
energies

Article

An Electric Taxi Charging Station Planning Scheme
Based on an Improved Destination Choice Method

Ruifeng Shi 1,2, Jiahua Liu 1, Zhenhong Liao 3, Li Niu 4, Eke Ibrahim 5 and Fang Fu 6,*
1 School of Control & Computer Engineering, North China Electric Power University, Beijing 102206, China;

shi.ruifeng@ncepu.edu.cn (R.S.); Jiahua_Liu@ncepu.edu.cn (J.L.)
2 China Institute of Energy and Transportation Integrated Development, Beijing 102206, China
3 Guangdong Power Grid Co., Ltd. Zhanjiang Power Supply Bureau, Zhanjiang 524002, China;

lzh901019@sina.com
4 School of Information Resource Management, Renmin University of China, Beijing 100872, China;

rucniuli@ruc.edu.cn
5 Department of Electrical and Electronics Engineering, Kırıkkale University, Kirikkale 71451, Turkey;

eke@kku.edu.tr
6 School of Economics & Management, China University of Petroleum, Qingdao 266580, China
* Correspondence: fufang@upc.edu.cn; Tel.: +86-532-8698-3290

Received: 25 August 2019; Accepted: 29 September 2019; Published: 5 October 2019
����������
�������

Abstract: The environmental crisis has prompted the development of electric vehicles as a green and
environmentally friendly mode of travel. Since a reasonable layout of electric vehicle (EV) charging
stations is the prerequisite for developing the EV industry, obtaining an optimal and efficient EV
charging station planning scheme is a key issue. Although the Chinese government has carried out
a plan to build EV charging piles in residential and working places, it cannot properly fulfill the
task of matching the charging needs for public transportation vehicles such as electric taxis (ETs).
How to evaluate the performance of fast charging stations (FCSs) and how to help find the optimal
ET charging station planning scheme are new challenges. In this paper, an improved destination
selection model is proposed to simulate the ET operation system and to help find the optimal ET
charging station size with statistical analysis based on the charging need prediction. A numerical
case study shows that the proposed method can address ET charging behavior well and can help to
statistically determine the size of each ET charging station, which should satisfy the constraints on
the preset proportion of the ET charging service requests.

Keywords: electric taxis; destination selection model; statistical analysis; charging station
deployment plan

1. Introduction

Currently, the environmental crisis caused by the explosive growth of the population and
economics has attracted much attention.

Electric vehicles (EVs), as a new type of clean transportation choice, can efficiently relieve the crisis
by addressing fossil fuel energy shortages, air pollution, and transportation [1]. However, the rapid
development of the EV industry presents some new challenges to the current power system [2–5].

In recent years, many researchers have investigated the EV charging station planning problems,
especially with the stations’ siting and sizing problems.

Because the settings of the EV charging station will have an impact on the local distribution
network, researchers have tried to solve the EV charging station location problem. Schroeder et al. [6]
analyze the economics of fast charging infrastructure for EVs in Germany. Lam et al. [7] formulate the EV
charging station placement problem and show that the problem is a nondeterministic polynomial-time
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(NP) hard problem. In reference [8], Ribberink et al. prove the existence of a strong synergy between
microcogeneration (micro-CHP) power generation and overnight EV charging. Zhang et al. [9] propose
an improved whale optimization algorithm (IWOA) and apply IWOA to solve the locating problem of
EV charging stations with service risk constraints. Wan et al. [10] propose a new algorithm for planning
charging base stations based on the greedy algorithm and the location relationship of the sensor nodes.

