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Abstract: In this paper, a posteriori multi-objective optimisation (MOO) is applied to tune the
parameters of a second-order sliding-mode control (2-SMC) scheme commanding the grid-side
converter (GSC) of a doubly-fed induction generator (DFIG) subject to unbalanced and harmonically
distorted grid voltage. Two variants (i.e., design concepts) of the same 2-SMC algorithm are assessed,
which only differ in the format of their switching functions and which contain six and four parameters
to be adjusted, respectively. A single set of parameters which stays valid for nine different operating
regimes of the DFIG is also sought. As two objectives, related to control performances of grid active
and reactive powers, are established for each operating regime, the optimisation process considers
18 objectives simultaneously. A six-parameter set derived in a previous work without applying MOO
is taken as reference solution. MOO results reveal that both the six- and four-parameter versions
can be tuned to overcome said reference solution in each and every objective, as well as showing
that performances comparable to those of the six-parameter variant can be achieved by adopting
the four-parameter one. Overall, the experimental results confirm the latter and prove that the
performance of the reference parameter set can be significantly improved by using either of the six-
or four-parameter versions.

Keywords: decision making; design concept; doubly-fed induction generator; grid-side converter;
harmonic distortion; multi-objective optimisation; second-order sliding-mode control; tuning;
unbalanced voltage; wind power generation

1. Introduction

As wind energy becomes a prevailing source of power generation, grid codes for interconnection
of wind energy conversion systems (WECS), in order to ensure the reliable and safe operation of the
electricity grid, have become more and more demanding. As a result, wind turbine technology must
be developed accordingly.

The doubly-fed induction generator (DFIG) (refer to Figure 1) and the so-called full-scale converter
wind generator are the dominating technologies in the present wind industry [1]. Both wind
turbine configurations contain a power converter stage, which is usually comprised of two identical
(three-phase, two-level) voltage source converters (VSCs). Thereby, the control system associated
to the grid-side power converter (GSC) plays a critical role in the accomplishment of different grid
codes, such as the capability to tolerate voltage and frequency deviations, control of active and reactive
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powers, fault ride-through (FRT) operation, and power quality-related requirements, such as low total
harmonic distortion (THD) of the current fed into the grid.

Figure 1. Structure of a doubly-fed induction generator (DFIG)-based wind turbine.

At present, to satisfy such demands, control systems of grid-connected VSCs must have the ability
to control not only the fundamental component of their current positive sequence, but also other
current components, such as the negative sequence, harmonics of any order, and subharmonics, that
may arise due to grid disturbances.

In this context, proportional-integral (PI)- and PI+resonant (PI+R)-based control algorithms were,
at first, predominant in the literature [2–4]. However, the main drawback of those kinds of solutions
consists in the lack of versatility against uncertainties in the type of grid voltage disturbance. That is,
said solutions require particularising at the beginning of the design phase, which are the specific
disturbed grid voltage scenarios they are intended to cope with. Therefore, if a particular type of
disturbance arises which was not contemplated in advance, it is more than likely that the control
algorithm does not have enough bandwidth to perform well.

Hence, a less grid voltage-dependent solution, which is capable of dealing with diverse non-ideal
grid voltage profiles, is desirable. In this sense, the high-performance dynamic response and robustness
naturally conferred by the different variants of sliding-mode control (SMC)-based algorithms make
them excellent candidates. The constant switching frequency imposed on the commanded power
converter, as well as the ability to mitigate the chattering phenomenon, are probably the two main
strengths of second-order SMC (2-SMC) algorithms and, therefore, they have become a reasonable
choice for addressing the design of the GSC controller.

The following handicaps, however, arise with 2-SMC:

• It is complex to predict the expressions for the switching functions that lead to the best system
performance; that is, to the best possible control of the active and reactive powers.

• They have a considerable number of parameters to be adjusted, whose tuning is not yet as intuitive
as, for example, that of proportional-integral-derivative (PID)-type controllers.

• Simulation results obtained by running an empirically tuned controller have shown that, for each
specific operation mode of the GSC (i.e., amount of active and reactive powers, wind turbine
speed, degree and type of grid voltage disturbance, transient and steady-state of said grid voltage
perturbation, and so on), there exists a different set of controller parameters giving rise to better
performance, in terms of active and reactive power control.

• Tuning of a specific parameter may lead to improved behaviour of a given controlled variable
(e.g., active power), while negatively affecting others (e.g., reactive power).

Thus, far from trial-and-error tuning methods, a more scientific adjustment procedure for
2-SMC-based algorithms needs to be approached, such that a unique set of controller parameters
remains valid for a good number of representative GSC operating regimes. Certainly, this requirement
can be met by posing a multi-objective optimisation problem (MOOP).

In this sense, there are few works published, at present, in the literature (which have been oriented
towards very disparate applications) focused on optimally tuning a SMC-based algorithm under a
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multi-objective (MO) approach [5–10]. However, the MOOPs tackled by those papers considered
between two and (at most) five objectives to be minimised, which may not cover all the possible
operating regimes of the system under study. Moreover, the SMC variant adopted by practically all
papers in the literature was the first-order SMC (1-SMC) in its different versions (i.e., combining every
possibility: With/without equivalent control term and with/without boundary layer), whereas there
has been a lack of solutions focused on the 2-SMC. In addition, most, though not all, have validated
their results by simulation, while only a few proved that results derived from experimental tests were
consistent with those obtained through simulation [8,9].

As a consequence, throughout this paper, a tuning analysis based on multi-objective optimisation
(MOO) is tackled for a 2-SMC algorithm. The parameter tuning derived in [11] for the same system
without applying any MOO approach, as well as the results to which such tuning leads, are adopted
as baseline.

In particular, two versions (i.e., design concepts) of the same 2-SMC-based algorithm are compared
under a MO approach: The first one containing six parameters to be tuned, including integral
terms in its switching functions; whereas these integral terms have been removed from the second
one, which contains just four parameters to adjust. To set the MOOP, two measures of the control
performance, the integral of the absolute value of the error (IAE) for the active power and the standard
deviation (SD) for the reactive power, in nine different operating regimes of the DFIG are taken into
account. Therefore, 18 objectives are simultaneously considered.

An a posteriori MOO approach [12] is employed. First, both the Pareto front and set are obtained
in the MOO stage and, second, the final solution is chosen in the decision-making stage. Under this
approach, it is not necessary to aggregate objectives and, as a result, the designer avoids weighting
them a priori. Furthermore, obtaining the Pareto front can help the designer to grasp the trade-off
among objectives, as well as to select the final solution in a more informed way.

The MOO stage is solved by making use of the ev-MOGA algorithm [13], which is a multi-objective
evolutionary algorithm (EA) capable of handling complex optimisation problems with non-convex
and disjoint Pareto fronts. Thanks to the population nature of EAs, ev-MOGA obtains the Pareto front
in a single run, as well as the majority of EAs [14].

