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Abstract: In most industrial fields, mechanical clamping methods are traditionally used to transport
heavy loads such as steel structures by fastening the load using bolts and nuts. However, this method
can lead to industrial accidents during load transfer and does not consider the weight of the load.
Recently, permanent magnet clamping methods have been proposed to prevent such accidents; for
example, hybrid electromagnetic clamping systems (H-EMCSs), which combine permanent magnets
and electromagnets and can adjust the clamping force according to the load weight. However, few
studies have attempted to improve the electromagnetic structure and effective magnetic flux of
H-EMCS. Specifically, H-EMCSs control the clamping force using several hybrid electromagnetic
modules (H-EMMs); however, the leakage magnetic flux increases with an increasing number of
H-EMMs. Therefore, the clamping force should be improved to avoid increasing the leakage magnetic
flux. In this study, we propose a novel H-EMM structure and improve its electromagnetic force
characteristics by changing the core shape and dimension effect in order to reduce the leakage flux
and maximize the effective magnetic flux. Furthermore, we verify the improved electromagnetic
force properties by experimentally validating the proposed model. This research can improve the
safe and effective transfer of industrial loads.
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1. Introduction

Hybrid electromagnetic clamping systems (H-EMCSs) combine permanent magnets and
electromagnets to generate an electromagnetic clamping force for the purpose of fixing or transferring
loads in industry [1,2]. The H-EMCS uses neodymium (NdFeB) magnets with a high residual magnetic
flux as the main magnetic flux source, which generates the electromagnetic force that is attached to
the load. The auxiliary permanent magnets are alnico magnets, whose direction of polarity is easily
changed by the external magnetic force [3–5]. Therefore, the H-EMCS changes the path of the main
magnetic flux according to the polarity direction of the auxiliary permanent magnet to attach and
detach the load. The H-EMCS has the advantages of a high electromagnetic force, a short operating
time, and easy operation. It is also possible to control the electromagnetic force according to the weight
of the load and minimize its size by optimizing the electromagnetic force; therefore, H-EMCSs can be
used in confined spaces. An H-EMCS can also improve productivity compared with manual methods
that use conventional bolt and nut fastenings, hydraulic drivers, or electromagnets [6,7]. Moreover,
an H-EMCS reduces the risk of industrial accidents by replacing conventional mechanical clamping
systems with electronic structures [8,9]. Specifically, even if the power supply is shut off, the magnetic
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force of the permanent magnet is maintained so that the load remains continuously attached to the
H-EMCS, preventing the load from falling. Therefore, H-EMCSs are superior to mechanical systems
regarding the risk of industrial accidents, power consumption, and device maintenance [10].

However, H-EMCSs use hybrid electromagnetic modules (H-EMMs) to generate the
electromagnetic force, which can lead to leakage of the magnetic flux [11–14], yet few studies
have attempted to improve the electromagnetic structure and effective magnetic flux of H-EMCS.
Therefore, the objective of this study is to enhance H-EMCS performance by improving the core shape
in order to reduce the leakage flux and maximize the effective magnetic flux of H-EMCSs [15–17].
This is achieved by modeling the conventional and proposed H-EMCSs using three-dimensional (3D)
finite element method (FEM) analysis [18,19]. We review the structure and basic operation principle of
H-EMCS and discuss the problems related to H-EMMs. H-EMMs have a magnetic flux path that flows
into the lower core and upper core. In order to reduce leakage of this flux between the cores and NdFeB
magnets, we suggest a polygonal shape for the lower core. Furthermore, we maximize the effective
magnetic flux by determining the influence of upper core dimensions and reducing the thickness
of the upper core. To verify the validity of the proposed H-EMCS structure, its performance was
compared with the basic H-EMCS using numerical analysis. In addition, a prototype of the proposed
model was developed and its performance improvement was verified by comparing experimental and
numerical results.

2. Hybrid Electromagnetic Clamping System

2.1. H-EMCS Structure and Components

Figure 1 shows the configuration of the main components of H-EMCS. The main components
consist of a control circuit unit for controlling the electromagnetic force of the H-EMCS, a battery
power unit, a battery charging unit, a display unit, and H-EMMs. The H-EMMs are composed of
magnetic materials, NdFeB magnets, alnico magnets, and windings. The magnetic flux path of the
NdFeB magnets is altered by converting the polarity of the auxiliary permanent magnet using the
external magnetic circuit, so that loads can be attached or detached and transported. Therefore, as the
number of modules increases, the electromagnetic force also increases. The external magnetic circuit is
applied through the battery power supply and the control circuit.
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2.2. Electronic Controller and Charging Process

