests.

Sequence
Number

(-)

Total
Charge

(kg)

Wellbore
Initial

Pressure
(MPa)

Downhole
Effective
Volume

(m3)

Thickness
of Casing

and Cement
(m)

Formation
Elastic

Modulus
(MPa)

Peak Value of
Perforating

Pressure
(MPa)

1 4 15 3 0.09 15 52.6
2 4 50 2.5 0.07 20 89.88
3 4 85 2 0.05 10 149.22
4 4 120 1.5 0.03 5 206.2
5 8 15 2.5 0.05 5 85.33
6 8 50 3 0.03 10 148.55
7 8 85 1.5 0.09 20 160.75
8 8 120 2 0.07 15 208
9 12 15 2 0.03 20 96.22
10 12 50 1.5 0.05 15 140.74
11 12 85 3 0.07 5 189.87
12 12 120 2.5 0.09 10 215.17
13 16 15 1.5 0.07 10 145.52
14 16 50 2 0.09 5 195.68
15 16 85 2.5 0.03 15 248.9
16 16 120 3 0.05 20 276.65

Through range analysis, the order of importance of each factor to the perforating peak pressure can
be obtained. The larger the range value, the greater the influence of the factor on the peak perforation
pressure is. The range value of the total charge quantity, wellbore initial pressure, downhole effective
volume for perforation, the thickness of casing and cement, formation elastic modulus is 90.3, 106.52,
24.27, 29.1, 19.79, respectively. Therefore, the order of influence of each factor on the peak value of
perforation pressure is as follows: wellbore initial pressure > total charge quantity > thickness of
casing and cement > downhole effective volume for perforation > formation elastic modulus.

4.3. Analysis of Influence Factors

In order to study the correlation between influence factors and peak perforation pressure, the
dimensionless analysis is adopted for the simulated data. Five dimensionless normalized forms of the
factors of the total charge quantity, wellbore initial pressure, downhole effective volume for perforation,
the thickness of casing and cement, formation elastic modulus are represented by X1, X2, X3, X4, X5,
respectively. The dimensionless normalized form of peak perforation pressure can be represented by Y.
The downhole wellbore perforation peak pressure function can be expressed in the dimensionless form:

Y = f (X1, X2, X3, X4, X5) (12)

where X1 = M0/Mmax, X2 = P0/P0max, X3 = V0/Vmax, X4 = L0/Lmax, X5 = G0/Gmax are the ratios
of the total charge quantity, wellbore initial pressure, downhole effective volume for perforation,
the thickness of casing and cement, formation elastic modulus to the maximum value of that,
respectively, dimensionless.

Based on the dimensionless simulation data, taking X1 as abscissa and Y as a longitudinal
coordinate, the trend curve and the influence law can be obtained, as shown in Figure 9.
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Figure 9. The influence of total charge quantity on downhole perforation peak pressure.

Figure 9 indicates that the peak value of perforation pressure and the total charge quantity show a
logarithm function. The perforating peak pressure increases with the total charge quantity increasing.
The reason is that the fluctuating pressure of downhole perforation mainly comes from the explosion
source of perforated bullets with the shaped charge. The larger the single charge and the more the
number of perforation bullets are, the more the total charge quantity is, the higher the peak pressure of
perforation pulsation is.

Similarly, in order to investigate the effects of wellbore initial pressure on the pulsating pressure
of perforation, the relationship between the wellbore initial pressure and the peak value of downhole
perforation can be obtained in Figure 10.
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Figure 10. The influence of wellbore initial pressure on downhole perforation peak pressure.

As shown in Figure 10, the peak perforation pressure increases linearly with the increase of
wellbore initial pressure. The reason is that the initial wellbore pressure provides the basis for the
pulsating pressure of perforation. When the explosive energy produced by the explosion of the
perforation bullets is released into the wellbore, the larger the wellbore initial pressure is, the higher
the perforating explosion pressure is.

Figure 11 illustrates the relationship between the downhole perforation effective volume and
the peak value of perforation. It can be seen that the peak value of perforation and the downhole
perforation effective volume shows an exponential function. The peak value of perforation gradually
becomes smaller with the increase of the downhole perforation effective volume. This is because as the
packer is seated, the downhole wellbore is in a closed space. With the increase of downhole perforation
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effective volume, the energy generated by the perforation explosion has more space to release. Less
energy can be converted into the perforating pulsating pressure.
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Figure 11. The influence of downhole perforation effective volume on perforation peak pressure.

