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Abstract: Demand response (DR) has been recognized as a powerful tool to relieve energy imbalance
in the smart grid. Most previous works have ignored the irrational behavior of energy consumers in
DR project implementation. Accordingly, in this paper, we focus on solving two questions during
the execution of DR. Firstly, considering the bounded rationality of residential users, a population
dynamic model is proposed to describe the decision behavior on whether to participate in the DR
project, and then the evolutionary process of consumers participating in DR is analyzed. Secondly,
for the DR participants, they have to compete dispatching amounts for maximal profit in a day-ahead
bidding market, hence, a non-cooperative game model is proposed to describe the competition
behavior, and the uniqueness of the Nash equilibrium is analyzed with mathematical proof. Then,
the distributed algorithm is designed to search the evolutionary result and the Nash equilibrium.
Finally, a case study is performed to show the effectiveness of the formulated models.

Keywords: demand response; population evolution; irrational behavior; Markov state;
non-cooperative game

1. Introduction

As the development of the economy and society continues, energy demand is growing explosively
in all walks of life. Consequently, the power grid has to face the serious challenge in balancing
energy supply and demand. Especially in peak demand hours, the tense situation of supply and
demand happens from time to time, which affects the stability of the grid. In order to relieve the
pressure of energy supply and demand, the power grid can promote energy supply ability by building
new power plants or reduce the energy demand of consumers. However, peak demand hours only
take a tiny proportion in a whole year, and meanwhile, building new power plants needs a lot of
manpower and material resources. Therefore, it is uneconomical to build new plants to solve the
energy supply problem in such peak hours. For this reason, demand response (DR), which is one of the
core technologies in the smart grid, is taking an increasingly important role in digging up demand-side
resources and relieving the tension problem of supply and demand [1,2]. Generally, energy consumers
include residential users, commercial users, and industrial users. In which, residential users have
abundant flexible resources, hence, residential DR can effectively reduce energy demand in peak
hours [3,4].

In recent years, there exists abundant research on the energy consumption scheduling or mechanism
design of residential DR [5–7]. The authors in [8] proposed a reward mechanism for residential
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customers to shave peak loads, in which users’ consumption characteristics were modeled by survey
questionnaires. In order to aggregate a large number of households in the DR project, Mhanna et al. [9]
designed a distributed algorithm from the perspective of the DR aggregator, through which households
were aggregated and coordinated as a whole and then scheduled based on the objective of the aggregator.
Moreover, Reference [10] studied residential DR with consideration of the power distribution network
and the associated constraints, and proposed a distributed scheme where the load service entity
and the households interactively communicate to compute an optimal demand schedule. However,
the above research lacks consideration on the mutual effect of consumers’ strategies and does not
capture the dynamic property. To answer this issue, different game-theoretic frameworks have been
proposed [11–15]. Authors in [16] formulated an energy consumption scheduling program with game
theory, where players are residential users and their strategies are the daily schedules of household
appliances. Authors in [17] proposed an event-triggered game-theoretic strategy for managing the
power grid’s demand side, capable of responding to changes in consumer preferences or the price
parameters coming from the wholesale market. Reference [18] adopted a dynamic non-cooperative
repeated game with Pareto-efficient pure strategies as the decentralized approach to optimize the energy
consumption and energy trading amounts for the next day. Reference [19] focused on an hourly billing
mechanism for DR management to solve several theoretical and practical questions, including the
uniqueness of the consumption profile corresponding to the Nash equilibrium and the computational
issue of the equilibrium profile. While in [20], the trading problem was formulated as a bargaining-based
cooperative model, where DR aggregators and the generation company collaboratively decide the
amounts of energy trade and the associated payments. Authors in [21] formulated a Stackelberg game
among the DR aggregator and electricity generators, in which the DR aggregator plays as the leader to
optimize the bidding strategy, and generators play as the followers to maximize their own profits.

By reviewing the above literature, it is found that the research hides a common assumption,
that is, all DR participants are absolutely rational and their irrational behavior has been abandoned
completely. However, in a real system, consumers on the demand side, residential users in particular,
rarely have absolute rationality. Actually, a consumer’s irrational behavior has a great influence
on the decision-making process in the implementation of the DR project. One consumer may be
affected to be in DR by its neighbors who have participated in the DR project. That is, the decision on
whether consumers participate in DR is not only related with individual circumstances, but is also
closely interrelated with the other group consumers. Although several papers have focused on the
DR program considering consumers’ irrationality [22,23], they mainly concentrated on the design of
the DR mechanism to relieve the effect of irrationality and ignored the analysis of irrational behavior
characteristics. For example, Reference [22] proposed a novel non-cooperative game among customers
with prospect theory to incorporate the impact of customer irrational behavior, and Reference [23]
put forward a dynamic pricing mechanism based on game theory, considering the existence of
inexperienced or irrational users. Different from the existing research, this paper mainly concentrates
on the analysis of irrational human behavior for residential users in the decision-making process of
DR. In our proposed framework, a residential community is responsible for the load aggregation of
internal users, and the DR project is divided into multiple stages. The residential community can
independently decide whether it will participate in each stage of the DR project. In order to describe
the irrationality of communities in the decision on whether to be in DR, a novel decision-making
behavior model in each stage of the DR project is proposed based on the Markov chain. Accordingly,
the population evolution result of being in DR can be obtained with the implementation of the DR
project. Such an evolutionary process of the population is very significant for the grid to measure the
feasibility of the designed DR mechanism. Furthermore, in each stage of the DR project, residential
communities who are willing to be in DR have to participate in the day-ahead DR market to determine
the bidding amount. To reduce the risk of participants’ unreasonable bidding amount and price, a
non-cooperative game approach is proposed to describe the competition behavior among communities
in the day-ahead DR market. In brief, the contributions of this paper are as follows:
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(1) A scenario is proposed for the multi-stage DR project to analyze the population evolution
participating in DR considering the residential community’s irrational behavior in the decision-making
process, which can provide decision guidance in the design of the DR mechanism for dispatching the
center of the smart grid.

