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Abstract: With the emergence of all kinds of location services applications, massive location data are
collected in real time. A hierarchical fast density clustering algorithm, DBSCAN(density based spatial
clustering of applications with noise) algorithm based on Gauss mixture model, is proposed to detect
clusters and noises of arbitrary shape in location data. First, the gaussian mixture model is used to
fit the probability distribution of the dataset to determine different density levels; then, based on the
DBSCAN algorithm, the subdatasets with different density levels are locally clustered, and at the same
time, the appropriate seeds are selected to complete the cluster expansion; finally, the subdatasets
clustering results are merged. The method validates the clustering effect of the proposed algorithm in
terms of clustering accuracy, different noise intensity and time efficiency on the test data of public data
sets. The experimental results show that the clustering effect of the proposed algorithm is better than
traditional DBSCAN. In addition, the passenger flow data of the night peak period of the actual site is
used to identify the uneven distribution of passengers in the station. The result of passenger cluster
identification is beneficial to the optimization of service facilities, passenger organization and guidance,
abnormal passenger flow evacuation.

Keywords: clustering analysis; heterogeneity data; gaussian mixture model; location data;
expectation-maximization

1. Introduction

With the widespread popularity of GPS, smart phones and other location-aware devices, various kinds
of location services and mobile social network applications continue to emerge, thus accumulating a large
number of geographic location data, such as user check-in data, vehicle GPS trajectory, micro-blog, Twitter
and other massive location data [1]. Applications based on these location data have great application value
in areas such as traffic management and control [2], recommendation systems [3], advertising [4], public
facility location and assessment, abnormal population identification and evacuation [5]. Therefore, how
to effectively and quickly mine meaningful potential patterns becomes the main challenge in processing
location data.
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The location data records the time and space trajectory information of the user, and embodies the
change of the position of the moving object, such as the movement of the person, the movement of the
vehicle, and the like [6]. The location data in the city mainly comes from traffic vehicle trajectory data [7],
mobile communication location data, mobile social network check-in data [8], mobile media location
data, e-commerce logistics location information, and AFC(Automatic Fare Collection) location records [9].
The analysis of massive location data can quantitatively describe and estimate people’s social activity
characteristics, find people’s behavior patterns under different time and space granularities, gain insight
into the overall movement trend of the group, and identify the routes and regions that people are interested
in [10–12]. Therefore, through the mining of location data can help people understand and discover the
great value implied in location data. For example, literature [13] discover relevant interest point patterns
by mining users’ GPS trajectories, and then find popular tourist routes; literature [14] also mine personal
historical location data to realize user’s friend recommendation and scenic spot recommendation.

In the application of location data analysis and processing, clustering technology is often used to
pre-process and analyze location data to discover spatial or temporal clustering patterns in location
data [15,16]. There are many kinds of spatial clustering analysis algorithms, the specific selection depends
on the type of data, clustering purposes and other aspects. At present, the commonly used spatial
clustering algorithms can be roughly divided into the following five categories: partition-based clustering
algorithm, hierarchical clustering algorithm, density-based clustering algorithm, grid-based clustering
algorithm and model-based clustering algorithm [17]. Because of the massive location data, arbitrary
spatial distribution, fast update speed and large hybrid, density-based DBSCAN algorithm can find
clusters of arbitrary shape, and can deal with noise. It is often used in pattern discovery of large location
data [18]. However, DBSCAN algorithm has some shortcomings, such as low processing speed when the
amount of data is large, in addition, because the density distribution of location data is not uniform, it is
difficult for DBSCAN algorithm to be applied in practice, so scholars have improved it in many aspects.