Figure 2 shows the integrated control system, which consists of four main functions (motion,
display, control, charger unit). The main function of the integrated control system is to control the
strength of the electromagnetic force according to the weight of the load, and perform charge and
discharge and battery management system (BMS) functions. In particular, the H-EMCS is important
for selecting and configuring optimized BMS specifications. The BMS checks the battery in real
time to prevent over-charging and over-discharge and to ensure a uniform voltage. It requires high
efficiency battery charging, discharge control, and cell balancing control. Figure 3 shows the flow of
the battery charging system in H-EMCS. The charging process uses the external power source to apply
the voltage to the charge/discharge system. During charging, the magnitude of the current is measured
to determine whether the charging condition is satisfied. External power is supplied until the charging
condition is satisfied.
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2.3. Design Process of Hybrid Electromagnetic Modules

Figure 4 shows the electromagnetic field analysis process for the design of the H-EMMs. The
most important part is the structural design of permanent magnets and electromagnets. In addition,
the electromagnetic field analysis calculates the grade of alnico magnets and NdFeB magnets, as well
as the winding method, outer diameter of the coil, turns, current density, and magnetic flux density
that satisfy the required electromagnetic force. The hysteresis and magnetization sequence are also
examined. Moreover, the attachment mode and detachment mode are separated and analyzed. The
H-EMMs designed through this process are used to enhance the design specifications through feedback
of the analysis results after the performance tests.
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2.4. Basic Structure of Conventional Hybrid Electromagnetic Modules

Figure 5 shows the basic H-EMM structure for the electromagnetic field analysis. The H-EMMs
are the most important part of the H-EMCS for generating the electromagnetic force. Here, we review
the structure and operation principle of conventional H-EMMs, as well as the related problems, and
then propose a way to improve H-EMM performance. As shown in Figure 5, the conventional H-EMM
model has a 4-to-4 array structure and consists of alnico magnets 16 Ea and NdFeB magnets 40 Ea. The
load is a magnetic steel body of material S45C. The amount of the array can be changed according to
the magnitude of the electromagnetic force. In this study, we design a 4-by-2 array structure with an
electromagnetic force of 1 kNm.

Figure 6 shows the cross-sectional structure of H-EMMs. The basic configuration of H-EMMs
consists of NdFeB magnets that constitute the main magnetic flux and alnico magnets that induce
polarity in the auxiliary permanent magnets. Between these magnets, there is a magnetic body that
serves as a path to the magnetic flux, which consists of an upper core and a lower core. The lower
core is the primary magnetic flux path of the NdFeB and alnico magnets, and the upper core is the
secondary magnetic flux path in direct contact with the load. A copper coil for changing the polarity
surrounds the alnico magnets. The alnico magnet polarity is easily converted by the external magnetic
force; that is, the polarity change is altered up and down according to the current application direction
of the coil wound on the bobbin, which changes the flow direction of the main magnetic flux. This
directional change of the magnetic flux path determines whether the H-EMCS is operating in attach or
detach mode. Also, the greater the number of H-EMMs, the greater the attachment power. Table 1
shows the materials and specifications of the H-EMMs.
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Table 1. Specifications of the hybrid electromagnetic modules (H-EMMs). NdFeB, neodymium.

Items Value -

Winding Material Copper Φ1.0mm, 20turns

Magnet Alnico Grade Alnico5 Br 1.1 (T)
NdFeB Grade N38 Br 1.3 (T)

Core
Upper Material S45C Magnetic steel
Lower Material S45C

2.5. Basic Operating Principle of Hybrid Electromagnetic Modules

The H-EMMs can be divided into attachment mode and detachment mode according to the
generation of electromagnetic force on the load. In attachment mode, the magnetic flux flows in the
load direction and an electromagnetic force is generated. In detachment mode, the electromagnetic
force is removed. Figures 7 and 8 show the magnetic flux density of attachment and detachment
modes determined by 3D FEM analysis of the conventional H-EMM model. The polarity of the alnico
magnets changes according to the applied current of the coil. Depending on the polarity direction of
the alnico magnets, the load is attached to or detached from the H-EMMs.
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2.5.1. Attachment and Detachment Mode

In attachment mode, the magnetization direction of the alnico magnets located on the lower side
is converted and produces magnetic flux that flows towards the upper core. Figure 7 confirms that the
electromagnetic force is generated on the load side because the direction of the magnetic flux passes
through the load side. In detachment mode, the magnetization direction of the alnico magnets located
at the lower side is reversed, so that the magnetic flux flows toward the lower core. As shown in
Figure 8, no electromagnetic force is generated because the direction of the magnetic flux does not pass
through the load side.
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2.5.2. Magnetic Flux Leakage in the Conventional Model