Based on the location problem of EV charging stations, an increasing number of scholars are
conducting in-depth research on the capacity of EV charging stations. Liu et al. [11] use a two-step
screening method to optimize the sites of EV charging. Reference [12] uses the data-envelopment
analysis method to select candidate sites of EV charging stations and then solves the siting problem
by the cross-entropy method. Xi et al. [13] optimize the locations of slow chargers to serve EVs.
Shukla et al. [14] propose a multiobjective synergistic planning model of an EV charging station
considering the power losses and voltage deviation of the distribution system and EV flow served by
the fast charging station (FCS). Battapothula et al. [15] present a multiobjective optimization problem
to obtain the simultaneous placement and sizing of FCSs and distributed generations (DGs) with
constraints such as the number of EVs in all zones and the possible number of FCSs based on the
road and electrical network in the proposed system. Benedetto et al. [16] propose a mixed-integer
linear procedure for determining the optimal operation planning of a DC-based electric vehicle supply
infrastructure. In reference [17], the authors concluded that PV based local DC nano- and microgrids
are an excellent option for future energy infrastructure. Liu et al. [18] consider two kinds of charging
stations (fast charging stations and normal charging stations) and propose a multiobjective model
with the objectives of maximizing the captured traffic flow in traffic networks and minimizing the
power loss in distribution networks. Afshin et al. [19] model the fast charging station (FCS) planning
problem using a mixed-integer nonlinear programming (MINLP) algorithm, and the Nash bargaining
theory is used to analyze the interaction between the distribution company (DISCO) and FCS owner
(FCSO). Yang et al. [20] address the sizing (number of chargers and waiting spaces) problem of fast
charging stations and present an optimal planning solution based on an explicit temporal-state of
charge characterization of PEV fast charging demand.

In addition to studying the impact of charging stations on the distribution network, researchers
also incorporate the impact of the EV charging station on EV driving in the research area. In
references [21,22], Trip OD matrix information of household travel and dynamic vehicle models are
employed to calculate the EV’s travel cost, and a linear optimization algorithm is employed to obtain
the optimal location scheme of the EV charging stations. In reference [23], historical trajectories
are used to simulate the behaviors of EVs. In reference [24], the authors propose the time–space
distribution prediction method based on Markov decision process (MDP) random path simulation to
solve the randomness of time–space transfer of electric vehicles. Liu et al. [25] propose a comprehensive
location selection model for electric vehicle charging stations aiming to minimize the construction
cost, operating cost, and convenient transportation of charging stations. Vazifeha et al. [26] propose a
modeling–optimization framework to find an efficient layout of charging stations to minimize overall
energy overhead and EV drivers’ excess driving distance to charging stations. In reference [27], the
authors aim to study a novel location planning method for fast charging stations in order to achieve
the overall optimization of operators, drivers, vehicles, traffic conditions, and power grids.

Some scholars also pay attention to the impact of battery wear and other control strategies.
Liu et al. [28], taking the EV battery capacity constraints of distribution transformers into account,
develop a model minimizing the charge–discharge fee of orderly electricity users. Amir A. et al. [29],
have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from
cell-level to battery-level process variability, and proposed potential areas where improvements in
the manufacturing process can be made. In reference [30], the authors outlined a spreadsheet-based
method to project battery gross capacities, motor, and battery power ratings, and battery costs for an
array of future PEVs. In reference [31], the authors propose an ordered charging/discharging control
strategy for EVs based on vehicle-to-vehicle (V2V) charging/discharging technology. Sun et al. [32]
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introduce a periodic fluid model to describe charging operations at a battery swap station and find an
optimal battery purchasing and charging policy.

In addition, Pagany et al. [33] provide a comprehensive overview of the charging station (CS)
models and find that almost all CS locating concepts are proposed for urban areas. The authors
conclude that new and more integrated approaches should be developed in the next stage.

With the continuous improvement of battery endurance and the popularity of residential charging
piles, large charging stations will mainly serve public transport, especially ETs. A very important issue
that should be taken into consideration when planning an ET charging station is that the recharging
time cost is more sensitive to a taxi driver than to a personal home-use EV. Therefore, we assumed that
only fast charging piles are placed in an ET charging station in this study.

Because of the randomness on destination choice, the process of choosing the travel routes of ETs,
which relates to the rationality of charging station siting, has no rules to follow.