The relationship between the thickness of casing and cement and the peak value of downhole
perforating pressure can be drawn, as shown in Figure 12. It can be seen that the peak value of
downhole perforating pressure and the thickness of casing and cement show a power relation function.
The peak value of downhole perforating pressure gradually becomes smaller with the increase of
the thickness of casing and cement. The reason is that with the increase of energy used to perforate
casing and cement, the explosive energy released in wellbore decreases correspondingly. The pulsating
pressure of perforation decreases accordingly.Energies 2019, 12, x FOR PEER REVIEW 15 of 21 
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Figure 12. The influence of the thickness of casing and cement on downhole perforation peak pressure.

Figure 13 illustrates the relationship between the formation elastic modulus and the peak value
of perforation pressure. It can be seen that the peak value of perforation pressure and the formation
elastic modulus show a power function. The peak value of perforation pressure gradually becomes
smaller with the increase of the formation elastic modulus. The reason is that the greater the formation
elastic modulus is, the stronger the ability to resist elastic deformation is. More energy is required for
perforation to penetrate the formation. Less energy will be released in the wellbore with the smaller
perforating pressure.
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Based on the above analysis, the influence laws of the factors on the downhole perforation peak
pressure have been obtained. In order to obtain a prediction model that can be used to calculate the
peak pressure of perforation pulsation accurately in engineering, it can be fitted based on a large
number of numerical simulation data by considering multi-factor changes. Equation (12) can be written
further as:

Y =

√
K1Ln(X1) + K2

eK3X3X4
K4 X5K5

+ K6X2 + K7 (13)

where K1, K2, K3, K4, K5, K6, K7 are the undetermined coefficients, which can be obtained by fitting the
numerical simulation data, dimensionless.

Combining with the attenuation coefficient model of the downhole perforation pressure in the
wellbore of Equation (10), the final prediction model of perforation peak pressure at different positions
of the wellbore can be obtained in:

Pw = Pmax


√

ALn(X1) + B
e0.33X3X4

0.02X50.01
+ CX2 + D

e0.037k (14)

where A, B, C, D are the undetermined coefficients, which can be solved, dimensionless A = 0.13,
B = 0.35, C = 0.33, D = 0.27.

Through the above analysis, a calculation model for the prediction of the fluctuating peak pressure
of downhole deepwater perforation has been obtained, which can be applied to the field perforation
case study.

5. Field Application

The field case is a deepwater well located in the South China Sea [51]. The well’s depth is
1295 m, the length of the perforating gun, rathole length, and tubing is, respectively, 9 m, 19.14 m,
35 m. The packer adopts a static type with rated working pressure of 30 MPa. The specific operation
parameters of the field well are shown in Table 8. The measured perforation pressure-time curve can
be obtained by the test instrument installed on the perforation gun, as shown in Figure 14.



Energies 2019, 12, 3795 16 of 21

Table 8. Field case parameters.

Parameters Data

Perforation bullets 336
Charge per hole 40 g

Casing size 244.40/220.50 mm
Tubing size 73.02/62.00 mm

Gun size 177.80/152.53 mm
Wellbore initial pressure 10 MPa

Fluid density 1030 kg/m3
Confining pressure 12 MPa
Cement thickness 0.06 m

Formation elastic modulus 1.27 MPa
Charge type RDX

Perforation type TCP (Tubing Conveyed Perforation)
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It can be seen that the measured and simulated pressure-time curves of Figures 6 and 14 show
similar trends, in which the perforation pressure reaches peak instantaneously with the detonation of
the perforating bullets. Then, the oscillation occurs when shock waves are reflected back and forth in
the wellbore, and the attenuation occurs due to propagation in the wellbore fluid. Finally, the pressure
value tends to be stable after perforation. The measured peak pressure during perforating is 7900 psi
(54.57 MPa). According to the prediction model of perforation peak pressure of Equation (13), the
result can be obtained. The downhole effective volume for perforation can be calculated in:

V0 = Vt + Vg + Vr (15)

where Vt, Vg, Vr are the volume of tubing section, perforating gun section, and pocket section,
respectively, m3. The predicted peak perforation pressure by this study (Equation (13)) has been found
to be 56.85 MPa; the error between the predicted value and the measured value can be calculated by:

δ =
56.85− 54.57

54.57
× 100% = 4.18% (16)

Similarly, the results of different empirical formulas (Equations (1)–(4)) in previous reports for
calculating the peak pressure of perforation and the errors in comparison with the measured data can
be obtained, as shown in Table 9.
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Table 9. Calculation results of different empirical formulas.