(2) A novel decision-making behavior model is formulated with the Markov chain to forecast
whether the residential community will participate in DR, which can provide a better understanding
of the practical performance of the DR project.

(3) A non-cooperative game approach is formulated to search the bidding equilibrium among
residential communities willing to participate in DR, which can contribute to the stability of the DR
bidding market.

The rest of this paper is organized as follows. The system model is introduced in Section 2.
In Section 3, we formulate the non-cooperative game approach and prove the existence of the Nash
equilibrium. And then, the Markov model for the population evolution is given in Section 4. The case
study and simulation results are presented in Section 5. Finally, this paper is concluded in Section 6.

2. System Model

A DR framework for residential community is proposed in Figure 1. Assume that there are
total I residential communities with the set I = N ∪ M, in which group N contains N residential
communities who are willing to participate in DR, while group M contains M communities who are
unwilling to participate. Each community contains many residential users with a rich flexible load,
such as air condition and an electrical vehicle. The dispatching center of the smart grid is mainly
responsible for DR transaction with the residential communities in group N [24,25]. In the day-ahead
DR market, since only the bidding price and amount are exchanged between the dispatching center
and community, each community does not reveal the details about the energy consumption of native
users’ appliances. Therefore, privacy can be protected from the residential community level [26].
Furthermore, the members in each group do not always remain unchanged. After a period of time,
each community obtains the opportunity to choose to participate in DR or not. In the paper, such a
time slot is set to one week. Since the residential community in the scenario has bounded rationality,
we assume that a community can be infected with probability β by each neighboring community in
group N, while a community in group N will transfer to group M with probability α. That is, at the
beginning of each week, each community will make a new choice with the corresponding probability.
Accordingly, in the proposed framework, there exists two time scales: one is a short-time scale for daily
energy consumption scheduling with the set T = [1, 2, ..., T]; the other is long-time scale for residential
community decision-making with the set H = [1, 2, ..., H].Energies 2019, 11, x FOR PEER REVIEW  4 of 19 
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2.1. Energy Dispatching Model

Assume that residential community n ∈ N chooses to participate in DR in week h ∈ H, then its
bidding amount is Lh,t

n in time slot t ∈ T. Considering the limitation of flexible DR resources on the
residential side, the bidding amount has to satisfy the following constraint:

Lh,min
n ≤ Lh,t

n ≤ Lh,max
n (1)

where Lh,min
n and Lh,max

n represent the minimal and maximal bidding amount of community n in week
h, respectively. Therefore, the individual feasible bidding amount set of community n in week h can be
expressed as follows:

L
h
n =

{
Lh

n : Lh,min
n ≤ Lh,t

n ≤ Lh,max
n ,∀t ∈ T

}
(2)

where Lh
n =

[
Lh,1

n , Lh,2
n , · · · , Lh,T

n

]
is the bidding amount set of community n in all dispatching slots.

Accordingly, the feasible bidding amount set of all residential communities in group N can be expressed
as follows:

L
h = Lh

1 ×L
h
2 × · · · × L

h
N (3)

Note that this paper mainly concentrates on peak load shaving, hence, bidding amount refers to the
dispatching amount that will be cut down in real time.

2.2. Bidding Price Model

When a residential community agrees to be scheduled by the dispatching center of the smart grid,
it can obtain an economic benefit from the grid, but it firstly has to take part in the day-ahead bidding
market. In order to maintain bidding market stability, it is necessary for the dispatching center to
design a reasonable bidding price model. In the paper, we assume that the bidding price mechanism
must satisfy the following conditions:

(1) The bidding price model should be smooth or at least piecewise smooth.
(2) The bidding price in a certain time slot should be a decreasing model with respect to the total

bidding amount of all communities in group N.

Accordingly, a linear function is employed as the bidding price model. Since the bidding amount
of community n in week h is Lh,t

n , the total bidding amount of all communities in time slot t can be
expressed as:

Lt
h =

N∑
n=1

Lh,t
n (4)

Therefore, the bidding price in the market can be expressed as follows:

pt
h = at

hLt
h + bt

h (5)

where at
h < 0 and bt

h > 0 are constants correlated with time slot t and week h. Parameter at
h < 0 can

guarantee the bidding price decreases with the increase of the bidding amount and, at the same time,
can also effectively reduce the implementation cost of the DR project for the dispatching center.