In order to solve the problem of parameter selection and global parameters of DBSCAN,
OPTICS(Ordering Points to Identify the Clustering Structure) algorithm is proposed in the literature [19],
according to the concepts of core distance and accessible distance, ranks the objects in the data set and
outputs an ordered list of objects. The information contained in the list of objects can be used to extract
clustering, that is, classify the objects. Compared with the traditional clustering algorithm, the OPTICS
algorithm has the greatest advantage that it does not depend on the input parameters. However,
the algorithm does not produce clustering results visually, only by sorting the objects, and finally gives
an extended cluster sorting structure interactively. DMDBSCAN algorithm [20] is similar to VDBSCAN
(Varied Density DBSCAN) algorithm [21], which is an improved clustering algorithm for non-uniform data
sets. By sorting and visualizing the parameter Distk values of the objects in the data set, can observe the key
points of drastic changes in the Distk sorting graph to divide the non-uniform data set into density levels.
However, the two algorithms can not automatically segment and extract the density hierarchy of data
sets. The algorithm SA-DBSCAN(Self-adaptive DBSCAN) [22] fits the parameter Distk curve by inverse
Gauss function according to the statistical characteristics of the data set, and automatically determines the
global density parameters, which greatly reduces the dependence of DBSCAN on parameters. However,
when clustering data sets with non-uniform density, the clustering effect of SA-DBSCAN algorithm will be
greatly disturbed. DBSCAN algorithm has a high I/O overhead when the amount of data is large, which
leads to low clustering efficiency. Many scholars have proposed corresponding improved algorithms to
improve its efficiency. In order to extend to large-scale data clustering, a common method is to prune the
search space of neighborhood queries in DBSCAN using spatial indexing technology (such as R-Tree) to
improve clustering efficiency, but the efficiency of optimization algorithm still depends on data size [23].
A density clustering algorithm DBCURE-MR based on MapReduce is proposed in the literature [24].
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Although the method achieves speedup of more than ten times or tens of times, it needs the support of
dedicated processors or clusters of dedicated servers.

In this paper, a fast hierarchical clustering algorithm based on Gaussian mixture model is proposed
for the rapid clustering problem of location data with uneven density distribution. The Gaussian mixture
model based on DBSCAN algorithm can realize the density aggregation of position data in general
computing platform. First, the Gaussian mixture model is used to fit the probability distribution of the
dataset to determine different density levels; then, based on the DBSCAN algorithm, the sub-datasets
with different density levels are locally clustered, and at the same time, the appropriate seeds are selected
to complete the cluster expansion; finally, the sub-datasets clustering results are merged. In the method
clustering effect analysis, multi-angle experimental evaluations were performed on multiple public test
data and large-scale location data (from Microsoft T-Driver project) to verify the clustering effect and
performance of the proposed algorithm. The method is applied to the identification of the distribution of
passenger flow clusters by using the peak time data of the actual urban rail station.

The structure of this paper is as follows: Section 2 describes the core idea and detailed process of
the improved DBSCAN algorithm. In Section 3, multi-angle (accuracy, noise impact, time efficiency)
experimental evaluations were carried out on multiple public test data and large-scale location data
(Microsoft T-Driver project) to verify the clustering effect of the proposed algorithm. In Section 4,
the improved algorithm is applied to the recognition of passenger gathering characteristics in urban
rail transit stations. Section 5 concludes the paper.

2. Improved DBSCAN Algorithm for Heterogeneous Data

For the location data set with uneven density distribution, the basic idea of the algorithm is as follows:
firstly, Gauss mixture model is used to obtain the density and distribution characteristics of location data
set, so as to realize the hierarchical processing of non-uniform density data set; then, a fast expansion
processing method of data cluster is designed to improve DBSCAN algorithm and realize clustering
analysis of hierarchical data sets. The core idea of the algorithm is as follows: (1) hierarchical processing
for data sets with uneven density distribution; (2) fast cluster expansion processing.

2.1. Symbolic Description

For the convenience of understanding the method, the relevant parameters are shown in Table 1.

Table 1. Main symbol description.