Dealing with MOOPs with high number of objectives (18, in this particular case) makes the
Pareto front analysis more difficult. In order to assist the designer in this task, the interactive tool of
level diagrams (LDs) [15,16] is employed. LDs are a powerful graphical tool, allowing comparison
of design concepts—for this paper, the two 2-SMC-based algorithms with four and six parameters,
respectively—in a synchronised m-dimensional objective space. They have been successfully applied
in a number of MOOPs, helping to analyse Pareto fronts in a more understandable way, such as
multi-loop PI controller design [17], non-linear model identification [18], or for the tuning of biological
synthetic devices [19].

The posed results of the MOOP corroborate that it is possible to tune the aforementioned 2-SMC
algorithms for both of the proposed design concepts, such that they improve upon the performance of
the reference 2-SMC scheme proposed in [11], in each and every one of the 18 objectives proposed.
In addition, it is observed that the four-parameter variant of the 2-SMC algorithm exhibits similar
behaviour to that of six-parameter version in practically all the objectives, hence leading us to conclude
that the four-parameter version may be more suitable than its six-parameter counterpart, due to its
greater simplicity.

With the aim of experimentally verifying these conclusions on a physical prototype, two specific
controllers (one for each design concept) are selected, which present similar performances in simulation.
These controllers, as well as the reference 2-SMC one, are tested 30 times each in the physical prototype.
A statistical analysis of the obtained results is carried out, which confirms the conclusions derived
from the simulation.

The rest of the paper is structured as follows: Section 2 is devoted to presenting the two variants
of the 2-SMC algorithm adopted to command the GSCs of DFIGs, as well as the MOO tools to be
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used in order to tune their respective parameters. In Section 3, the framework designed to tackle
the MOO-based tuning of said parameters is described in depth. Both simulation and experimental
results derived from such MOO-assisted parameter tuning are provided and interpreted in Section 4.
Finally, Section 5 draws the conclusions.

2. Theoretical Considerations

2.1. DFIG-Based Wind Turbine

Figure 1 shows the general structure of a DFIG-based wind turbine. Like any other wind turbine
topology able to operate at variable speed, in addition to the electric generator, it is equipped with
a power converter stage which, when adequately commanded, enables full control of the active and
reactive powers interchanged with the electricity grid. Thereby, the stator of the generator is directly
connected to the grid, whereas its rotor is linked to the power converter stage. Essentially, the latter
comprises two identical three-phase, two-level VSCs—named the rotor-side converter (RSC) and the
GSC—linked to each other by means of a DC bus. Likewise, the GSC is connected to the electricity
grid through an L-type filter.

Although each power converter possesses its own control algorithm, certain co-ordination
between them is required to satisfy the specific control targets, related to the overall wind turbine
performance, that arise during electricity network disturbances.

Even if the present study is solely focused on the GSC control algorithm, the control goals of both
converters are detailed next, aiming at providing a clear insight into the task of controller parameter
tuning that is to be faced.

2.1.1. RSC and GSC Control Targets

The RSC control system is in charge of governing the active and reactive powers interchanged
between the stator of the generator and the grid (Ps and Qs, respectively). According to the maximum
power point tracking (MPPT) curve [20], the higher the speed of rotation of the wind turbine, the
higher the average value of the stator active power set-point, P∗s av, should be.

During grid disturbances (e.g., imbalances, harmonics, or both) though, in order to prevent
harmful fluctuations in the electromagnetic torque of the generator, it is necessary to add an oscillating
active power component to the aforementioned set-point average value. Accordingly, the reference
value of the stator active power can be expressed as the sum of two terms; that is, P∗s = P∗s av + P∗s osc.

In contrast, the stator reactive power set-point, Q∗s , does not fluctuate and, unless the system
operator asks for a different value, it is kept near to zero most of the time. This guarantees a power
factor close to unity.

With regard to the GSC control system, it is designed to command the instantaneous active
and reactive powers flowing between the GSC and the grid (Pg and Qg, respectively). In particular,
the functional diagram displayed in Figure 2 corresponds to the GSC control algorithm adopted in this
work, where “CLARKE” and “CLARKE−1” stand for the Clarke’s and inverse Clarke’s transforms,
respectively [21]. This algorithm must be implemented from the outer to the inner layer of the diagram;
labelled, respectively, as “1st Step” and “3rd Step” at their bottom left-hand corners. In coherence with
the latter, it is assumed that any variable present in a given layer of the diagram is also available to the
layers inside.

As in many other works [11], the active power set-point, P∗g , is established by an
integral-proportional (I-P) controller aimed at keeping the DC-link voltage steady at its rated value.
Again, the reactive power set-point, Q∗g, is usually fixed to zero under non-faulty conditions.
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Figure 2. Functional diagram of the control scheme adopted for a DFIG grid-side converter (GSC).

Pushed by increasingly demanding grid codes, during grid voltages subject to imbalances or
harmonic pollution, the GSC control system accomplishes additional control targets, the following two
being the most common, as well as incompatible with each other [11,22,23]:

1. To add on an oscillating active power term, Pg osc, that compensates for the above-mentioned
oscillatory component of the stator active power, Ps osc, at the point where the DFIG is connected
to the grid. As a result, a non-fluctuating total active power, Pt = Ps + Pg, is achieved by the
whole wind turbine.

2. To compensate the stator current imbalance and/or harmonic distortion, if any, thus balancing
the overall current injected by the wind turbine into the grid and/or decreasing its THD as far as
possible, respectively.

The first strategy is precisely the one adopted throughout this paper. As a result, not only the
total active and reactive powers, Pt and Qt, remain free of fluctuations, but also DC-link voltage
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oscillations are avoided (which is not possible with the second strategy). In return, in comparison with
the approach numbered above as 2, the THD of the overall current injected into the grid turns out to
be higher.

Thereby, for the selected strategy, the reference value of the grid-side active power is computed as
follows [11]:

P∗g = P∗g I-P + P∗g osc, (1)

where P∗g osc depends on variables related to the electric generator, and may be estimated as

P∗g osc = Teωrm − Ps, (2)

with Te and ωrm being the generator electromagnetic torque and rotational speed, respectively.
The output of each power converter’s control system is the three-phase voltage, to be applied by

said converter at its AC side. Thus, fixing the appropriate three-phase AC voltage, the aforementioned
active and reactive powers can be governed. However, as is usual in three-phase AC power systems,
both the RSC and GSC control algorithms are designed, as well as run, in the so-called vector space.

Thus, it is important to clarify that, in the case at hand, the control signals generated by the 2-SMC
algorithm under study correspond to the stationary-frame d-q components of the GSC output voltage.