Formula Number Calculation Result
(MPa)

Measured Result
(MPa) Relative Error

Equation (1) 19.89 54.57 63.55%
Equation (2) 39.54 54.57 27.54%
Equation (3) 85.68 54.57 57.01%
Equation (4) 71.2 54.57 30.47%

Equation (13) 56.85 54.57 4.18%

By comparing the results of this study with those of previous studies, it has been found that the
error in comparison with the measured data by Equation (13) is within 10%. The result calculated
by the prediction model accords with the accuracy needs of actual perforation operation. The safety
of downhole perforation can be analyzed, in which the safety of the packer is an important index to
measure the safety of downhole wellbore. When the packer is seated, it is in a fixed state. When the
perforation pressure wave is transmitted to the lower end of the packer, it will produce reflection and
transmission. According to the principle of reflection and transmission of the wave, the pressure value
acting on the packer can be calculated by:

P1 = P2 + P3 − P4 = 2P2 ×
(ρc)2[(ρc)2 − (ρc)1]

[(ρc)1 + (ρc)2]
2 (17)

where P1 is the final pressure value acting on the packer, MPa; P2 is the perforation pressure of the
lower end of the packer, MPa; P3 is the reflection pressure, MPa; P4 is the transmission pressure, MPa;
(ρc)1
(ρc)2

= 1
5 is the ratio of shock impedance between wellbore fluid and the packer, dimensionless.

Combining with the prediction model of perforation peak pressure at different positions of the
wellbore of Equation (14), the final pressure value acting on packer can be obtained as 51.37 MPa.
The value is beyond the range of a packer (30 MPa), and the packer will be damaged with such
perforating peak pressure. To ensure the safety of perforation while keeping the perforation strength is
an important challenge. It means that the number of perforating bullets and charge quantity cannot
be reduced. The material properties, type, and size of the downhole string cannot be changed, and
the reservoir conditions are determined. The perforating pressure can be reduced by adjusting the
installation distance of the packer and the installation of shock absorbers. The shock absorbers are
usually installed below the packer to ensure the safety of the whole perforation process. The shock
absorber is usually composed of spring or rubber parts. For deepwater wells, the rubber parts in the
shock absorber are more easily damaged due to the complex bottom-hole environment, which causes
great trouble to perforation operation. So, the spring shock absorber is often used in the perforation of
a deepwater well. According to the previous analysis, the axial dynamic response of the downhole
string under perforation impact is the most obvious. The perforating peak pressure can be alleviated
by installing the longitudinal spring shock absorber. It is proposed that the shock absorbers installed
in the middle of the string can achieve the best shock absorption effect [5].

The shock absorber is simulated by adding spring elements connected in series to the string in the
numerical model of Figure 3. The numerical models with shock absorbers installed in the middle of
the string have been used to carry out the simulation calculation. Through the numerical simulations,
the date of perforating peak pressure on the packer with a different number of shock absorbers under
different packer setting distances can be obtained, as shown in Figure 15.
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Figure 15 shows the reduction of the peak value of perforating pressure on the downhole packer
with different numbers of shock absorbers. The more the number of shock absorbers is, the larger
the reduction is, and the better shock absorption effect can be achieved. With the increase of packer
installation distance, the peak value of the perforating pressure on the downhole packer decreases.
When one shock absorber is installed, the minimum value is reduced to 32.5 MPa, which still exceeds
the range of a packer (30 MPa). When the optimal installation position cannot meet the requirements
of shock absorption, the number of shock absorbers can be increased. With the increase of the number
of shock absorbers, the downhole packer can be ensured in a safe state combined with the optimization
of packer installation distance. The optimization range refers to the color region in Figure 15. Through
the above analysis, the specific optimization scheme is put forward. In the field operation, the distance
of the packer is 20 m, and two shock absorbers are installed in series in the middle of the string. After
safety optimization, there is no damage to the downhole packer after perforation.

6. Conclusions

In this paper, the numerical model with hundreds of perforation bullets is set up to study the
downhole perforation pressure for deepwater wells. The downhole dynamic perforation process is
clearly described. The propagation attenuation model of perforation impact pressure in wellbore fluid
is established based on the theory of underwater explosion. According to the results of orthogonal
numerical simulation tests, the order of influence of each factor on the peak value of perforation
pressure has been obtained: wellbore initial pressure > total charge quantity > thickness of casing and
cement > downhole effective volume for perforation > formation elastic modulus. The results show
that the downhole perforation peak pressure, logarithmically related to the total charge quantity, is
linearly related to the wellbore initial pressure, has an exponential relationship with the downhole
effective volume for perforation, and is a power relationship with the casing and cement thickness
and the formation elastic modulus. The model to predict the perforation peak pressure considering
multiple factors at different positions of the wellbore has been obtained. The proposed correlation
shows accurate performance based on a field case under consideration, which demonstrates promising
capability as a predictive tool. With the field application, an optimized scheme is proposed to improve
the perforation safety for the deepwater well.
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