Symbol Notation Symbol Notation

θ The set of all parameters of the gauss mixture model αi Mixture ratio of gauss components
µi The mean vector of the i-th gauss component Σi Covariance matrix of the i-th gauss component
ω Latent variable P(θ) Prior probability density of parameters

Eps Data point neighborhood range radius MinPts Minimum Neighbor Point Number Threshold
NEps(p) Neighbor point set of point p in Eps neighborhood Distk k nearest neighbor distance
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2.2. Density Layering Based on Gauss Mixture Model

The distribution characteristics of sample points in data set are fitted by a linear combination of a
certain number of Gauss distributions [25–27]. The probability density function of each Gauss distribution
is obtained by the expectation maximization algorithm (EM), and the probability density function is
calculated for different sample points, to measure the density distribution of the sample point. The sample
points with similar probability density function values are divided into the same density layer, so as to
achieve stratified processing of uneven density data sets.

In the above process, the estimation of the unknown parameters in the Gaussian mixture model is the
core of the dataset hierarchy. The author uses EM algorithm to solve the model parameters.

The form of the probability density function of the Gaussian mixture model [28,29] used in this paper
is shown in Equations (1) and (2).

P(X|θ) = Σm
i=1αi pi(x|θi) (1)

p(x|θi) = (2π)−d/2 |Σi|−1/2 exp(−1
2
(x− µi)

TΣ−1
i (x− µi)) (2)

Among them: θ = (θi, αi)
T ,θi = (µT

i , Σi)
T , µi is the expectation of the i-th Gaussian distribution, Σi

is the i-th gaussian distributed covariance matrix, m is the order of the Gaussian mixture model, d is the
dimension of the vector.

The specific steps for estimating the parameters of the Gaussian mixture model using the EM
algorithm are as follows, through the cycle E-Step, M-Step until the final result converges.

(E-Step) Calculate the value of the implicit variable from the value of the parameter estimated in the
previous step:

ω
(t+1)
ij = p(j|xi, θ(t)) =

α
(t)
j p(xi|θ

(t)
j )

∑m
k=1 α

(t)
k p(xi|θ

(t)
k )

=

∣∣∣Σ(t)
j

∣∣∣−1/2
exp(− 1

2 (xi − µ
(t)
j )T(Σ(t)

j )−1(xi − µ
(t)
j ))

∑m
k=1

∣∣∣∑(t)
j

∣∣∣−1/2
exp(− 1

2 (xi − µ
(t)
k )T(Σ(t)

j )−1(xi − µ
(t)
k ))

(3)

(M-Step) Estimating the unknown parameter value according to the value of the implied variable:

α̂
(t+1)
j =

1
n

n

∑
i=1

ω
(t+1)
ij (4)

µ̂
(t+1)
j =

∑n
i=1 ω

(t+1)
ij xi

nα̂
(t+1)
j

(5)

Σ̂(t+1)
j =

1

nα̂
(t+1)
j

n

∑
i=1

w(t+1)
ij xi(xi − µ̂

(t+1)
j )(xi − µ̂

(t+1)
j )T (6)

When using the EM algorithm to solve Gaussian mixture model parameters, E-Step first uses the
α
(0)
j , µ

(0)
j , Σ(0)

j parameter values obtained by initializing M-Step to estimate the value of the implicit class

variable ω
(t+1)
ij ; then, the ω

(t+1)
ij value is substituted into each formula of M-Step. The value of each

α
(t+1)
j , µ

(t+1)
j , Σ(t+1)

j parameter is calculated; when the maximum likelihood maximum value is obtained,

the ω
(t+1)
ij value needs to be recalculated, and iterates until the parameter estimation value obtained twice

in succession satisfies the convergence condition of the algorithm and the algorithm terminates.
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2.3. Parameter Determination of Data Sets with Different Density Levels

The dataset layered by the Gaussian mixture model eliminates the influence of uneven distribution of
dataset density on the clustering effect. The traditional DBSCAN algorithm can be used to perform local
clustering on the data set and obtain the appropriate MinPts and Eps parameter values.

In the traditional DBSCAN algorithm, the threshold parameter MinPts = 4 is usually set empirically;
the value of the neighborhood radius Eps parameter is determined by traversing the distance between
each sample point and all objects in the data set. That is, in the data set of a certain density layer, the k-th
nearest neighbor distance Distk is calculated for any sample point, and the distance values are sorted in
ascending order. When the threshold parameter MinPts value corresponds to multiple k values, it can be
obtained as shown in Figure 1a. The distribution effect of Distk is shown; Figure 1b shows the distribution
of Dist4 for each sample point when the threshold parameter MinPts = 4.