2.1.2. GSC and Grid Filter Modelling

According to Figure 3, adopting the rectifier convention and expressing all variables in the
stationary reference frame, the grid-side active and reactive powers can be derived as follows:

Pg =
3
2

(
ednigd + eqnigq

)
(3)

Qg =
3
2

(
eqnigd − ednigq

)
, (4)

with edn, eqn, and igd, igq being, respectively, the direct- and quadrature-axis components of the grid
voltage and current. The dynamics of the latter have been provided, in [11], as

i̇gd =
1
Lg

(
edn − vgd − Rgigd

)
(5)

i̇gq =
1
Lg

(
eqn − vgq − Rgigq

)
, (6)

where vgd and vgq denote the outputs of the GSC control algorithm, while Rg and Lg represent the
equivalent resistance and inductance of the grid filter, respectively. Given that such filter is assumed to
be of type L, Rg is typically close to zero.

Figure 3. Scheme of the GSC and L-type grid filter.
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2.2. 2-SMC Scheme Adopted for the GSC

2.2.1. Switching Functions Selected

Considering that Pg and Qg are the variables to be controlled, the following two switching
functions are defined:

sPg =

ePg︷ ︸︸ ︷
P∗g − Pg +cPg

∫ t

0
ePg(τ)dτ (7)

sQg = Q∗g −Qg︸ ︷︷ ︸
eQg

+cQg

∫ t

0
eQg(τ)dτ, (8)

where the integral terms are aimed at steering possible steady-state errors to zero [24]. Regarding the
weighting constants cPg and cQg , which need to be tuned, two alternatives will be explored in this
paper; namely:

1. To assume they both can take any strictly positive value. Specifically, MOO is applied in this
work in order to select cPg and cQg from within a wide range of possible values.

2. To force them to zero, hence simplifying both switching functions and, in turn, the global control
scheme for the GSC.

2.2.2. Control Laws

Taking the time derivatives of Equations (7) and (8), and making use of Equations (3)–(6),
the following dynamics arise for the switching functions sPg and sQg :[

ṡPg

ṡQg

]
=

[
FPg

FQg

]
︸ ︷︷ ︸

FPgQg

− 3
2Lg

[
−edn −eqn

−eqn edn

]
︸ ︷︷ ︸

G

[
vgd
vgq

]
, (9)

where

FPg = Ṗ∗g −
3
2

(
ėdnigd + ėqnigq

)
− 3

2Lg

(
e2

dn + e2
qn

)
+

Rg

Lg
Pg + cPg ePg (10)

FQg = Q̇∗g −
3
2

(
ėqnigd − ėdnigq

)
+

Rg

Lg
Qg + cQg eQg . (11)

As proposed in [11], the control signals vgd and vgq are computed as a summation of two
terms; namely:

• The vgdqST “super-twisting” (ST) control term, intended to attain high-performance closed-loop
dynamics, ability for disturbance rejection, and robustness in the face of uncertainties,
both structured and unstructured.

• The vgdqeq equivalent control term, incorporated with the main purpose of reducing the control
effort to be made by the ST algorithm.

The preceding approach may be mathematically expressed as[
vgd
vgq

]
︸ ︷︷ ︸

vgdq

=

[
vgdeq

vgqeq

]
︸ ︷︷ ︸

vgdqeq

+

[
vgdST

vgqST

]
︸ ︷︷ ︸

vgdqST

. (12)
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After forcing ṡPg = ṡQg = 0 in Equation (9), the equivalent control term is derived by simply
solving for vgd and vgq in said expression, which gives rise to

vgdqeq =
2
3

LgG−1FPgQg =
2Lg

3
(

e2
dn + e2

qn

)
︸ ︷︷ ︸

|en |2

[
−edn −eqn

−eqn edn

]
FPgQg , (13)

where the matrix G is invertible, except for the case in which |en| = 0, corresponding to a null
grid voltage. Assuming that the sliding regime is reached (i.e., sPg = sQg = 0), vgdqeq would allow
for preserving it in the absence of disturbances, as well as under both parametric and modelling
uncertainties.

However, depending on the specific shapes of both P∗g and Q∗g, their respective Ṗ∗g and Q̇∗g time
derivatives, present in FPgQg by virtue of Equations (10) and (11), are likely to bring noise, and even
derivative kicks, into the vgdqeq equivalent control term. Therefore, in order to elude such a jeopardy,
Ṗ∗g = Q̇∗g = 0 is considered in Equation (13) [22].

In any case, the inaccuracies made due to that design simplification, as well as the high parameter
dependency evidenced by the equivalent control in Equation (13), do not compromise the robustness
of the global control algorithm in Equation (12), as said robustness relies on the ST control term
that follows:

vgdqST =
2
3

LgG−1vPgQgST =
2Lg

3|en|2

[
−edn −eqn

−eqn edn

]
vPgQgST , (14)

with

vPgQgST =

[
vPgST

vQgST

]
=

 λPg

√∣∣∣sPg

∣∣∣sgn
(

sPg

)
+ wPg

∫ t
0 sgn

(
sPg(τ)

)
dτ

λQg

√∣∣∣sQg

∣∣∣sgn
(

sQg

)
+ wQg

∫ t
0 sgn

(
sQg(τ)

)
dτ

 . (15)

The terms of the form λx
√
|sx|sgn (sx), where x = Pg or Qg, are responsible for ensuring the

achievement of the sliding regime in finite time.
It should be noted that there are six parameters to be tuned; namely: cPg , λPg , wPg , cQg , λQg , and

wQg . Nonetheless, as already stated at the end of Section 2.2.1, the option of forcing cPg = cQg = 0
will also be explored, which leads to a simplified version of the GSC control algorithm with just four
parameters: λPg , wPg , λQg , and wQg .

2.3. Multi-Objective Optimisation

A MOOP with m objectives to minimise can be stated as follows [25]:

min
x

f (x) (16)

subject to

K(x) ≤ 0 , L(x) = 0 (17)

xi ≤ xi ≤ xi , i = [1, 2 . . . n], (18)

where x = [x1, x2 . . . xn] ∈ D is the decision vector, with dim(x) = n; f (x) = [ f1(x), f2(x) . . . fm(x)]
is the objective vector; K(x) and L(x) are the inequality and equality constraint vectors, respectively;
and xi and xi are the lower and upper bounds in the D decision space, respectively.

As the objectives of a MOOP are usually in opposition, there is typically no single solution
that minimises all the objectives. Instead, there will exist a set of Pareto optimal solutions
(i.e., non-dominated solutions).
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Definition 1. (Pareto optimality [25]): An objective vector f (x2) is Pareto optimal if there is no other objective
vector f (x1) such that fi(x1) ≤ fi(x2) for all i ∈ [1, 2 . . . m] and f j(x1) < f j(x2), for at least one j,
j ∈ [1, 2 . . . m].