2.3. Utility Model of Energy Consumption

A residential community receives utility when it consumes energy in its own ways. When the
energy consumption of the community is scheduled by the dispatching center of the smart grid,
consumption utility will be affected. In order to quantitatively measure the utility, a utility model
needs to be formulated. In many DR studies [27,28], quadratic and logarithmic utility functions are
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frequently used, because they are non-decreasing and their marginal benefits are non-decreasing.
In this paper, without loss of generality, the quadratic function is adopted as the utility model. That is:

uh,t
n = ct

h

(
Lh,t

n

)2
+ dt

hLh,t
n (6)

where ct
h > 0 and dt

h > 0 are time-varying parameters. Utility Equation (6) shows that, when a

residential community shaves Lh,t
n energy, then the utility will lose uh,t

n . Therefore, the whole utility of
community n in all time slots T can be calculated as:

uh
n =

T∑
t=1

uh,t
n (7)

Utility Equation (7) shows that community n will lose utility uh
n when it shaves

T∑
t=1

Lh,t
n energy in

the daily dispatching period.

3. Non-Cooperative Game for Group N Participating in Day-Ahead Bidding

In this section, we focus on the model formulation for residential communities who participate
in DR. According to Figure 1, all communities in group N have to take part in the day-ahead
bidding market. Generally, the game-theoretic approach can be divided into a cooperative game
and non-cooperative game [18,29]. In this paper, we assume that each community is only concerned
about self-interest, and the non-cooperative game approach is employed to optimize communities’
bidding strategy.

3.1. Day-Ahead Bidding Optimization Problem

Load aggregators taking part in DR usually have different optimization targets, such as energy cost
or load factor [30]. In the proposed scenario, the main purpose of residential community participating
in DR is to obtain extra economic profit. Considering energy consumption scheduling affects residents’
satisfaction, the dispatching center will give corresponding economic compensation to communities in
group N. Based on the bidding price Equation (5), economic compensation of community n in all time
slots T can be calculated as:

eh
n =

T∑
t=1

pt
hLh,t

n =
T∑

t=1

(
at

hLt
h + bt

h

)
Lh,t

n (8)

Since a community’s utility will be reduced in DR participation, each community will take the
maximization of the comprehensive income as the target to compete with other communities in the
bidding market. That is:

maximizeeh
n

(
Lh,t

n

)
− uh

n

(
Lh,t

n

)
s.t. Lh,min

n ≤ Lh,t
n ≤ Lh,max

n
(9)

Each community will obtain the optimal bidding strategy in each time slot t ∈ T by solving the
optimization Equation (9).

3.2. Non-Cooperative Game Formulation

The bidding price in the market is determined by the total bidding amount of all communities in
group N. Therefore, the economic compensation of community n is determined not only by its own
bidding strategy, but also the bidding strategies of other communities in group N. That is, community n
has to take other communities’ strategies into consideration when it makes its bidding strategy. Hence,
the bidding strategy problem for residential communities belongs to the typical non-cooperative game.
Based on the objective Equation (9), the non-cooperative game can be formulated as follows [31]:
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• Players: all residential communities in group N;

• Strategies: the bidding amount Lh,t
n ;

• Payoffs: comprehensive income of community n:

Rh
n

(
Lh

n, Lh
−n

)
=

T∑
t=1

[(
at

h − ct
h

)
Lh,t

n +
(
bt

h − dt
h

)
+ at

hLh,t
−n

]
Lh,t

n (10)

where Lh
−n =

[
Lh

1, · · · , Lh
n−1, Lh

n+1, · · · , Lh
N

]
represents the bidding strategy set of other communities

except n in group N; Lh,t
−n represents the total bidding amount of N − 1 communities with:

Lh,t
−n =

N∑
i=1,i,n

Lh,t
i (11)

All residential communities will constantly update their own strategy for the higher economic
compensation based on payoff Equation (10). Once all communities in group N obtain their own
maximal profit, no one will change the strategy. Such an equilibrium state is called the Nash equilibrium,
which can be expressed as:

Rh
n

(
Lh∗

n , Lh∗
−n

)
≥ Rh

n

(
Lh

n, Lh∗
−n

)
(12)

where
(
Lh

n
∗
, Lh∗
−n

)
represents the Nash equilibrium of a formulated non-cooperative game.

3.3. Nash Equilibrium

According to the above definition of the Nash equilibrium, this section focuses on the mathematical
proof of the existence and uniqueness of the Nash equilibrium.

Lemma 1. For each residential community n ∈ N, the function Rh
n

(
Lh

n, Lh
−n

)
is continuously differentiable in Lh

n.

For the fixed value of Lh,t
−n, the function Rh

n

(
Lh

n, Lh
−n

)
is concave about Lh

n.

Proof. It is obvious that, Rh
n

(
Lh

n, Lh
−n

)
is continuously differentiable in Lh

n. As for the concavity of

Rh
n

(
Lh

n, Lh
−n

)
, we just need to prove the Hessian matrix of Rn(Ln, L−n) is negative definite. The Hessian

matrix of Rh
n

(
Lh

n, Lh
−n

)
is:

∇
2
Lh

n
Rh

n

(
Lh

n, Lh
−n

)
= diag

[
2
(
at

h − ct
h

)]T

t=1
(13)

Due to the negative value of 2
(
at

h − ct
h

)
, Equation (13) is a diagonal matrix with all diagonal

elements being negative. Hence, the Hessian matrix of Rh
n

(
Lh

n, Lh
−n

)
is negative definite. Consequently,

function Rh
n

(
Lh

n, Lh
−n

)
is concave about Lh

n. �

Definition 1. The variational inequality (VI), denoted by VI(L, F), is to find a vector x∗ ∈ L such that:

(x− x∗)TF(x∗) ≤ 0 ∀x ∈ L (14)

According to Lemma 1 and Definition 1, we can obtain the following lemma:

Lemma 2. The optimization problem of the non-cooperative model (10) is equivalent to the VI problem
VI(L, F) where:

F
(
Lh

)
=

[
Fn

(
Lh

n, Lh
−n

)]N

n=1
(15)
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where Lh =
(
Lh

n, Lh
−n

)
and Fh

n

(
Lh

n, Lh
−n

)
are expressed as follows:

Fh
n

(
Lh

n, Lh
−n

)
= ∇Lh

n
Rh

n

(
Lh

n, Lh
−n

)
(16)

Proof. The proof can be found in [32]. �

Based on Lemma 2, the following proposition can be obtained.