It can be seen from Figure 1 that the parallel distribution features of the density distribution curve of
the dataset after dividing the hierarchy are obvious. In addition, most curves will have a turning point.
Figure 1 can reveal the density distribution characteristics of the dataset to some extent. In general, noise
points and clusters in the dataset should have large density differences. That is, there is a certain threshold
point in the Distk graph. The points in the dataset can be divided into two parts with large differences in
density. This point is shown in Figure 1b, which is a sudden change point of Distk curve from slow to steep
a. The characteristic of the mutation point is that the k nearest neighbor distance Distk changes smaller
before the point of mutation, and the k nearest neighbor distance Distk of each sample point is larger
after the mutation point k. The data point on the right of the a point is the noise point of the low density
distribution. The data point on the left of the a point is the data point of the high density distribution,
and the value Dist4 of the a point is Eps of the density parameter of the cluster, which is the value of the
density parameter MinPts. According to this feature, the Distk value corresponding to this point can be
taken as the value of the Eps, that is, a set of maximum-density connected objects based on density re
achability can be obtained. Through this method, the Eps parameter determination for a uniform density
data set has better feasibility and effectiveness, and the processing process is relatively simple and rapid.

(a) (b)

Figure 1. Distk distribution of a single density hierarchical dataset (a) Threshold parameter MinPts
value is not fixed, Distk distribution effect; (b) Threshold parameter MinPts = 4, distribution of sample
points Distk.
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2.4. Fast Expansion of Clusters

In view of the shortcomings of the traditional DBSCAN algorithm in the efficiency of execution,
a Fast-DBSCAN algorithm is proposed. In the process of clustering the hierarchical data sets, all the
density reachable objects in the neighborhood are classified as the same cluster, and then a certain number
of representative points are selected as the seed objects to extend the cluster.When the number of seed
objects is small, the algorithm will lose the object in the cluster expansion process. In this paper, 8 position
points are taken as reference to select the representative points as seed objects when the two or more cluster
extensions are extended, and there are usually 2n quadrants and 3n−1 reference points for N dimensional
space, so the number of seed objects is up to 3n−1. This paper focuses on the expansion of clusters in
two-dimensional space, so it is reasonable to select 8 seed objects for arbitrary core objects. The selection
method is to take the core object p as the center, draw the circle with its Eps radius, first select 4 points at
the top, the bottom, the left and the right of the circle, and then take the middle point of the arc between
every two points of the above 4 points as the other 4 points, as shown in Figure 2.

In the Algorithm 1, when the first core point of the new class is found, the first batch of representative
points is selected as the seed point for class expansion. In the subsequent class expansion round, the new
seed is continuously added to the seed point collection seed for subsequent class expansion. This cycle
continues until the representative seed is empty. This indicates that the class has been expanded.

In the process ExpandCluster, a process Representative-Seed-Selection is added to select a
representative point from the neighborhood of the core point.

Figure 2. Cluster extension schematic of core points.

2.5. Improved DBSCAN Algorithm for Heterogeneous Dataset

The input of the DBSCAN algorithm based on the Gaussian mixture model is the data set D, the order
m of the Gaussian mixture model and the initial value of the parameter, and the threshold parameter
MinPts; the output is the cluster or cluster obtained by clustering. The flow of the algorithm is shown in
Figure 3, the pseudocode of the improved algorithm is shown in Algorithm 2.
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Algorithm 1 ExpandCluster (SetofPoints, Eps, MinPts, RepresentativeMinPts)

Input: Data set D(Setofpoints), Eps, MinPts, RepresentativeMinPts
Output: Result of Cluster expansion

1: for i=1 to Set of points-size do Point=Setofpoints.get(i)
2: if Point.ClusterID=Unclassified then
3: if ExpandCluster(SetofPoints, Eps, MinPts, RepresentativeMinPts) then
4: ClusterID=nextID(ClusterID)
5: end if
6: end if
7: end for
8: candidate.seeds=SetofPoints.query(Point,Eps)
9: if candidate.seeds<MinPts then