Definition 2. (Dominance [26]): An objective vector f (x1) is dominated by another objective vector f (x2) iff
fi(x2) ≤ fi(x1) for all i ∈ [1, 2 . . . m] and f j(x2) < f j(x1), for at least one j, j ∈ [1, 2 . . . m]. This is denoted
as f (x2) � f (x1).

Therefore, the set of solutions (the Pareto set) is defined as follows:

Definition 3. (Pareto set, X p): The Pareto set is the set of all solutions in D that are not dominated by any
other solution in D:

X p := {x ∈ D| 6 ∃x
′ ∈ D : f (x

′
) � f (x)}.

Each solution in the Pareto set defines an objective vector in the Pareto front.

Definition 4. (Pareto front, f (X p)): Given a set of Pareto optimal solutions X p, the Pareto front is defined as

f (X p) := { f (x)|x ∈ X p}.

Usually, X p contains an infinite number of solutions and, for this reason, it is not possible to
completely obtain it. The way to proceed is to obtain a discrete set X∗p ⊂ X p, in such a way that
X∗p characterises X p. Note that the set X∗p is not unique. In this work, the ev-MOGA algorithm
(Available at https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-
evolutionary-algorithm) [13] will be used to obtain the Pareto front approximations. Figure 4 shows
an example of characterisation of a bi-objective Pareto front and its corresponding Pareto set.

Figure 4. (a) Pareto front f (X p) for a bi-objective multi-objective optimisation problem (MOOP); and
(b) the Pareto set X p in the decision space. f (X∗p) and X∗p represent a possible characterisation of f (X p)

and X p, respectively.

2.4. Comparison of Design Concepts Under MOO Approach

It is very common that several design alternatives (i.e., design concepts), C, are proposed, in order
to solve a specific problem. Each design concept might, for example, represent a different control
structure. Comparing the different concepts in a multi-objective scenario allows for differentiating
the strengths and weaknesses of each of them, in relation to the chosen objectives [25,27]. To do so,

https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-algorithm
https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-algorithm
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a MOOP is set for each design concept, Cj, such that all MOOPs share the same objectives, f , but each
of them has its own decision vector, xCj, related to the parameterisation of its corresponding design
concept. Therefore, if s design concepts need to be compared, the MOOPs can be stated as

min
xCj

f (xCj) (19)

subject to

KCj(xCj) ≤ 0 , LCj(xCj) = 0 (20)

xCj
i ≤ xCj

i ≤ xCj
i , i = [1, 2 . . . nCj], (21)

with j ∈ [1, 2 . . . s]. For each design concept, xCj = [xCj
1 , xCj

2 . . . xCj
nCj ] is the decision vector; KCj(xCj)

and LCj(xCj) are the inequality and equality constraint vectors, respectively; and xCj
i and xCj

i are the
lower and upper bounds delimiting the searching space, respectively. In contrast, the objective vector
f (xCj) = [ f1(xCj), f2(xCj) . . . fm(xCj)] is common to the s MOOPs.

After optimising each multi-objective problem, a discrete Pareto set, X∗Cj
p , and its corresponding

Pareto front, f (X∗Cj
p ), are obtained for each design concept. Thanks to the fact that all of the MOOPs

share the same objectives, a comparison in the m-objective space can be made. This idea is illustrated
in Figure 5, where the Pareto fronts of three design concepts are depicted in a bi-objective optimisation
problem. By analysing the figure, it is possible to notice the following:

• Design concept 3 is dominated by design concepts 1 and 2. Therefore, the latter two will
be preferred.

• Depending on designer preferences, design concept 1 or 2 may be preferred.
• Zone C (values of f2(x) < 6.06) is only reachable by design concept 2. Consequently, if the

designer demands such a trade-off, design concept 2 would be the right one.
• In Zone B ( f1(x) ∈ [1.7, 2.5]), design concept 2 dominates design concept 1. As a result,

design concept 2 will be preferred over design concept 1.
• The opposite to what occurs in Zone B is observable in Zone A ( f1(x) < 1.7). Design concept 2 is

dominated by design concept 1 and, thus, the latter will be preferred.

Figure 5. Three design concepts in a bi-objective optimisation problem. Example of comparison in the
objective space.
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2.5. LDs for Design Concept Comparison

In order to efficiently compare design concepts in an m-dimensional objective space, an adequate
visualisation method is required. Among the several methods provided in the literature [28],
the interactive tool referred to as LDs [15,16,29] is employed in this work.

The LD tool (Available at https://es.mathworks.com/matlabcentral/fileexchange/62224-
interactive-tool-for-decision-making-in-multiobjective-optimization-with-level-diagrams) transforms
the m-dimensional objective space and the n-dimensional decision space into m + n two-dimensional
separate (but synchronised) graphs. For that purpose, first, each point of the Pareto fronts f (xCj) is
normalised with respect to the ideal f ideal and nadir f nadir points (see Figure 5), as given below:

f̂i(xCj) =
fi(xCj)− f ideal

i

f nadir
i − f ideal

i
, i ∈ [1, 2 . . . m]. (22)

Second, the p-norm ‖ f̂ (xCj)‖p is applied to each normalised point. Typical norms are: (1) Taxicab
norm—also called Manhattan norm—, p = 1; (2) Euclidean norm, p = 2; and (3) infinity norm—also
known as maximum norm—, p = ∞.

After that, the LD tool provides a two-dimensional graph for each objective and decision variable.
On the abscissa axis of each graph, the values for each objective or decision variable are represented,
while the ordinate axes of all graphs display the p-norm previously calculated for each solution.
The latter allows graphics to stay synchronised, by means of their ordinate axes (meaning that each
given solution of a design concept presents identical ordinate value in every graph) and, therefore, helps
to compare solutions according to the selected norm.

Adopting the Euclidean norm, Figure 6 shows the LD corresponding to the same three design
concepts presented in Figure 5. Given that, similarly to Figure 5, the search space is not contemplated,
only two graphs associated to the objective space are provided, which corresponds to the bi-objective
problem considered. The A, B, and C zones have been marked, in order to demonstrate their
correspondence with the same zones displayed in Figure 5. It can be noticed that the solutions
of design concept 2 are the closest to f ideal , as they present lower values of ‖ f̂‖2.

Figure 6. Comparison of design concepts 1, 2, and 3 by employing level diagrams (LDs) with the
Euclidean norm. (a) LD graph for objective f1; and (b) LD graph for objective f2.

https://es.mathworks.com/matlabcentral/fileexchange/62224-interactive-tool-for-decision-making-in-multiobjective-optimization-with-level-diagrams
https://es.mathworks.com/matlabcentral/fileexchange/62224-interactive-tool-for-decision-making-in-multiobjective-optimization-with-level-diagrams
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Two solutions, xC1, A from design concept 1 and xC2, B from design concept 2, have been
highlighted. Although they both present low values of f1 and high values of f2, it is clearly observable
that xC1, A dominates xC2, B. It should be noted that, when more than three objectives are considered,
it becomes difficult to appreciate such relations using classical visualisation tools.