This paper proposes an improved destination selection model to simulate taxi driving behavior
based on dividing the target area into different districts. In different time periods, every district is
given a unique rating and road congestion degree. The contributions of this paper can be summarized
as follows:

1. The improved destination selection model can simulate the travel behavior of electric taxis well
and has strong practical significance.

2. Compared to the traditional method (as shown in Appendix A), the improved destination selection
model can reduce many calculations.

3. The statistical knowledge is used to find the right capacity of each charging station according to
the actual operation data.

The paper is organized as follows. Area division and road congestion degree are presented in
Section 2. Section 3 introduces the ET’s operating model and the analysis of the model complexity.
A case study is employed in Section 4 to demonstrate the performance of the proposed models.
Conclusions are drawn in Section 5.

2. Hierarchical Structure of the Electric Taxi Target Area

The tax operating route is closely related to passenger demand, road conditions, etc. In this paper,
the target area is subdivided into districts of the same size and sequentially numbered. According to
the characteristics, districts are classified into different regions.

2.1. Road Congestion Degree

The road congestion degree is a quantitative description of the state of traffic congestion, which
can be indicated through time, the consumption of oil, etc. The construct district road congestion
degree index Y is defined as

Yi = α× BDi + β× SDi + cont (1)

where

BDi: the rating of the region that contains district i;
SDi: the rating of the public places that belong to district i;
α, β: weighting coefficient; and
cont: constant coefficient

According to the district road congestion degree Y, the districts are divided into four different
levels, and each level has different access times and rates of electrical power consumption. Detailed
classification is provided in Table 4 of Section 4.2.
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2.2. District Rating

Every district is assigned its own district rating. The district rating is defined by the regional
rating and the business purpose of the region, such as bars, large residential areas, shopping malls,
railway stations, and scenic spots.

District ratings, region ratings and public place ratings are formulated as

ranki =

√
BDi2 +ω× (SD i)

2 (2)

BDi = K ×
∑

U

iu + p (3)

SDi =


∏

R ir/
∑

R ir, i f NR > 1

ir, else
(4)

where

i: district number;
ranki: the rating of district i;
BDi: the rating of the region that contains district i;
SDi: the rating of the public places that belong to district i;
K,ω: weighting coefficient;
U: the set of public places in the region that contains district i;
p: constant coefficient;
R: the set of public places in district i;
NR: the number of elements in R; and
iu, ir: the corresponding rating values of public places.

Combining Equations (1)–(3), the district rating is as follows:

ranki =

√
(K ×

∑
U

iu + p)
2
+ω× (

∏
R

ir/
∑

R

ir)
2

(5)

3. Electric Taxis Operation Model

To describe the operation process in the ET operation model, we introduce the load factor,
passenger destination selection rate, and empty driving destination selection rate to simulate the
operation of an ET. In our model, the load factor helps to describe the busy degree of the ET charging
station, and both the passenger destination selection rate and the empty driving destination selection
rate help to the ETs decide their moving destination when there is passenger or no passenger on it.

3.1. Load Factor

In this paper, we assume that the consumer needs the ETs to follow a Poisson distribution and
then: 

P(x) = mxe−m/x!
m = λt
λ = α× ranki + θ

(6)

where

P(x): the rate of x passengers needing to take taxis during the counting period t;
t: counting period;
λ: the rate of average riding needs;
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m: average number of consumers needing to take taxis during the counting period; and
α,θ: weighting coefficients

The probability of at least one passenger needing to take taxi in the counting period, namely, load
factor (ZP), is {

ZP = P(x > 0)
P(x > 0) = 1− P(0)

(7)

Combining Equations (6) and (7), we have

ZP = 1− e−t×(α×rank+θ) (8)

3.2. ET Destination Selection Model When the ET Has Passengers

As there are so many destination choices, we first select a region and then select a district in the
region as ‘have passengers’ for the ET’s destination.