10: SetofPoints.changeClusterID(Point,Noise);
11: return False;
12: else
13: SetofPoints.changeClusterID(candidate.seeds,ClusterID);
14: while Representative.Seeds 6= ∅ do
15: current p=Representative.Seeds();
16: Result=SetofPoints.query(current p,Eps);
17: if Result.size ≥ MinPts then
18: Rrepresentative.Seeds.Select (Result, RepresentativeMinPts, current p);
19: for each point p in Rrepresentative.Seeds do
20: if p. ClusterID= Unclassified then
21: Add point p to the set Rrepresentative.Seeds();
22: end if
23: end for
24: else
25: for each point p in Result do
26: if p. ClusterID= Unclassified or Noise then
27: SetofPoints.changeClusterID(p,ClusterID);
28: end if
29: end for
30: end if
31: end while
32: Rrepresentative-Seeds.delete(current point p)
33: end if
34: return True.
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Figure 3. Flow chart of the improved algorithm.

Step 1: Determine the data set D, initialize the object, and mark the sample point as uncategorized.
Step 2: The Gauss mixture model is used to fit the sample points in the dataset D, and the EM model

is used to solve the model parameters.
Step 3: The Gauss mixed model is represented as a linear combination of multiple Gauss distributions.

Based on the value of the probability density function of each sample point, the data set of the density
distribution is layered, and the data sets of different density levels, {C1, C2, . . . , Cn} are obtained.

Step 4: According to the data set Ci(1 ≤ i ≤ n) of different density levels, the threshold parameter
MinPts = 4 is set to determine the value of Epsi(1 ≤ i ≤ n) parameters, and the local clustering of the
data set Ci is used in turn by using the traditional DBSCAN algorithm.

Step 5: Randomly select an unprocessed object p in the data set Ci to find the total number of objects
whose Epsi and MinPts density can reach, and determine the relationship between the number and the
size of the MinPts. If the value is greater than or equal to the value of MinPts, consider p as the core.
In this case, all the reachable objects in the Eps neighborhood of p are grouped into a cluster. Step 6 is
used to expand the cluster until no cluster can be added to the cluster. This clustering of the core object
p is completed. If less than MinPts, p is marked as noise point, after the object p is processed, Step 5 is
repeated until there is no unprocessed point in the data set Ci. At this time, the data set of the density level
has been clustered and transferred to the next density-level datasets are analyzed.

Step 6: Select k representative objects as seeds in the cluster to join Seeds. Determine whether the seed
object si in the Seeds is the core point. If it is not the core point, remove it directly from the Seeds. If it is the
core point, then add the si neighbors. The unclassified objects in the domain join the cluster, and continue
to select k′ representative objects as seeds in the si neighborhood to join the Seeds′. Then the seed objects
in the Seeds′ are traversed, and uncategorized seeds are added to the Seeds as new seed objects. si is now
processed and removed from Seeds. The above process is repeated until all the seed objects in the Seeds are
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processed. At this time, the cluster expansion of the core point p ends, and the cluster expansion process
of the next core point is transferred.

Step 7: When all the density level data sets Ci are clustered, the clustering results of each data set can
be merged to output the final clustering results of the whole data set D.

3. Numerical Experiments and Effect Evaluation

In this section, the simulation experiment process includes two parts: the first part is to test the
clustering accuracy by using open UCI data sets; the second part is to test the clustering accuracy by
using classical simulation data sets, and make a comparative analysis of the clustering effect quality of the
two algorithms.