In order to increase the electromagnetic force of the H-EMCS, the amount of H-EMMs should be
increased. However, as shown in Figure 9, an increase in the number of H-EMM increases the leakage
flux between the cores, which leads to a reduction of the electromagnetic force and reduces system
efficiency. It can also lead to accidents such as dropping the load during load transfer. In this study,
we analyze the performance of the conventional model and verify the influence of core shape, which
acts as the main path of the magnetic flux. We then propose a polygonal core shape to improve the
electromagnetic force generated by the H-ECMS.
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3. Improving H-EMM Performance through Core Shape Modification

3.1. Conventional Hybrid Electromagnetic Module Model

Figure 10 shows a basic model for analyzing a core shape with a polygonal structure. To shorten
the time required for 3D FEM analysis, the modeling was composed of a 2-by-2 array. In order to
improve the accuracy of the analysis, we defined a 2 mm thick air region between the load and the
upper core. The air region was equally divided into 1 mm intervals when setting the mesh. In addition,
the shapes of the alnico magnets and NdFeB magnets and the winding specifications were not specified
as design parameters during fabrication. The prototype was fabricated and evaluated in a 4-by-2
array structure. Figure 11 shows the mesh shape before and after element segmentation for the
conventional model. A total of 805,671 elements and 139,595 nodes were used for the 3D FEM analysis
after element segmentation. The 3D FEM analysis was performed using JMAG-designer (version 17.1,
JSOL Corporation, Tokyo, Japan) and the analysis module was used 3D magnetic field static analysis.
The nonlinear effect of the material was not considered in the 3D FEM analysis.

Figure 12 shows the flux flow in attachment and detachment modes for the conventional model.
The flow of the magnetic flux and distribution of magnetic flux density differed between the two
modes. The magnetic flux density of the air region was more than 0.45 T in attachment mode, but
less than 0.4 T in detachment mode. The magnitude of the electromagnetic force was 454.8 Nm in
attachment mode and 10.5 Nm in detachment mode.
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3.2. Proposed Hybrid Electromagnetic Module Model

In this study, we developed a novel H-EMM model by changing the shape of the upper and lower
cores. These shape changes were designed to reduce leakage of the magnetic flux and improve H-EMCS
performance by minimizing the effective flux path. The size of the NdFeB magnets and alnico magnets
and the thickness of the lower core were set as constraints during model assembly (Table 2). The
volume of the permanent magnet is the most important factor determining the electromagnetic force.
Therefore, the shape of the core was changed while maintaining the same volume of the permanent
magnet. The thickness of the lower core was set as a constraint because the NdFeB magnets are
attached to the lower core. Moreover, the same height was applied. Three shape modifications were
proposed: applying a polygonal structure to the lower core, changing the area of the upper core, and
changing the thickness of the upper core. The effects of these modifications on magnetic flux leakage
and the effective magnetic flux were analyzed by electromagnetic field analysis.
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Table 2. Constraints used in the 3D FEM model.

Parts Unit Size Description

Magnet NdFeB mm 31, 16, 9 t width, length, thickness
(all dimensions are fixed)Alnico mm 42, 42, 18 t

Core
Upper mm 50, 50, 20 t width (x), length (y), thickness (z)

(all dimensions are variable)

Lower mm 50, 50, 20 t width (x), length (y), thickness (z)
(width and length are variable)

t: Magnetization thickness of permanent magnet.

3.2.1. Effect of Changing the Lower Core Shape

Figure 13 shows the change in the shape of the lower core from a quadrilateral structure to a
polygonal structure. On the fourth side of the lower core, the NdFeB magnets generating the main
magnetic flux are attached. In attachment mode, the main magnetic flux moves in the upper direction
so the load is attached to the H-EMMs, and vice versa in detachment mode. When the shape of the
lower core is changed to polygonal, the pole distance of the NdFeB magnets is lengthened and the
magnetic flux leakage is reduced. Therefore, the effective magnetic flux is increased.
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Figure 14 shows the settings of model variables A and B, which are related to the shape of the
corners of the lower core. We modeled and analyzed the polygonal structure by chamfering the
corners as the variables. Figure 15 shows the H-EMM performance analysis results according to
dimensional changes of A and B. The optimal lower core shape change (A and B = 9.3 mm) improved
the electromagnetic force in the proposed model by 4.5%, from 454.8 Nm in the conventional model to
475.3 Nm.
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Figure 15. H-EMM performance analysis results according to the shape change of the lower core.

3.2.2. Effect of Changing Both Lower and Upper Core Shapes

Figure 16 shows the model where both the upper and lower core shapes are changed. The unit
area in contact with the load decreases; therefore, the electromagnetic force decreases by 1.5%, from
454.8 Nm in the conventional model to 448.0 Nm. Although the lower core has no degrees of freedom
for x, y, and z, the upper core does. Therefore, it is necessary to determine whether the electromagnetic
force can be improved by changing the x, y, and z dimensions of the upper core. Also, considering the
bolt tightening, the thickness of the upper core is set from 20 mm to at least 14 mm.