3. Framework for MOO Tuning of the GSC Control Scheme

3.1. Simulation Test Designed

The proposed MOO-based tuning methodology, requiring a considerable amount of simulations
to run, was applied on the 7 kW DFIG prototype employed in [11] for experimentation.

To that end, each new set of values to be tested for the GSC controller parameters (i.e., cPg , λPg ,
wPg , cQg , λQg , and wQg ) was evaluated on a simulation model reproducing the grid-connected GSC
and the DC bus of the 7 kW DFIG prototype, as well as the DC bus vDC voltage I-P regulator. Its
parameters are provided in Table 1, where the equivalent Rg resistance of the L-type grid filter was
assumed to be negligible.

Table 1. Parameters of the 7 kW DFIG grid filter, DC bus, and vDC I-P regulator.

Parameter Value

Rg 0 mΩ
Lg 2 mH
C 9.4 mF

vDC 125 V
Kp 45.4333 W/V
Ti 103.4483 ms

Considering the high amount of simulation tests to run, it is essential to keep in mind that
significantly higher simulation times are required if commutation of the GSC transistors is to be
reproduced by the model. Consequently, the PWM–GSC set displayed in Figure 2 is treated as if its
operation was ideal, by assuming that the three-phase vgabc voltage applied by the GSC to the grid
filter coincides exactly with that computed by its control scheme. In this way, the simulation times were
drastically reduced while preserving impartiality of the comparisons, as the described simplification
affected equally any parameter set to be evaluated.

It is intended that a unique set of controller parameters remains valid for a good number of
representative DFIG operating regimes. For that purpose, the simulation test based on which the
tuning process is tackled pushes the DFIG to transit, one after another, through the nine different
stages collected and described in Table 2. The specific values assigned to the different time instants
displayed in Table 2 are provided in Table 3.

In order to run simulations under realistic conditions of harmonic pollution, the three-phase ean,
ebn, and ecn grid voltage profile adopted for simulation was registered in the laboratory housing the 7
kW DFIG prototype. A detail suggesting the level of harmonic distortion present in said grid voltage
profile is provided in Figure 7a. Furthermore, in accordance with Tables 2 and 3, such a grid voltage
profile also presents a two-phase E-type imbalance of approximately 15% between time instants t6 = 6
and t8 = 13 s, as evidenced by Figure 7b,c.
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Table 2. Stages of the designed test.

Time Range Stage Description

t0–t1 1 With the DFIG stator disconnected from the grid, transient of charge of the DC bus
until its rated voltage is reached.

t1–t2 2 With its stator disconnected from the grid, initial positioning of the DFIG rotor.

t2–t3 3 With the DFIG stator disconnected from the grid, synchronisation of the voltage
induced in the terminals of said open stator with the grid voltage.

t3–t4 4 Smooth connection (with no power or zero power exchange) of the DFIG stator to
the grid at time t3, and maintenance of said zero power for the entire t3–t4 interval.

t4–t5 5 Starting from zero power at time t4, the power generated by the DFIG ramps up
to its optimum value, which is reached at time t5.

t5–t6 6 Generation of the optimum power corresponding to the DFIG rotor speed at which
the test is carried out.

t6–t7 7
A two-phase E-type imbalance affects the grid voltage between time instants t6 and
t8. This t6–t7 time interval corresponds to the transient following the start of said
imbalance.

t7–t8 8 Steady state resulting from the two-phase E-type imbalance.

t8–t9 9 Transient following the conclusion of the two-phase E-type imbalance.

Table 3. Values for the time instants delimiting the stages of the designed test.

Time Instant t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Value (s) 0 0.5 2 3 3.5 3.7033 6 11.3 13 13.5

Figure 7. Grid voltage profile: (a) Harmonic distortion in the absence of imbalance; (b) zoom at the
start of the imbalance; and (c) zoom at the end of the imbalance.
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Concerning the effect of the RSC, it was incorporated into the so-far described simulation model
by means of a disturbance representing the rotor active power, Pr, as shown in Figure 3. In particular,
Figure 8a displays the specific Pr profile under which every set of GSC controller parameters considered
was tested. Consequently, fairness of comparisons is preserved, as all possible sets of GSC controller
parameters were evaluated under identical conditions.

Figure 8. Profiles for Pr and P∗g osc throughout the test: (a) Pr; (b) P∗g osc; (c) detail of Pr at the steady state
of the imbalance; and (d) detail of P∗g osc at the steady state of the imbalance.

As far as grid power reference values are concerned, Q∗g was set to zero, while P∗g was derived by
adding the feedforward P∗g osc term displayed in Figure 8b to the control signal generated by the DC
bus voltage I-P regulator, as dictated by Equations (1) and (2), and as represented in Figure 2. An 100
Hz oscillation in both Pr and P∗g osc indicative of the presence of a negative sequence and, in turn, of an
imbalance in the grid voltage, is made visible in the detail of Figure 8c,d.

In order to derive the Pr and P∗g osc profiles in Figure 8a,b, the test described in Table 2 was first run
on a complete simulation model, reproducing not only the global 7 kW DFIG prototype considered
in [11], but also its RSC and GSC control schemes, tuned as explicitly stated in Table 2 of said paper.
It should be pointed out that the angular speed of the DFIG was kept constant, at 1320 rpm, during the
entire test. This way, it was sought that the disturbance due to the wind speed variability affected the
nine operating regimes equally, as the value of ωrm is a direct consequence of the wind speed.

3.2. Indices Selected

Bearing in mind the two control targets specified for the GSC in Section 2.1.1, as well as the nine
different DFIG operating regimes tackled, the following four considerations were made in order to
define the performance indices on which the MOOP to be solved was based:

1. As evidenced by Equations (1) and (2), if the grid voltage is harmonically distorted or/and
unbalanced, a strongly fluctuating P∗g reference must be closely tracked by the active power Pg.
Accordingly, the performance index referred to as IAE seems suited for determining the quality
of tracking achieved.
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2. Reactive power Qg has to be regulated around 0. Consequently, deviations of Qg from 0 and, as a
result, the level of chatter in Qg may be somehow quantified by means of a SD index.

3. The two indices suggested above are to be computed for each of the nine stages of the simulation
test described in Table 2, thus giving rise to 2× 9 = 18 indices in total. Given that the nine DFIG
operating regimes considered are significantly different from each other, computing a single
IAE and a single SD for the entire test leads to a loss of valuable information and skews the
results [30].

4. As the IAE index is cumulative, it is highly dependent on the time interval over which it is
calculated. For that reason, the IAE index computed for each of the nine test stages is divided
by its corresponding time interval, so that the resulting nine “IAE per unit of time” indices are
equitably comparable with each other.