3.2.1. Region Selection Principle

By collecting the trip distribution of each region in different times, the number of passengers from
the starting point to each region can be denoted as the ‘attractive’ value P = [n1, n2, · · · , nm].

The target region of the ET’s choice can be measured by the destination selection probability interval
I = [n1/

∑
m ni, n2 + n1/

∑
m ni, · · · , 1], which can be further carried out by the roulette select strategy.

3.2.2. District Selection Principle

Each district in the chosen region has a corresponding rating to help guide the ET’s next moving
behavior. Combining the distance from the starting district to destination (L), the ‘attractive’ value Q
of each district is defined as Equation (9)

Q =


L/5(τL + γ× ranki + δ), L < a

(b− L)/(τL + γ× ranki + δ), a ≤ L < b
(c− L)/(10τL + γ× ranki + δ), c > L ≥ b

(9)

where

a denotes the shortest distance that passengers will consider taking a taxi;
b denotes the farthest distance that passengers will consider taking a taxi;
c denotes the farthest distance in the target area; and
τ,γ, δ denote corresponding weighting coefficients.

where Q is employed to construct a probability interval, and a roulette select strategy is employed
to help decide the ET’s target district.

The ‘empty driving’ ET will move towards a prosperous district that is closer and has larger travel
demand, hoping to meet passengers in the shortest distance and amount of time.

Therefore, we define these districts with larger travel demand as ‘attractive regions’. Then,
the ‘empty driving’ ET destination selection is divided into two situations: outside and inside the
attractive regions.

3.2.3. ET outside the Attractive Regions

We connect the starting district with each attractive region and calculate the distances L. The
‘attractive’ value function W is formulated as{

W = DQ/L
DQ =

√∑
I ranki2

(10)
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where DQ denotes the rating of the attractive region and I denotes the set of districts in the
attractive regions.

The selection on the destination of ‘empty driving’ ET that outside the attractive region can be
carried out by the roulette selection strategy.

The destination selection of ‘empty driving’ ET outside the attractive region is shown in Figure 1.
From Figure 1, we can find that the ‘empty driving’ ET is attracted by the ‘region’ first, and then the
driver should decide which specific place in that region should be his/her target objective.
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3.2.4. ET inside the Attractive Region

When ‘empty driving’ ET is in the attractive region, drivers prefer to seek a surrounding district
in the circle as the destination. Meanwhile, the road conditions of candidate destinations should
be considered.

According to the logit model, the construct utility function (Hi) is

Hi = θ0 + θ1ranki + θ2Yi (11)

where Yi denotes road congestion degree of candidate district and θ0,θ1,θ2 denote weighting
coefficients.

According to reference [34], Logit selective probability (Pi) is

ln(
Pi

1− Pi
) = − ln(

N∑
j=1

eH j), j , i (12)

where N denotes the number of candidate districts in the attractive region.
Selection of the destination during ‘empty driving’ ET inside the attractive region can also be

carried out by the roulette strategy.

3.3. ET’s Operating Model

Based on the submodel we introduced above, we can build a simulation ET operation system to
describe the ET driving and charging behavior with a four-mode ET operation model, which can be
defined as ‘have passengers’, ‘empty driving’, ‘charging’, and ‘idle’ submodels.
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3.3.1. Model Assumptions

1. Vehicles only operate for M hours, and all are fully charged when the day’s work starts;
2. Each ET has a corresponding ‘trigger time’ Tb and ‘ending time’, in this paper, the time is in

minutes, so, Te = Tb + TM × 60; when t = Tb, taxis begin operating, and when t = Te, taxis finish
operating, TM is maximum business/running time for an ET.

3. Information on each ET includes the following: ‘trigger time’ Tb, ‘ending time’ Te, current power
L f , current area I, moving route R, district conversion time Ts, power consumption L, and vehicle
status S. Status is updated per K minutes.