3.1. Analysis of Clustering Effects for Public Datasets

This section evaluates the clustering effect and efficiency of the improved DBSCAN, and compares
it with DBSCAN. The data used in the experiment are shown in Table 2. Iris-t7.10k are six data sets
including clusters of arbitrary shape, density, dimension and quantity. Four of these data sets are shown in
Figure 4. Aggregation includes seven clusters of non-Gaussian distribution. DS1 consists of five clusters
with different densities and a large amount of noise is doped in the data set. t4.8k is composed of seven
density clusters of different shapes, nested each other and doped with a large amount of noise. t7.10k
consists of nine clusters with different densities and nested among clusters. Taxi1 and Taxi2 data are from
the T-Drive project of Microsoft Asia Research Institute. T-Drive collected GPS data of 10,357 taxis in
Beijing within a week. Taxi 1 extracted the location data of 5000 taxis within the Fifth Ring Road in Beijing
for 8 h. Taxi 2 extracts 8-h location data for 10,000 taxis.

Table 2. Test data sets.

Data Sets Data Size Data Dimension Category Data Sources

Iris 150 4 3 http://archive.ics.uci.edu/ml/datasets/
Wine 178 13 3 http://archive.ics.uci.edu/ml/datasets/

Aggregation 788 11 2 Artificial data [30]
DS1 8000 2 5 Artificial data [31]
t4.8k 8000 2 7 http://glaros.dtc.umn.edu/gk/home/
t7.10k 10,000 2 9 http://glaros.dtc.umn.edu/gk/home/
Taxi 1 1,194,976 2 Unknown https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
Taxi 2 2,148,225 2 Unknown https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

In order to validate the effectiveness of the proposed method, the clustering results of DBSCAN and
improved DBSCAN methods were tested on 6 benchmark datasets such as Iris-t7.10k. The evaluation
method was compared with DBSCAN clustering results. In order to verify the efficiency of the algorithm,
the CPU time and memory consumption of the proposed method and the comparison algorithm are
measured on two large-scale location data sets, Taxi1 Taxi2. The efficiency of the algorithm and the
sensitivity to input parameters are evaluated.

http://archive.ics.uci.edu/ml/datasets/
http://archive.ics.uci.edu/ml/datasets/
http://glaros.dtc.umn.edu/gk/home/
http://glaros.dtc.umn.edu/gk/home/
https://www.microsoft.com/en-us /research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us /research/publication/t-drive-trajectory-data-sample/
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Algorithm 2 DBSCAN algorithm based on Gauss mixture model.

Input: Data set D, Gaussian mixture model order m, Threshold parameter MinPts
Output: Clustering result C = C1,C2, . . . , Ci;

1: C = ∅, marked all objects in data set D as unprocessed;
2: Phase 1 Hierarchical processing of data sets with uneven density distribution
3: Initialize the Gaussian mixture clustering model parameters m;
4: repeat
5: for n = 1,2,. . . ,i do
6: Calculate the value of the implicit variable from (3);
7: for m = 1,2,. . . ,k do
8: Calculate the mean vector using (4);
9: Calculate the covariance matrix with (5);

10: Calculate the mixing factor with (6);
11: Update parameter θ =

{
αt

j, µt
j, Σt

j

}
12: end for
13: end for
14: until
15:

16:

∣∣∣∣ logp(x|θt)−logp(x|θ(t+1))
logp(x|θt)

∣∣∣∣ ≤ e(e = 0.001).
17:

18: Get datasets Di of different density levels of the data set D according to the Gaussian distribution

parameter obtained by the formula (3)–(6);
19: Phase 2 Clustering processing of data sets of each layer
20: for datasets Di (i = 1, 2, . . . n) do
21: Set threshold parameters MinPts = 4, the Epsi (i = 1, 2, . . . n) values of each density level are

sequenced from small to large, and the traditional DBSCAN algorithm is used to locally cluster the

data set Di.
22: for each object p in data set Di do
23: if p has been classified as a cluster or marked as noise then
24: continue;
25: else
26: find objects p that are reachable to Eps and MinPts;
27: if NEps(p) (the Eps neighborhood of object p) contains fewer objects than MinPts then
28: mark object p is a boundary point or a noise point;
29: else
30: p=Representative.Seeds();
31: ExpandCluster(Set of Points, Eps, MinPts, RepresentativeMinPts);
32: for All objects q in NEps(p) that have not been processed do
33: Check its Eps neighborhood NEps(q). If NEps(q) contains at least MinPts objects, add

objects in NEps(q) that are not classified into any cluster to cluster C;
34: end for
35: end if
36: end if
37: end for
38: end for
39: return Cluster division C = C1,C2, . . . , Ci.
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3.2. Effect Evaluation

The clustering results on the benchmark data set are shown in Figure 5. The improved DBSCAN and
DBSCAN have the same MinPts parameters on the same data set, which are 10, 4, 20, 4 respectively.