As a consequence, the 18 performance indices considered were as follows:

fPgi
=

IAEPgi

ti − ti−1
=

∫ ti
ti−1

∣∣Pg
∗ − Pg

∣∣ dt

ti − ti−1
; i ∈ [1, 2, 3 . . . 9] (23)

fQgi
= SDQgi

; i ∈ [1, 2, 3 . . . 9], (24)

where the i subscript accompanying a given performance index indicates the index to correspond to
the ith stage of the test.

3.3. Statement of the MOOP

In brief, the objective consists of minimising the 18 indices established in Equations (23) and (24)
by properly tuning the parameters of the 2-SMC scheme, commanding both Pg and Qg. As indicated
at the end of Section 2.2.2, two alternative 2-SMC structures were actually considered; that is,

• Design concept 1: All the six controller parameters (explicitly listed at the end of Section 2.2.2)
are assumed to be strictly positive (non-zero). Hence, the vector of controller parameters to be
adjusted is given by

xC16p =
[
cPg λPg wPg cQg λQg wQg

]
. (25)

• Design concept 2: The parameters cPg and cQg are set to zero in Equation (25), thus removing
the integral terms from the switching functions in Equations (7) and (8). As a result, only four
parameters need to be tuned in this particular case, therefore yielding

xC24p =
[
λPg wPg λQg wQg

]
. (26)

On the other hand, the parameter set

xC16p , re f =
[
96.6667 33.6256× 103 23.3611× 106 96.6667 10.6333× 103 2.3361× 106

]
, (27)

derived in [11] for the GSC 2-SMC scheme, was adopted as the baseline solution. In particular,
only those parameter sets improving each and every one of the 18 indices resulting from application of
the baseline solution in Equation (27) will be considered. The values for the indices corresponding to
the baseline solution are reflected in Table 4.

Table 4. Values of the 18 indices produced by xC16p , re f .

i 1 2 3 4 5 6 7 8 9

fPg i
(xC16p , re f ) 83.803 10.144 10.458 10.838 11.312 13.204 25.749 22.653 13.995

fQg i
(xC16p , re f ) 69.702 3.383 3.576 3.64 5.814 7.368 12.389 11.853 7.852
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Consequently, the two MOOPs to be solved are formally stated as follows:

• MOOP for design concept 1:

X
∗C16p
p = min

xC16p
f = min

xC16p

[[
fPg1

, fPg2
, fPg3

. . . fPg9

]
,
[

fQg1
, fQg2

, fQg3
. . . fQg9

]]
(28)

subject to constraints

fPgi
(xC16p) ≤ fPgi

(xC16p , re f ); i ∈ [1, 2, 3 . . . 9] (29)

fQgi
(xC16p) ≤ fQgi

(xC16p , re f ); i ∈ [1, 2, 3 . . . 9] (30)

xC16p ≤ xC16p ≤ xC16p , (31)

with

xC16p =
[
0 103 103 0 103 103

]
(32)

xC16p =
[
200 5× 104 3× 107 200 5× 104 3× 107

]
. (33)

• MOOP for design concept 2:

X
∗C24p
p = min

xC24p
f = min

xC24p

[[
fPg1

, fPg2
, fPg3

. . . fPg9

]
,
[

fQg1
, fQg2

, fQg3
. . . fQg9

]]
(34)

subject to constraints

fPgi
(xC24p) ≤ fPgi

(xC16p , re f ); i ∈ [1, 2, 3 . . . 9] (35)

fQgi
(xC24p) ≤ fQgi

(xC16p , re f ); i ∈ [1, 2, 3 . . . 9] (36)

xC24p ≤ xC24p ≤ xC24p , (37)

with

xC24p =
[
103 103 103 103

]
(38)

xC24p =
[
5× 104 3× 107 5× 104 3× 107

]
. (39)

4. Results and Evaluation

In order to perform the two MOOs defined in Equations (28) and (34), ev-MOGA was applied
with the following configuration:

• NindP = 1000,
• NindG = 8,
• Iterations = 5000, and
• Nbox = 15.

For the definition of the remaining parameters, the default values suggested by [31] were adopted.

4.1. MOO Results and Analysis

As a result of the optimisation process, a Pareto front approximation with 13,649 solutions was

obtained for design concept 1 ( f (X
∗C16p
p )) and another one containing 6494 solutions for design

concept 2 ( f (X
∗C24p
p )), hence proving that it is possible to find 2-SMC controllers, for both the six- and
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four-parameter cases, that outperform the reference 2-SMC controller in each and every objective.
Both Pareto fronts are simultaneously displayed in Figure 9 by means of the LD tool with ∞-norm,

while their corresponding Pareto sets are provided in Figures 10 and 11 for design concepts 1 (X
∗C16p
p )

and 2 (X
∗C24p
p ), respectively. In addition, Tables 5 and 6 reflect the respective minimum values reached

by f (X
∗C16p
p ) and f (X

∗C24p
p ) for each of the 18 performance indices.

Figure 9. Comparison of Pareto fronts by means of LDs with the ∞-norm. Blue and red dots correspond

to design concepts 1 ( f (X∗C16p
p )) and 2 ( f (X

∗C24p
p )), respectively. Dashed lines delimit regions where

differences between the two design concepts become more evident. Black dots denote solutions
selected to illustrate the trade-off existing among the values of the objectives. The green square
and yellow diamond mark, respectively, the preferred six-parameter ( f (xC16p , A)) and four-parameter
( f (xC24p , B)) solutions.
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Figure 10. Pareto set of design concept 1 (X∗C16p
p ) resulting from application of LD with ∞-norm. Black

dots correspond to solutions selected to illustrate the trade-off among objectives. The green square
marks the preferred six-parameter solution, xC16p , A.

Figure 11. Pareto set of design concept 2 (X
∗C24p
p ) resulting from application of LD with ∞-norm. Black

dots correspond to solutions selected to illustrate the trade-off among objectives. The yellow diamond
marks the preferred four-parameter solution, xC24p , B.
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Table 5. Minimum values of the 18 performance indices achievable by the six-parameter controllers of
design concept 1.

i 1 2 3 4 5 6 7 8 9

fPg i
41.0553 8.0831 8.0372 8.3810 9.7569 12.2202 21.2045 18.7141 12.9973

fQg i
4.6689 2.8165 2.9554 3.1834 5.2693 6.3064 10.9742 10.9207 6.7105

Table 6. Minimum values of the 18 performance indices achievable by the four-parameter controllers
of design concept 2. The five performance indices for which concept 2 does not reach the minimum
values attainable by concept 1 are highlighted in bold.

i 1 2 3 4 5 6 7 8 9

fPg i
41.0553 8.0831 8.0372 8.3810 9.7749 12.3491 21.2045 18.7141 13.1103

fQg i
4.6689 2.8165 2.9554 3.1834 5.2693 6.3064 11.0244 10.9207 7.0129

A thoughtful analysis of Figures 9–11, as well as of Tables 5 and 6, leads to the
following conclusions:

• Figure 9 shows that the Pareto fronts corresponding to design concepts 1 ( f (X
∗C16p
p )) and 2

( f (X
∗C24p
p )) practically overlap, their main differences being enclosed by dashed lines. It can be

observed that there exist solutions of design concept 1 presenting a slight improvement, with
respect to those of design concept 2, for the objectives fPg5

, fPg6
, fPg9

, fQg7
, and fQg9

, in accordance
with that suggested by Tables 5 and 6. However, it was found that, in return, such solutions lose
performance in the objectives fPg1

, fPg8
, and fQg1

.
• The minimum values of the ∞-norm for design concepts 1 and 2 are, respectively, 0.575 and 0.613

(with a less than 4% difference), which means that the normalised distance to the ideal point,
f ideal , is practically the same.