4. The ET’s route is the straightest line that connects the starting district and destination district.
5. ‘Empty driving’ ETs determine whether they take passengers by the load factor when passing

each district.
6. If the ‘have passengers’ ET cannot reach the nearest charging station after it reaches its destination,

the ET rejects any passengers and moves to the nearest station for charging.
7. If the ‘empty driving’ ET cannot reach the nearest charging station after it reaches its destination,

the ET changes its route and moves to the nearest charging station.

3.3.2. Detailed Steps

Step 0: Initialize the information of each ET xi = [Tb, Te, L f , I, R, Ts, L, S]; the vehicle status is
changed to ‘idle’;

Step 1: If t ∈ [Tb, Te], ET operates, go to Step 2; otherwise, go to Step 7;
Step 2: (status update)

(1) If Ts(a + 1) > t ≥ Ts(a), update the information: L f = L f − L(a), I = R(a), a = a + 1, (if R(a) is
the destination, the vehicle status is changed to ‘empty driving’); go to Step 3;

(2) If Ts(a) > t, go to Step 7;

Step 3: (status judgment)

(1) If the vehicle status is ‘have passengers’, skip to Step 7;
(2) If the vehicle status is ‘idle’, a = 1, determine whether to take passengers by the passenger load

factor. If passengers are taken, go to Step 4; otherwise, go to Step 5;
(3) If the vehicle status is ‘charging’, determine whether to take passengers by the passenger load

factor. If passengers are taken, go to Step 4; otherwise, go to Step 7;
(4) If the vehicle status is ‘empty driving’, determine whether to take passengers by the passenger

load factor. If ET takes passengers, go to Step 4; otherwise, determine the route C = [v1, v2, . . . , vs]

and power consumption Lc = [lv1 , lv2 , . . . , lvs ] from the next district k to the nearest charging
station. If L f − lk −

∑
s lvi ≥ 0, this means the ‘empty driving’ ET has enough power to keep the

‘empty driving’ state; go to Step 7. Otherwise, travel to the nearest charging station, where the
vehicle status will be changed to ‘charging’, and go to Step 6.

Step 4: (‘have passengers’ mode)
Select the destination. Determine the route from the departure district to the destination R =

[r1, r2, . . . , rm], the route from the destination to the nearest charging station C = [c1, c2, . . . , cx], and the
power consumption for passing each district along the route LR = [lr1 , lr2 , . . . , lrm ], LC = [lc1 , lc2 , . . . , lcx ].

(1) If L f −
∑

m lri −
∑

x lci ≥ 0, this means the ET has enough power to drive passengers to the
destination, so the ET takes passengers, and the vehicle status is changed to ‘have passengers’.
Determine the district conversion time Ts = [t + tr1 , t + tr1 + tr2 , . . . , t+

∑
m tri ] = [Tr1 , Tr2 , . . . , Trm ]

by the consuming time of passing each district ts = [tr1 , tr2 , . . . , trm ], a = 1, and go to Step 7.
(2) If L f −

∑
m lri −

∑
x lci < 0, this means the ET does not have enough power to drive passengers to

the destination, so the ET rejects the passengers. If the vehicle status is ‘idle’ or ‘empty driving’,
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the taxi travels to the nearest charging station, and the vehicle status is changed to ‘charging’; go
to Step 6. Otherwise, go to Step 7.

Step 5: (‘empty driving’ mode)
Select the ‘empty driving’ ET’s destination. Determine the route R = [r1, r2, . . . , re], power

consumption of passing each district LR = [lr1 , lr2 , . . . , lre ] and district conversion time Ts =

[Tr1 , Tr2 , · · · , Tre ]. Determine the route from district r1 to charging station C = [c1, c2, · · · , cu] and
power consumption LC = [lc1 , lc2 , . . . , lcu ]. If L f − lr1 −

∑
u lci ≥ 0, this means the ET has enough power

in the ‘empty driving’ state, so the vehicle status is changed to ‘empty driving’, a = 1, go to Step 7. If
L f − lr1 −

∑
u lci < 0, this means the ET does not have enough power in the ‘empty driving’ state, so the

ET travels to the nearest charging station and charges. The vehicle status is changed to ‘charging’; go
to Step 6.