Proposition 1. In the formulated non-cooperative model (10), its Nash equilibrium is unique.

Proof. According to Lemma 2, VI problem VI(L, F) has the same solution with the solution of
Equation (10). That is, we just need to prove the uniqueness of VI(L, F)’s solution, then Proposition 1
can be proved. According to [33], we know that VI(L, F) will have a unique solution when F

(
Lh

)
is

strictly monotone about feasible set L.
To prove the strict monotone of F

(
Lh

)
is to prove:

T∑
t=1

N∑
n=1

[(
xh,t

n − yh,t
n

)(
∇xh,t

n
Rh

n

(
xh

)
−∇yh,t

n
Rh

n

(
yh

))]
> 0 (17)

where xh =
{
xh

n

}N

n=1
∈ L

h,yh =
{
yh

n

}N

n=1
∈ L

h.

Let lh,t =
{
xh,t

1 , xh,t
2 , · · · , xh,t

N

}
and jh,t =

{
yh,t

1 , yh,t
2 , · · · , yh,t

N

}
, then Equation (17) can be rewritten as

follows:
T∑

t=1

[(
lh,t
− jh,t

)(
∇lh,t Rh,t

n

(
lh,t

)
−∇jh,t Rh,t

n

(
jh,t

))]
> 0 (18)

where:
Rh,t

n

(
lh,t

)
= pt

hxh,t
n − uh,t

n

and:

∇lh,t Rh,t
n

(
lh,t

)
=

[
∇xh,t

1
Rh,t

n

(
lh,t

)
,∇xh,t

2
Rh,t

n

(
lh,t

)
, · · · ∇xh,t

N
Rh,t

n

(
lh,t

)]T

If the following condition is satisfied, then Equation (18) will hold:(
lh,t
− jh,t

)(
gh,t

(
lh,t

)
− gh,t

(
jh,t

))
> 0 ∀t ∈ T (19)

where gh,t

(
lh,t

)
= ∇lh,t Rh,t

n

(
lh,t

)
.

If the Jacobian matrix of gh,t

(
lh,t

)
is negative definite, then Equation (19) will be satisfied. Assume

that Gh,t
(
lh,t

)
= ∇lh,tgh,t

(
lh,t

)
, then:

Gh,t
(
lh,t

)
+ Gh,t

(
lh,t

)T
= 2

(
at

h − ct
h

)(
11T + I

)
(20)

where I is a unit matrix and 1 is a N × 1 matrix where all elements are 1. Since characteristic values of 11T

+ I are 1 and N + 1, the characteristic values of Gh,t
(
lh,t

)
+ Gh,t

(
lh,t

)T
are 2

(
at

h − ct
h

)
and 2(N + 1)

(
at

h − ct
h

)
.

Consequently, Gh,t
(
lh,t

)
+ Gh,t

(
lh,t

)T
is negative definite. That is, F(L) is a strictly monotone function.

Therefore, the Nash equilibrium of the formulated non-cooperative game is unique. �

Based on the above analysis, the Nash equilibrium for the game can be solved. Equation (9) is
to search the maximal value of the comprehensive income in all dispatching slots T. But, when the
comprehensive income achieves the maximal value in each time slot t ∈ T, then the comprehensive
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income in all dispatching slots will also achieve the maximal value. That is, Equation (9) can be
translated into the following optimization problems: maximizewh,t

n =
[(

at
h − ct

h

)
Lh,t

n +
(
bt

h − dt
h

)
+ at

hLh,t
−n

]
Lh,t

n

s.t. Lh,min
n ≤ Lh,t

n ≤ Lh,max
n

∀t ∈ T (21)

Furthermore, when the bidding strategies of other communities Lh,t
−n are regarded as fixed values,

then the optimal bidding strategy of community n can be expressed as follows:

ϕn
(
Lh,t
−n

)
= argmaximize

Lh,t
n

wh,t
n

(
Lh,t

n , Lh,t
−n

)
∀n ∈ N (22)

where ϕn
(
Lh,t
−n

)
represents the optimal bidding strategy of community n corresponding to strategies

Lh,t
−n; Lh,t

−n =
[
Lh,t

1 , · · · , Lh,t
n−1, Lh,t

n+1, · · · , Lh,t
N

]
represents the bidding strategies of other communities in

time slot t.

4. Evolution Analysis between Groups N and M

According to the above analysis, the economic compensation of each residential community in
group N is correlated not only with the bidding price parameters, but also with the total bidding
amount in the market. Therefore, a community’s economic compensation will be influenced when the
population of group N changes. In the initial period of the DR project, communities will obtain high
economic compensation for participating in DR. Hence, the neighboring communities may be infected
to participate in DR for the high economic compensation. However, when the population of group
N has consistent growth, the economic compensation of each community will be reduced gradually.
Consequently, those residential communities who care more about energy consumption satisfaction
will not choose to participate in DR anymore. Finally, the population of group N and group M will
reach a dynamic balance. In this section, communities’ transition probability model between group N
and group M is formulated, and then the group population is analyzed.