• Aiming at illustrating the trade-off existing among objectives in more detail for both design
concepts, the points of both Pareto fronts yielding lower values in fPg7

were selected (see the black
dots in Figure 9). Thanks to the synchronisation between objectives carried out by the LD tool, it
becomes evident that the objectives fPg2

, fPg3
, fPg4

, fPg5
, fPg6

, and fPg9
are in opposition to both

fPg7
and fPg8

, while no clear opposition is observable between objectives fQgi
and fPgi

.
• As the above-mentioned synchronisation also applies to the decision variables, the controller

parameters marked with black dots in Figures 10 and 11 are precisely those leading to the solutions
represented by black dots in Figure 9. In particular, analysis of the black dots in Figure 10
reveals that they are grouped around two different values of the parameter cPg (i.e., cPg ' 0 and
cPg ' 5), whereas the great majority lead to a cQg ' 0. The latter confirms that controllers with
cPg = cQg = 0, corresponding to the four-parameter 2-SMC variant, presented similar features to
those of the six-parameter one.

Considering all four aspects above, it can be concluded that, although design concept 1 was
slightly better than design concept 2, the greater simplicity of the four-parameter 2-SMC variant,
compared to that with six parameters, may encourage the designer to eventually opt for the former.

4.2. Selection of 2-SMC Parameter Sets

In general terms, examination of the LDs displayed in Figure 9 reveals that, excluding the indices
corresponding to the first stage of the test ( fPg1

and fQg1
), the most unfavourable were those resulting

from the seventh and eighth stages. Nevertheless, it should be considered that, while the latter two
stages were intrinsic to common operation under non-ideal grid voltage, the former corresponded to a
short-duration sporadic operating regime.

Accordingly, it is intended that the parameter sets selected for experimental evaluation correspond
to solutions yielding outstanding values for fPg7

and fPg8
, as those indices were related to the most
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demanding, though usual, operating conditions. Under this premise, two parameter sets giving rise to
extremely similar fPg7

and fPg8
indices were chosen: One from design concept 1, referred to as xC16p , A

henceforward, and the other from design concept 2, designated as xC24p , B.
In particular, the parameter sets xC16p , A and xC24p , B are those leading, respectively, to the

performance indices highlighted using green squares and yellow diamonds in the LDs of Figure 9. The
exact values for the parameters of said two sets, displayed in Figures 10 and 11 following the same
format, are those given as follows:

xC16p , A =
[
5 34.64× 103 121.67× 103 82.3 11.606× 103 133.095× 103

]
(40)

xC24p , B =
[
34.79× 103 103 10.91× 103 477.335× 103

]
. (41)

The precise values of the objectives that result from adopting parameter sets xC16p , A and xC24p , B

are those provided in Tables 7 and 8, respectively.

Table 7. Values of the 18 indices produced by xC16p , A.

i 1 2 3 4 5 6 7 8 9

fPg i
(xC16p , A) 64.432 10.141 10.005 10.328 11.180 12.950 21.450 19.076 13.616

fQg i
(xC16p , A) 10.938 3.337 3.447 3.631 5.623 6.946 11.627 11.397 7.573

Table 8. Values of the 18 indices produced by xC24p , B.

i 1 2 3 4 5 6 7 8 9

fPg i
(xC24p , B) 43.288 10.129 10.098 10.373 11.251 13.050 21.204 18.714 13.633

fQg i
(xC24p , B) 21.180 3.218 3.319 3.493 5.581 6.993 11.645 11.327 7.634

4.3. Experimental Evaluation

4.3.1. Description of the Experimental Rig

As already pointed out at the beginning of Section 3.1, the whole tuning study presented in
Section 4.1 was based on a simulation model of the 7 kW DFIG prototype adopted in [11] for
experimentation. A diagram displaying how the main components of that prototype are connected to
each other is depicted in Figure 12a, while the physical aspect of those main components is observable
in Figure 12b,c.

As sketched in Figure 12a and evidenced by Figure 12b, a 15 kW armature-controlled DC motor,
commanded by a commercial adjustable speed drive, is in charge of driving the 7 kW DFIG at the
desired rotational speed. On the other hand, the low-cost equipment shown in Figure 12c was
employed, so as to emulate two-phase voltage imbalances in a controlled manner.

In order to implement and run both the RSC and GSC control algorithms, rapid control
prototyping was carried out by means of the Opal-RT OP5600 platform. As in the simulation test
designed in Section 3.1, the adopted RSC control scheme (tuning included) was precisely that proposed
in [11]. In good logic, the algorithm detailed in the functional diagram of Figure 2 was responsible for
GSC control. In particular, the values for the Kp and Ti parameters of the DC bus voltage I-P controller
were those provided in Table 1, while the x parameter set was modified according to the solution to
be evaluated.
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Figure 12. Experimental rig: (a) Connection diagram; (b) snapshot of the test bench containing the 7
kW DFIG prototype; and (c) controlled two-phase imbalance generator.

A 10 kHz switching frequency was adopted for both the GSC and the RSC, while their respective
control algorithms were run at a 20 kHz sample rate.

4.3.2. Experimental Results

To conclude, the performances which the two parameter sets selected in Section 4.2 led to were
experimentally evaluated and compared to each other, as well as to that resulting from applying
the baseline solution. For that purpose, the simulation test described throughout Section 3.1 was
reproduced experimentally, in the most faithful way possible. Nonetheless, specific features related to
the generation of grid voltage imbalances and harmonic distortion needed to be accounted for, as well.

On one hand, it is well-known that the severity of the transients immediately following both the
start and the conclusion of a given imbalance is highly dependent on the angles shown by the grid
voltage space-vector at the initial and final instants of said imbalance [32]. Consequently, to prevent
this factor from distorting the experimental results, the instants at which the imbalance begins and
ends were controlled so that they always took place at the same angles of the grid voltage space-vector.
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On the other hand, given that the available imbalance generator did not provide any control over
the harmonic content of the grid voltage during the experimental tests, said grid voltage exhibited
exactly the same harmonics naturally present in the grid of the laboratory that houses the DFIG
prototype. This obviously implies that it was not possible to reproduce a grid voltage profile with
identical harmonic content for any two different tests.