Step 6: (‘charging’ mode)
Determine the route of charging R = [r1, r2, . . . , ry], power consumption LR = [lr1 , lr2 , · · · , lry ] and

district conversion time Ts = [Tr1 , Tr2 , · · · , Try ], and go to Step 7.
Step 7: t = t + 1, if t ≤max(Te), return to Step 1; otherwise, end the cycle.
The general flowchart of the whole paper is shown in Figure 2.
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3.4. Analysis of Complexity

The complexity of the ET operating model mainly reflects the destination choice, especially in the
passenger destination choice. It needs to calculate the ‘attraction’ value of each district if the traditional
method in the ET operating model is employed.

The complexity of the traditional method (C1) and the improved method in this paper (C2) are
formulated as follows: the specific calculation process of Formula (13) and the brief introduction of
traditional method is as depicted in Appendix A.

C1 = N(n1(M− 1) fp + n2m4 fp)
C2 = N(n1(m1 fp + m2 fp) + n3m3 fp + n4m4 fp)
η = 1−C2/C1

(13)

where

N denotes the number of ETs;
M denotes the number of all districts; M = m1 ×m2

m1 denotes the number of regions;
m2 denotes the number of districts in one region;
m3 denotes the number of attractive regions;
m4 denotes the number of surrounding districts;
n1 denotes the number of target districts chosen when the ET ‘has passengers’;
n2 denotes the number of target districts chosen when the ET is ‘empty driving’; n2 = n3 + n4

n3 denotes the number of target districts chosen when the ‘empty driving’ ET is outside attractive regions;
n4 denotes the number of target districts chosen when the ‘empty driving’ ET is inside attractive regions;
fp denotes the calculated cost of one ET making one probability selection; and
η denotes the rate of calculated cost reduction.

To evaluate the performance improvement of our work, a case study with the following m3 =

m1/2 parameters setting is employed in this study, where m4 = 8, fp = 1, N = 1, n1 = 1, n2 = 2, and
n3 = n4 = 1. A comparison study on the destination selection estimation cost reduction is presented in
Table 1 and Figure 3.

Table 1. Comparison study on the destination selection estimation cost reduction.

M 10.0 100.0 200.0 500.0 1000.0

m1 2.0 10.0 10.0 20.0 20.0
m2 5.0 10.0 20.0 25.0 50.0
C1 25.0 115.0 215.0 515.0 1015.0
C2 16.0 33.0 43.0 63.0 88.0
η (%) 36.0 71.3 80.0 87.8 91.3

Figure 3 shows that the calculation cost of the model is reduced dramatically with increasing
district number and ET number. This means that when the simulation precision of the system is
promoted quickly, the calculation cost reduction benefits from the model we proposed compared with
the former existing model.
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Figure 3. Calculated cost reduction rate with regard to increased model precision.

4. Case Study

4.1. Problem Description

To verify the effectiveness of the algorithm proposed in this paper, a case study that comes
from the city of Beijing, China, is employed for demonstration. Beijing is one of the cities that first
promoted electric vehicles. To date, the city has had more than 1000 ETs and has built more than 10
charging stations.

In this paper, the target area is divided into many districts that are sequentially assigned numbers.
The whole area is divided into 20 major regions (each region is five districts long and four districts
wide). The area has 10 charging stations, as shown in Figure 4. And Table 2 has shown the regional
information in detail.
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Figure 4. Area division and locations of stations.
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Table 2. Regional information.