4.1. Transition Probability Model

To describe the population evolution briefly, we define the state of residential community i ∈ I
at week h as Si(h), in which Si(h) = 0 represents community i belonging to group M is unwilling to
participate in DR, Si(h) = 1 represents community i belonging to group N adopts the DR project. Then,
the transition probability can be calculated following four cases.

(1) Case 1: Si(h) = 0→ Si(h + 1) = 1
When the state of community i is Si(h) = 0 at week h, then it may participate in DR if some of its

neighboring communities have adopted it. That is, community i can be infected by each neighboring
community with probability β, where 0 ≤ β ≤ 1. Such probability shows the effect of social networking
or mutual imitation among DR communities. Note that the probability β is a networking-related
parameter. Therefore, the greater the number of neighboring communities who participate in DR,
the higher the probability community i will adopt the DR project. Consequently, the corresponding
transition probability can be expressed as follows:

P
(
Si(h + 1) = 1

∣∣∣Si(h) = 0
)
= 1− (1− β)Nh

i (23)

where Nh
i is the total number of neighboring communities in group N that have connection

to the community i; 1 − β represents the probability that community i is not infected by one

neighboring community; (1− β)Nh
i represents the probability that community i is not infected by Nh

i
neighboring communities.
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(2) Case 2: Si(h) = 0→ Si(h + 1) = 0
Since community i with Si(h) = 0 can only choose Si(h + 1) = 1 or Si(h + 1) = 0, the probability that

community i still remains in group M can be obtained according to Equation (23). That is:

P
(
Si(h + 1) = 0

∣∣∣Si(h) = 0
)
= 1− P

(
Si(h + 1) = 1

∣∣∣Si(h) = 0
)
= (1− β)Nh

i (24)

(3) Case 3: Si(h) = 1→ Si(h + 1) = 0
When the state of community i is Si(h) = 1 at week h, it may switch back to Si(h + 1) = 0 at

week h + 1. For example, a community may find the DR project is inconvenient or uneconomical
and thus abandon it. In this paper, we assume that the probability from Si(h) = 1 to Si(h + 1) = 0 are
correlated with economic compensation and energy consumption utility. If a community in the group
N switches from state 1 to state 0, it will lose economic compensation, but will obtain the corresponding
utility. Hence, when economic compensation decreases due to the increasing of group N’s population,
the probability from Si(h) = 1 to Si(h + 1) = 0 will increase gradually. To quantitatively measure such
probability, the average comprehensive income for all communities in group N is defined as:

wh =
1
N

∑
i∈N

(
eh

i − uh
i

)
(25)

Basically, the probability from Si(h) = 1 to Si(h + 1) = 0 is defined as:

α = η

1−
wh

wh,max

 (26)

where η is a constant parameter; wh,max = maximize
[
w1, w2, . . . , wh

]
represents the maximal value of

group N’s average income in the preceding h weeks. Equation (26) shows that the lower income group
N receives, the higher probability the community switches from state 1 to state 0. Specifically, when the
average income in group N reaches the maximal value, the corresponding probability will reach the
minimal value. According to Equations (25) and (26), the transition probability from state 1 to state 0
can be expressed as:

P
(
Si(h + 1) = 0

∣∣∣Si(h) = 1
)
= α = η

1−
wh

wh,max

 (27)

(4) Case 4: Si(h) = 1→ Si(h + 1) = 1
Similarly, since community i with Si(h) = 1 can only choose Si(h + 1) = 1 or Si(h + 1) = 0,

the probability that community i still remains in group N can be obtained according to Equation (27).
That is:

P
(
Si(h + 1) = 1

∣∣∣Si(h) = 1
)
= 1− P

(
Si(h + 1) = 0

∣∣∣Si(h) = 1
)
= 1− α (28)

In summary, the transition probability model from Si(h) to Si(h + 1) can be expressed as follows:

P
(
Si(h + 1)

∣∣∣Si(h)
)
=


1− (1− β)Nh

i (Si(h), Si(h + 1)) = (0, 1)

(1− β)Nh
i (Si(h), Si(h + 1)) = (0, 0)

α (Si(h), Si(h + 1)) = (1, 0)

1− α (Si(h), Si(h + 1)) = (1, 1)

(29)

4.2. Markov Model for Group Population

In reality, the state of a residential community in past weeks has no effect on the decision in future
weeks, and the decision result in week h + 1 is only correlated with a community’s state in week h.
Therefore, this paper adopts the Markov chain to describe the decision-making process of residential
community. The Markov chain mainly indicates that the future decision-making state is independent
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of the past state and is only dependent on the current state [34]. In our proposed scenario, the Markov
chain can be expressed as:

P
(
Si(h + 1)

∣∣∣Si(1), · · · , Si(h)
)
= P

(
Si(h + 1)

∣∣∣Si(h)
)

(30)

where Si(1), · · · , Si(h) are decision-making states from week 1 to week h. Assume that Pri
N(h) and

Pri
M(h) are the probabilities of residential community i in group N and group M in week h. Then,

the Markov state evolution can be described as:

Pri
N(h + 1) = Pri

N(h)P
(
Si(h + 1) = 1

∣∣∣Si(h) = 1
)
+ Pri

M(h)P
(
Si(h + 1) = 1

∣∣∣Si(h) = 0
)

= (1− α)Pri
N(h) +

(
1− (1− β)Nh

i

)
Pri

M(h)
(31)

and:

Pri
M(h + 1) = Pri

M(h)P
(
Si(h + 1) = 0

∣∣∣Si(h) = 0
)
+ Pri

N(h)P
(
Si(h + 1) = 0

∣∣∣Si(h) = 1
)

= (1− β)Nh
i Pri

M(h) + αPri
N(h)

(32)

In Equations (31) and (32), (1− β)Nh
i can be rewritten as:

(1− β)Nh
i =

∏
i∈Ii

(
Pri

N(h)(1− β) + Pri
M(h)

)
=

∏
i∈Ii

(
Pri

N(h)(1− β) +
(
1− Pri

N(h)
))

=
∏

i∈Ii

(
1− βPri

N(h)
)
≈ 1− β

∑
i∈Ii

Pri
N(h)

(33)

where Ii represents the set of community i’s neighbors in set I. Therefore, Equations (31) and (32) can
also be expressed as follows:

Pri
N(h + 1) = (1− α)Pri

N(h) +

1−

1− β
∑
i∈Ii

Pri
N(h)


Pri

M(h) (34)

and:

Pri
M(h + 1) =

1− β
∑
i∈Ii

Pri
N(h)

Pri
M(h) + αPri

N(h) (35)

According to the Markov state Equations (34) and (35), the probability for each community i in
groups N or M can be calculated. However, the decision of a single community is not our concern and
the main purpose in this section is to analyze the group population. For simplification, assume that I
residential communities have good communication and each community can be infected by any other
I−1 communities. Then, each residential community in I has equal probability to participate in DR.
Consequently, we have:

PrN = Pri
N, PrM = Pri

M, Ii = I (36)

where PrN and PrM represent the probability of any community being in group N or M. Then,
Equations (34) and (35) are simplified to:

PrN(h + 1) = (1− α)PrN(h) + βIPrN(h)PrM(h) (37)

and:
PrM(h + 1) =

(
1− βIPrN(h)

)
Pri

M(h) + αPrN(h) (38)

Therefore, the average number of residential communities in groups N and M in week h can be
expressed as: {

N(h) = PrN(h)I
M(h) = PrM(h)I

(39)
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According to Equations (37) and (38), the average number of residential communities in groups N
and M in week h + 1 can be calculated as:{

N(h + 1) = (1− α)N(h) + βN(h)M(h)
M(h + 1) = (1− βN(h))M(h) + αN(h)

(40)

Equation (40) is used to describe the population evolution in groups N and M.

4.3. Distributed Algorithm

To search the Nash equilibrium of the formulated non-cooperative game and population evolution
result of the residential communities participating in DR, a distributed algorithm is proposed which is
shown in Algorithm 1. In the algorithm, an interior point method is employed to solve Equation (22),
which has superior performance in solving convex optimization problems. In addition, steps 2–10
are designed to search the Nash equilibrium among communities in the day-ahead bidding market,
and steps 11–14 are designed to obtain the population evolution result of residential communities
participating in DR.

Algorithm 1: Searching for Nash equilibrium and population evolution result

Input: Parameters at
h, bt

h, Lh,min
n , Lh,max

n , etc.
Output: Nash equilibrium, population evolution result.
Initialization: Number of group N in week 1.
1 h = 1;
2 Repeat
3 n = 1;
4 for n ≤ N(h) do
5 Initialize bidding strategy vector Lh

n;
6 Each community n ∈ N updates Lh

n by solving Equation (22);
7 n = n + 1;
8 end
9 Until No community changes its strategy;
10 Return Nash equilibrium

(
Lh∗

n , Lh∗
−n

)
;

11 Calculate transition probability α and β;
12 Update group population with Equation (40);
13 h = h + 1;
14 Go back to step 2 until |N(h+1) − N(h)| changes in a termination criterion.

5. Case Study

The performance of the proposed approach is evaluated in this section. In the simulation, assume
that there are |I| = 50 residential communities. At the beginning of the DR project (i.e., the 1st week),
there are |N| = four residential communities who are willing to participate in DR, and other |M| = 46
communities are in a waiting state. For these communities participating in DR, they have to take
part in the day-ahead bidding market to obtain the dispatching amount. Generally, the daily peak
hours appear in 10:00–14:00 and 18:00–21:00. Here, energy consumption scheduling during 18:00–21:00
in one day of each week is taken as an example. Accordingly, suppose that peak shaving hours are
18:00–21:00 and a scheduling interval is 15 minutes. That is, residential communities in group N will
bid for a load shaving amount in time slots T = [1, 2, ..., 12]. Furthermore, bidding price parameters
are shown as (unit: 103 dollars/MWh): at

h = −0.068, bt
h = 0.553 (t = 1–5 and 11–12); at

h = −0.058, bt
h =

0.774 (t = 6–10). Utility model parameters are shown as (unit: 10ˆ3 dollars/MWh): ct
h = 0.012, dt

h =

0.117 (t = 1–5 and 11–12); ct
h = 0.013, dt

h = 0.126 (t = 6–10). Transition probability model parameters are
shown as: β is in [0.02,0.04], η is in [0.3,0.4]. As for the available DR resource in the community, we
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assume that the maximal value and minimal value of the DR resource are set as in Figure 2. And each
community’s DR resource is given with a random value among the range.
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5.1. Evolution Result in Groups N and M