3.2.3. Effect of Changing the Upper Core Dimensions

The electromagnetic force is proportional to the area of contact with the load. Therefore, we
analyzed the effect on the electromagnetic force caused by changing the shape of the upper core; that
is, width, length, and thickness (Figure 17). It can be confirmed that the width and length of the
conventional model (50 mm) generate the greatest electromagnetic force; however, the electromagnetic
force increases when the thickness of the upper core is reduced. This is because it shortens the magnetic
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path of the effective magnetic flux, increasing the electromagnetic force. The maximum electromagnetic
force occurs when the thickness of the upper core is reduced to 14 mm (478.9 Nm), representing a 5.3%
improvement from the conventional model.
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Figure 17. H-EMM performance results according to (a) upper core width and length; (b) upper
core thickness.

4. Verification of the Proposed Model

4.1. Simulation Results

In Section 3, we determined the effects of upper and lower core dimensions on leakage of the
magnetic flux and the effective magnetic flux. That is, magnetic flux leakage was reduced by chamfering
the edges of the lower core; the maximum electromagnetic force was obtained by maintaining the same
upper core width and length as the basic model, and the effective flux path was shortened and H-EMM
performance was improved by reducing the thickness of the upper core. Therefore, we performed
simulations using a model combining these shape modifications (Table 3 and Figure 18). The 3D FEM
analysis of the proposed model revealed the contours and vector plots of the magnetic flux density
(Figure 19). Table 4 shows a comparison of H-EMM performance for the 2-by-2 and 4-by-2 arrays of
the conventional and proposed models. The proposed model increases the electromagnetic force by at
least 9.8% compared with the conventional model.
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Table 3. Dimensional changes of the upper and lower cores in the proposed model.

Parts Unit Conventional Model Proposed Model

Lower core Corner
A mm 0 9.3
B mm 0 9.3

z (thickness) mm 20 20

Upper core
x (width) mm 50 50
y (length) mm 50 50

z (thickness) mm 20 14
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Table 4. Comparison of electromagnetic force by array quantity of basic model and proposed model.

Array Unit
Electromagnetic Force

Basic Model Proposed Model Rate

2-by-2 Nm 454.8 499.8 9.8% ↑
4-by-2 Nm 907.8 1,003.8 10.6% ↑

4.2. Experimental Results

The validity of the proposed design was experimentally verified by fabricating a prototype of
the proposed H-EMM. The prototype is a 4-by-2 array model based on an electromagnetic force of
1 kNm (Figure 20). Figure 21 shows the evaluation system for the prototype. When power was applied
to the prototype, the H-EMM became attached to the load-bed by generating an electromagnetic
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force. The electromagnetic force was measured by lifting the attached H-EMM in the vertical direction.
Table 5 shows a comparison of the electromagnetic force generated by the basic model, the proposed
model, and the actual prototype. The numerical and experimental results agree for the proposed
model, confirming that the performance is improved from the conventional model. Thus, the shape
of the proposed model effectively increases the effective magnetic flux and reduces leakage of the
magnetic flux.
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Table 5. Performance comparison between the conventional model, proposed model, and the prototype
with the proposed design.

4-by-2 Array
Simulation Experiment

Basic Model Proposed Model Basic Model Proposed Model

Electromagnetic
force (Nm) 907.8 1,003.8 (10.6% ↑) - 997.5

5. Conclusions

In this study, we proposed several changes to the core shape of H-EMMs in order to reduce
the core leakage flux and maximize the effective magnetic flux of H-EMCS. In H-EMMs, the upper
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and lower cores serve as the main path of the magnetic flux. In our proposed H-EMM model, the
leakage flux was reduced by chamfering the corners of the lower core and the effective magnetic
flux was maximized by reducing the thickness of the upper core. A 3D FEM analysis was used to
compare the electromagnetic performance of the proposed model with the conventional H-EMM
model. The validity of the numerical analysis results was verified by developing and experimentally
evaluating a prototype of the proposed H-EMM design. We confirmed that the proposed H-EMM
model increased the electromagnetic force by as much as 10.6% compared analytically with the
conventional model, and the experimental results of the prototype of the proposed H-EMM are very
similar to the analytical results. Through this, we confirmed that the proposed model has the effect of
performance improvement. Therefore, we designed and developed an improved H-EMM that reduces
magnetic flux leakage, increases the effective magnetic flux, and improves the electromagnetic force
characteristics of hybrid electromagnetic clamping systems. This research has important applications
for the improved transport of heavy loads in various industries. It can also be used as a method for
maximizing effective magnet and reducing leakage magnetic flux in a mechanical clamping system
that applies electromagnetic force.
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