Subject District Number

Existing station 38, 51, 64, 152, 167, 182, 217, 271, 305, 336

Mall 47, 56, 62, 65, 86, 99, 108, 124, 134, 157, 163, 170, 184, 187, 190, 196, 197, 205, 208, 234, 238,
248, 321, 369

Wholesale market 127, 158, 168, 254, 261, 278, 339, 353, 374, 384

Bar 88, 132, 156, 176, 234

Residential area 14, 15, 20, 33, 38, 39, 60, 102, 122, 146, 285, 297, 304, 319, 328, 329, 336, 343, 344, 362

Station 108, 215, 220, 245, 291, 310, 333, 352

Scenic spot 94, 106, 131, 165, 172, 192, 273

Office area 2, 3, 6, 11, 22, 23, 29, 42, 71, 86, 97, 104, 105, 108, 115, 135, 136, 156, 157, 164, 177, 179, 182,
188, 197, 203, 226, 229, 243, 247, 257, 258

4.2. Case Parameters Setting

The data in this paper are Beijing real-time data obtained using Baidu map statistics. (http:
//lbsyun.baidu.com/).

One day is divided into four periods: 7:00–10:00, 10:00–18:00, 18:00–22:00, and 22:00–7:00. The
level values of public places are as follows (shown as Table 3).

Table 3. Rank of public place.

Subject 7:00–10:00 10:00–18:00 18:00–22:00 22:00–7:00

Mall 2 3 4 1
Station 3 5 3 2

Office area 4 5 4 2
Bar 1 1 1 4

Wholesale market 1 5 3 1
Residential area 4 3 4 2

Scenic spot 2 4 2 1

Road congestion degrees are classified as follows (shown as Table 4).

Table 4. Road congestion degrees.

Traffic Rank I II III IV

Rank Index >70 50–70 30–50 <30

Time 15 min 8 min 4 min 2 min

Electricity consuming 2 kWh 1.8 kWh 1.5 kWh 1.2 kWh

Through data collection, the travel distributions of large areas in each period are obtained, such as
region 1 in the 7:00–10:00 period:

As shown in Table 5, the time residents in region 1 choose region 6 as the destination is 132 of 1000
trips. The probability of choosing region 6 is 0.132; no one goes to region 20, so the probability is 0.

Combined with the statistics of resident travel, the weight coefficients of Formula (4) are set at
ω = 4, K = 0.5, and the constant p is 2. Through the taxi driving statistics, the road congestion degree
weight coefficients of Formula (5) are set at α = 3, β = 8, and the constant cont is 5. The load factor
weight coefficients of Formula (8) are set at α = 0.0275 and θ = 0.0891 by using the least squares
method to curve fitting of passenger statistics, and the fitting error is close to 0. The parameters of
Formula (9) are set at a = 3, b = 15, c = 40, τ = 0.6, γ = 0.8, and δ = 0.3. When ‘empty driving’ ETs

http://lbsyun.baidu.com/
http://lbsyun.baidu.com/
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are in the attractive regions, the weight coefficients of Formula (12) are set at θ0 = −0.95, θ1 = −0.21,
and θ2 = 0.05 to analyze the ‘empty driving’ statistical data.

Table 5. Region 1 trip distribution.

Destination Times Destination Times

1 68 11 57
2 42 12 24
3 128 13 9
4 62 14 5
5 128 15 3
6 132 16 2
7 91 17 1
8 57 18 0
9 99 19 0

10 92 20 0

The ‘empty driving’ attractive regions are listed in Table 6.

Table 6. Empty driving attractive regions.

Period District Number

7:00–10:00
18, 19, 20, 38, 39, 40, 58, 59, 60, 101, 102, 103, 121, 122, 123, 141, 142, 143, 308, 309, 310,

328, 329, 330, 348, 349, 350, 322, 323, 324, 342, 343, 344, 362, 363, 364, 336, 337, 338, 356,
357, 358, 376, 377, 378

10:00–18:00
2, 3, 4, 22, 23, 24, 42, 43, 44, 8, 9, 10, 28, 29, 30, 48, 49, 50, 115, 116, 117, 135, 136, 137, 155,
156, 157, 175, 176, 177, 195, 196, 197, 162, 63, 164, 182, 183, 184, 202, 203, 204, 206, 207,

208, 226, 227, 228, 246, 247, 248

18:00–22:00 46, 47, 48, 66, 67, 68, 86, 87, 88, 164, 165, 166, 184, 185, 186, 204, 205, 206, 236, 237, 238,
256, 257, 258, 276, 277, 278, 290, 291, 292, 310, 311, 312, 330, 331, 332

22:00–7:00 87, 88, 89, 107, 108, 109, 127, 128, 129, 134, 135, 136, 154, 155, 156, 174, 175, 176

The geographical allocation of the regions is shown in Figure 5.