In order to minimise, as far as possible, the dispersion that differences in the harmonic content
might cause in the performance indices, each of the three parameter sets under consideration did
not undergo a unique experimental test, but a considerable number of them: 30 tests, specifically.
Moreover, it was sought to perform the tests under grid conditions as similar as possible for each of the
parameter sets under study. Accordingly, the trials for those three parameter sets were alternated with
each other, repeating the xC16p , re f , xC16p , A, xC24p , B pattern 30 times; hence, completing 90 tests in total.

The results of those 90 tests are compiled in Figure 13, where each subfigure corresponds to
one of the 18 performance indices. Three blue boxes are displayed in each subfigure, one for each
parameter set assessed. Hence, for any given index, 30 data points lie behind each of such three boxes.
The horizontal red line inside a certain box represents the median of those 30 data points, while its
lower and upper edges delimit the 25th and 75th percentiles, respectively. Moreover, excluding outliers
(shown as individual red crosses), the vertical black dashed lines outside the boxes extend up and
down to the most extreme data points.
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Figure 13. Comparison, for each performance index, of the boxplots representing the data points
collected experimentally for the three parameter sets assessed.

As expected, the numerical values for the 18 indices differed from those obtained by running the
simulation model, mainly because (as was already pointed out at the beginning of Section 3.1) the
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latter treated the PWM–GSC set as ideal and did not reproduce the commutation of the GSC transistors.
Furthermore, other non-idealities characteristic of experimentation, such as measurement errors and
noise, also contributed towards increasing that discrepancy. In any case, it can be concluded that,
generally speaking, the experimental results followed the same trends of the simulated ones for the
different indices, except for those corresponding to the first stage.

Beyond confirming that the indices which the three parameter sets selected lead to were, in
general, comparable to each other, a systematic analysis is required to discern, for each index, if any
set of parameters performed significantly better than the other two. With that purpose, a multiple
comparison test and a two-way analysis of variance (ANOVA2) were carried out for the three sets of
30 data points available, for each of the 18 performance indices.

The results of those studies are summarised in Table 9. Each of its three columns compares a
different pair of the three parameter sets selected, while each of its 18 rows specifies the performance
index for which the comparison was made. Black, blue, and red cells identify when significantly
better indices were obtained by adopting the parameter sets xC16p , re f , xC16p , A, and xC24p , B, respectively.
In contrast, white cells indicate that the resulting indices were not significantly different from each other.

Table 9. Comparison, in pairs, of the parameter sets xC16p , re f , xC16p , A, and xC24p , B for each performance
index. Black, blue, and red cells highlight those indices for which the solutions xC16p , re f , xC16p , A, and
xC24p , B are significantly better, respectively.

xC16p , A & xC16p , re f xC24p , B & xC16p , re f xC16p , A & xC24p , B

fPg1

fPg2

fPg3
-

fPg4
- - -

fPg5
- - -

fPg6
-

fPg7
-

fPg8
- - -

fPg9
- - -

fQg1
- - -

fQg2
- - -

fQg3
- - -

fQg4
-

fQg5
- - -

fQg6
- - -

fQg7
-

fQg8

fQg9
- - -

Consequently, the first column of Table 9 reveals that, compared to the baseline solution, the
parameter set xC16p , A led to poorer fPg1

and fQg8
performance indices, but to significantly better fPg2

,

fPg3
, fPg6

, fPg7
, fQg4

, and fQg7
indices. It can, therefore, be concluded that the parameter set xC16p , A was

overall better than the baseline one. Identical reasoning applied to the second column yields that the
parameter set xC24p , B was also globally better than the baseline solution. Similarly, the last column
demonstrates that the performance of solution xC24p , B was overall comparable to that of the parameter
set xC16p , A.
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As a whole, it can thus be considered that both xC16p , A and xC24p , B parameter sets were better
than the baseline solution, as well as comparable to each other, according to what the simulation
results predicted.

5. Conclusions

With the aim of tuning the parameters of a 2-SMC scheme commanding the GSC of a DFIG,
an a posteriori MOO approach has been presented and successfully applied in this paper, both in
simulation and experimentally. Two variants (i.e., design concepts) of the same 2-SMC algorithm,
which only differed in the switching functions adopted, were tuned and their respective performances
were compared to each other. The first algorithm contained six parameters to be tuned, while the
second, whose switching functions were simplified versions of those defined for the first one, contained
just four. The grid voltage was assumed to be continuously harmonically polluted, as well as subject
to imbalances. In this context, the tuning process was carried out in such a way that a single set of
controller parameters was valid for nine possible operating regimes of the DFIG, three of which were
directly related to the appearance of imbalances in the grid voltage.

In particular, two performance indices, fPg and fQg , were defined for each of those nine operating
regimes, which, respectively, quantify to what extent the reference values set for the grid active and
reactive powers were complied with. As a result, the MOOP, on which the tuning is based, was set
out by considering 18 indices in total. Driven by the high number of indices to be accounted for,
the interactive tool of LDs was employed during the decision-making stage, with the purpose of
facilitating analysis of the Pareto fronts (trade-off among objectives) and assisting selection of the
preferred parameter sets.

The optimisation process gave rise to a Pareto front for each of the two design concepts considered.
Analysis of those two Pareto fronts led to the following conclusions:

• Taking a set of experimentally validated parameters as starting point, multiple solutions to the
MOO-based tuning problem were found, through simulation, by demanding that each and every
one of the 18 performance indices they lead to were better than those obtained when applying the
baseline parameter set.

• As expected, trade-offs among some of the fPgi
performance indices, with i = 1, 2, 3 . . . 9,

became evident. In contrast, the compromise between indices fPgi
and fQgi

was found to be not as
marked as intuitively thought beforehand.

• Although a number of solutions for the six-parameter 2-SMC algorithm behaved slightly better
than those corresponding to the four-parameter variant for five of the performance indices, they
also gave poorer values for another three. In summary, the six-parameter variant of the 2-SMC
algorithm does not dominate that of four-parameter variant.

Considering the designer preferences, two sets of parameters (one from each design concept)
were selected and compared experimentally to each other, as well as to the baseline parameter set. To
that end, aiming at reducing the impact that the variability of the harmonic distortion present in the
grid voltage can have on the performance indices, each of those three parameter sets underwent the
same test 30 times.

A statistical analysis of the results derived from the total of 90 experimental tests carried out
allows us to draw the following main conclusions:

• In good logic, it has been corroborated that the two solutions selected globally improve the
performance of the parameter set adopted as a baseline solution.

• Performances comparable to those resulting from application of the six-parameter 2-SMC
algorithm are achievable by using its simplified four-parameter version.
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