Based on the above simulation parameters, the population evolution result and the Nash
equilibrium was obtained by performing Algorithm 1. Note that Algorithm 1 is set to 70 iterations and
each iteration means one week. Accordingly, Figure 3 is the convergence process of the population in
groups N and M. It depicts that the population in each group gradually converged to the evolutionary
equilibrium in 42 weeks. Specifically, in the first 20 weeks, group N’s population increased rapidly
from four communities to 36 communities, while between the 21st week and 42nd week, group N’s
population increased slowly from 37 communities to 44 communities. Note that, since the average
number of communities in a group is deduced from Equation (45), in which the probability PrN and
PrM are non-integral values, the group’s population in Figure 2 was also a non-integral value. But the
group’s population was rounded as an integral value when searching the Nash equilibrium in the
day-ahead bidding market.Energies 2019, 11, x FOR PEER REVIEW  13 of 19 

 

 389 

Figure 3. Convergence process of population in groups N and M. 390 

Figure 4 is the convergence process of the total bidding amount in group N in all dispatching 391 
time slots T. From the figure, one can see that, at the beginning of the DR project, the total bidding 392 
amount of four communities was only about 20 MWh, while the bidding amount reached 80 MWh 393 
after performing the DR project for about 10 weeks. The main reason for such rapid growth was due 394 
to the increase of the population in group N. However, the bidding amount tends to reach saturation 395 
after 10 weeks. It was because the bidding price was reduced gradually with the further increase of 396 
group N’s population and the bidding amount of each community was declined as well. Moreover, 397 
the comprehensive income of group N in all dispatching time slots T is shown in Figure 5. It 398 
demonstrates that the total income of group N increased firstly and then decreased dramatically in 399 
10 weeks, and finally converged to the fixed value in the weeks after 10 weeks. The reason for such a 400 
trend was mainly related with the variation of economic compensation and utility. In the first five 401 
weeks, the bidding amount in the market was not very large, then the bidding price was relatively 402 
high and the economic compensation increased dramatically with the increase of group N’s 403 
population. Therefore, the income in the first five weeks was mainly dependent on the economic 404 
compensation. However, with the increase of the bidding amount, the utility that the community 405 
lost in DR increased gradually but the economic compensation increased slowly. Therefore, the 406 
comprehensive income in the 6th weeks and 10th weeks decreased rapidly. Since the bidding amount 407 
tends to be stable after 10 weeks, the total income of group N was also convergent. 408 

From the above evolution result, it is clear that most of the residential communities will be 409 
attracted to participate in DR with the implementation of the DR project. However, not all 410 
communities in the set I will be involved in DR. When residential communities in the bidding 411 
market become saturated, the average economic compensation of each community will be decreased 412 
to the minimal value. Consequently, some members in group N will be unwilling to participate in 413 
DR and switch from group N to group M with a high probability. At last, the population of groups N 414 
and M will reach the dynamic balance. 415 

Figure 3. Convergence process of population in groups N and M.



Energies 2019, 12, 3727 13 of 19

Figure 4 is the convergence process of the total bidding amount in group N in all dispatching
time slots T. From the figure, one can see that, at the beginning of the DR project, the total bidding
amount of four communities was only about 20 MWh, while the bidding amount reached 80 MWh
after performing the DR project for about 10 weeks. The main reason for such rapid growth was
due to the increase of the population in group N. However, the bidding amount tends to reach
saturation after 10 weeks. It was because the bidding price was reduced gradually with the further
increase of group N’s population and the bidding amount of each community was declined as well.
Moreover, the comprehensive income of group N in all dispatching time slots T is shown in Figure 5.
It demonstrates that the total income of group N increased firstly and then decreased dramatically in
10 weeks, and finally converged to the fixed value in the weeks after 10 weeks. The reason for such a
trend was mainly related with the variation of economic compensation and utility. In the first five
weeks, the bidding amount in the market was not very large, then the bidding price was relatively high
and the economic compensation increased dramatically with the increase of group N’s population.
Therefore, the income in the first five weeks was mainly dependent on the economic compensation.
However, with the increase of the bidding amount, the utility that the community lost in DR increased
gradually but the economic compensation increased slowly. Therefore, the comprehensive income in
the 6th weeks and 10th weeks decreased rapidly. Since the bidding amount tends to be stable after
10 weeks, the total income of group N was also convergent.

From the above evolution result, it is clear that most of the residential communities will be
attracted to participate in DR with the implementation of the DR project. However, not all communities
in the set I will be involved in DR. When residential communities in the bidding market become
saturated, the average economic compensation of each community will be decreased to the minimal
value. Consequently, some members in group N will be unwilling to participate in DR and switch
from group N to group M with a high probability. At last, the population of groups N and M will
reach the dynamic balance.Energies 2019, 11, x FOR PEER REVIEW  14 of 19 
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5.2. Equilibrium Result for Group N

This section shows the Nash equilibrium among the residential communities in group N. In our
proposed scenario, at the beginning of each week, the community will choose to participate in DR
or not, and then, communities participating in DR have to bid for the dispatching amount in the
day-ahead market. Therefore, in each week exists one equilibrium solution and there are altogether
70 equilibrium solutions, considering the DR project was conducted in 70 weeks. For the limitation of
paper space, we took the equilibrium solutions of two special weeks (i.e., 1st week and 70th week) as
examples to illustrate the optimal bidding strategy.