4.3. Algorithm Parameters Setting

The parameters of the algorithm setting are set as follows:

Maximum Iterations: 500;
The Number of ETs: 1000;
Maximum Business/Running Time for an ET: 5 h;
Maximum ET Travel Mileage: 260 km; and
ET Charging Time: 30 min.

4.4. Case Result

(1) The actual operating data of each charging station are shown in Figures 6–8.
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4.3. Algorithm Parameters Setting 

The parameters of the algorithm setting are set as follows: 

Maximum Iterations: 500; 

The Number of ETs: 1000; 

Maximum Business/Running Time for an ET: 5 h; 

Maximum ET Travel Mileage: 260 km; and 

ET Charging Time: 30 min. 

4.4. Case Result 

(1) The actual operating data of each charging station are shown in Figures 6–8. 
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(2) The daily charging data of the charging station are fit with the normal distribution and the
Poisson distribution.

The result of the charging station in district 305 is shown in Figure 9. The specific results of the
ten charging stations are shown in Appendix B.
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Table 7. Charging station deployment plan.

Charging Station District

Charging Station Deployment

Normal Distribution Poisson Distribution

95% Confidence
Interval

85% Confidence
Interval

95% Confidence
Interval

85% Confidence
Interval

38 11 10 9 7
51 13 10 10 9
64 13 11 10 9
152 17 13 12 10
167 17 14 12 10
182 11 9 9 7
217 18 15 14 12
271 11 9 9 7
305 10 9 9 7
336 8 6 6 5

As shown in Table 7, taking the charging station in district 305 as an example, under a 95%
confidence interval, if we use a normal distribution, the number of properly installed charging devices
in the charging station should be 10.

5. Conclusions

In this paper, we propose an improved destination selection model to simulate the ET operation
system. This model helps us predict the ETs’ charging demand. Then, statistical analysis is employed
to find the optimal ET charging station size.

The main contributions of this paper are as follows:

(1) The logit model was previously used in research related to geography and population. In this
paper, it is used in the driver’s destination selection, which has strong practical significance.

(2) Compared to the traditional method in Appendix B, the method we proposed in this paper can
reduce calculation cost better based upon a greater extent of the division of the area.

(3) With the help of statistical knowledge, we can give the proper number of charging devices in
every station under different confidence intervals.
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(4) Based on the Beijing real-time data obtained using Baidu map statistics to verify the method
proposed in this paper, the result has good practicability.
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Appendix A

Assume the area divided into M districts, m1 regions, every region has m2 districts, and the
attractive region has m3 districts.

The traditional method of ‘have passenger’ that ETs use to choose a destination is to use roulette
directly based on real statistics data, so the calculation cost of one ‘have passenger’ ET make n1

choices is
costp = n1(M− 1)· f (A1)

However, the traditional method of ‘empty driving’ that ETs use to choose a destination is to use
roulette directly based on real statistics data in the surrounding area, so the calculation cost of one
‘empty driving’ ET make n2 choices is

costE = n2·m4· f , m4 = 8 (A2)

If the method proposed in this paper is adopted, then the calculation cost of one ‘have passenger’
ET to make n1 choices is

costp = n1·(m1 f + m2 f ) (A3)

The calculation cost of one ‘empty driving’ ET to make n3 choices when it is outside the attractive
region and to make n4 choices when it is inside the attractive region is (n2 = n3 + n4)

costE = n3·m3· f + n4·m4· f (A4)

Appendix B

The specific results of the 10 electric charging stations are shown below:
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