Figures 6 and 7 are the optimal bidding amounts of each community in the 1st week and 70th
week, respectively. In which, communities 1–4 are the communities who were willing to participate in
DR at the beginning of the DR project. From the figures, we can see that the bidding amount in the 1st
week was much more than that in the 70th week in all 12 time slots. Additionally, the bidding strategies
of four communities in each time slot were all different in the 1st week, while four communities had the
same bidding strategies in the 70th week. The main reason was that, at the beginning of the DR project,
the bidding market needed a large amount of DR resources, hence the community with more DR
resources will compete for more dispatching amount. However, when the DR project was conducted
for 70 weeks, the DR resource in the market was saturated and the bidding price was also saturated
with the lowest value. Consequently, the bidding amount of the community was reduced to the
minimal value, even for those communities with abundant DR resources. Actually, in this case study,
the bidding amount of each community was only related with bidding price parameters and utility
model parameters after the bidding market reached saturation. The bidding amount changed with the
change of bidding price parameters. For example, we see that from Figure 7, the values of bidding
price parameters were different between t = 1–5 and t = 6–10, then the bidding amount between t = 1–5
and t = 6–10 were also different. Concretely, the average bidding amount of all communities in group
N is presented in Table 1. From the table, it shows that the maximal bidding amount was 0.739 MWh
between 19:45–20:00 in the 1st week, while the maximal bidding amount was only 0.203 MWh between
19:15–20:30 in the 70th week.
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Table 1. Average bidding amount of all communities in group N.

Time Average Bidding Amount (1st Week) Average Bidding Amount (70th Week)

18:00–18:15 0.256 0.121
18:15–18:30 0.238 0.121
18:30–18:45 0.344 0.121
18:45–19:00 0.371 0.121
19:00–19:15 0.366 0.121
19:15–19:30 0.522 0.203
19:30–19:45 0.692 0.203
19:45–20:00 0.739 0.203
20:00–20:15 0.428 0.203
20:15–20:30 0.543 0.203
20:30–20:45 0.283 0.121
20:45–21:00 0.327 0.121

In addition, the bidding price in the 1st week and 70th week is shown in Figure 8. It depicts
that the bidding price in the 1st week was much higher than the price in 70th week. For example,
the highest bidding price in the 1st week was 675 dollars/MWh during 20:00–20:15, while the highest
price in the 70th week was only 203 dollars/MWh. Therefore, from the aspect of the dispatching center
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of the smart grid, the designed bidding price mechanism can effectively reduce the dispatching cost of
the grid. Of course, the dispatching center of the smart grid can also control the DR resource amount
in the market by regulating price parameters. The next section analyzes the influence of bidding price
parameters on DR.
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5.3. Impact of Bidding Price Parameters

According to the above analysis, it is clear that bidding price plays an important role in the
DR project. It is necessary to analyze how the bidding price affects the DR. Therefore, this section
analyzes the influence of bidding price parameters on the population evolution result and the Nash
equilibrium. Here, we took initial price parameters (i.e., at

h = −0.068, bt
h = 0.553 (t = 1–5 and 11–12);

at
h = −0.058, bt

h = 0.774 (t = 6–10)) as the benchmark, then varied the price parameters by 1.1–2.0 times
the benchmark. The corresponding result is presented as follows.

Figure 9 shows the bidding amount of each community and population in group N for different
bidding price parameters. Note that the optimal bidding strategy in the figure was the Nash
equilibrium in the week that evolution equilibrium was reached. Since the bidding strategies of
different communities were all the same under the same price parameters, each community had the
same bidding amount in dispatching slots T. From the figure, it depicts that the bidding amount
increased gradually with 1.1–2.0 times the benchmark. Specifically, the population in group N increased
from 44 to 45 communities when the parameters reached 1.3 times the benchmark. However, the
population in group N still had only 45 communities even when price parameters reached 2 times
the benchmark. Figure 10 shows the total bidding amount of all communities for different bidding
price parameters. It is clear that, although the total bidding amount achieved consistent growth,
the increment was declined gradually. By analyzing the above result, it demonstrates that raising
the bidding price can improve the growth of the bidding amount, but with the market saturation,
the dispatching cost increased for the same increment. Therefore, for the dispatching center of the
smart grid, it was very necessary to optimize the bidding price parameters to make a balance between
the DR amount and the dispatching cost.
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6. Conclusions

This paper not only focused on the evolutionary analysis of group population participating in the
DR project, but also the optimization of the bidding strategy in a day-ahead bidding market. In the
proposed scenario, a residential community’s irrationality was considered in the decision-making
process. In particular, the dynamic evolutionary process of group population was described with
the Markov model, and the bidding strategy for communities participating in DR was optimized
with the non-cooperative game approach. Furthermore, the uniqueness of the Nash equilibrium was
proved with the mathematical method. Finally, a case study was performed to verify the effectiveness
of formulated models. It showed that the group population in DR gradually converges to the fixed
value with the implementation of the DR project. In addition, by analyzing the influence of bidding
price parameters on DR, it showed that raising the bidding price can improve the growth of the group
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population in DR and the bidding amount, but the smart grid had to pay for the high dispatching cost
with market saturation.
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