In order to distinguish easily, different colors and shapes are used to represent different clusters.
It can be seen from the graph that the improved DBSCAN can find the same cluster structure as DBSCAN
and recognize noise points. This is because the improved DBSCAN follows density correlation on the
basis of density stratification and belongs to accurate density clustering method. Traditional DBSCAN is
not easy. Identifying uneven density distribution data, such as DS1 data sets, is difficult to separate right
cluster; on t4.8k, it is also difficult to separate green adjacent cluster regions; on t7.1k data sets, it is easy to
recognize the surrounding location points as noise when trying to distinguish the nested cluster in the
upper left corner; to distinguish different clusters, it is necessary to set a smaller Eps value, but it is not
easy to distinguish between them. At the same time, a cluster will be divided into several parts or generate
more noise or as shown in the data sets Aggregation and t7.1k.

(a) (b) (c) (d)

Figure 4. Four data sets used in experiments. (a) Aggregation. (b) DS1. (c) t4.8k. (d) t7.10k.

(a) (b) (c) (d)

Figure 5. Clustering effect of DBSCAN on four data sets. (a) Aggregation. (b) DS1. (c) t4.8k. (d) t7.10k.

It can be seen from Figure 6 that the DBSCAN algorithm cannot find a suitable parameter Eps in
the process of clustering datasets with uneven density distribution so that each cluster can be correctly
identified. If the value of the Eps parameter is large, only clusters of low-density sample points can be
separated, and higher-density sample points can be merged into the same cluster. Cluster separation of
high-density distribution sample points cannot be completed; if the value of the Eps parameter is lower
Small, clusters of higher-density sample points can be isolated, while lower-density sample points are
separated into multiple sub-classes and generate a large number of noise points. It can be seen that the
DBSCAN algorithm can not accurately complete the effective clustering of density distribution uneven
data sets.
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(a) (b) (c) (d)

Figure 6. Clustering effect of improved DBSCAN on four data sets. (a) Aggregation. (b) DS1. (c) t4.8k.
(d) t7.10k.

3.2.1. Effect of Noise Intensity on Clustering Effect

The effect of improved DBSCAN and traditional DBSCAN algorithm on noise recognition is tested
on Aggregation data. 100, 150, 200 randomly distributed noise points were added to Aggregation data
respectively. In Figures 7 and 8, the clustering results of improved DBSCAN and traditional DBSCAN
algorithm with different intensity noise are presented respectively. The improved DBSCAN can identify
the noise data by adjusting the parameters, and can obtain clustering results similar to those before adding
noise. The traditional DBSCAN algorithm is difficult to distinguish the connected clusters from the original
data. On the noise data, it is easy to connect the similar clusters into one cluster through the noise points,
and it is also difficult to identify the noise data. Although some noises can be recognized by reducing Eps
parameters, meaningful clustering results can not be obtained.

(a) (b) (c)

Figure 7. Influence of noise intensity on DBSCAN clustering effect. (a) noise = 100. (b) noise = 150.
(c) noise = 200.



Energies 2019, 12, 3722 13 of 22

(a) (b) (c)

Figure 8. Influence of noise intensity on improved DBSCAN clustering effect. (a) noise = 100. (b) noise =
150. (c) noise = 200.

3.2.2. Evaluation Results of Clustering Effect

For the evaluation of clustering results, selecting a single clustering evaluation index sometimes
can not explain the effectiveness of the clustering algorithm very well, so in the experiment, several
evaluation indexes are used to verify the effectiveness of the algorithm, which makes the conclusion of
this experiment more convincing. In the experiment, Accuracy, Fowlkes-Mallows, Jaccard Coefficient (JC
index) and Precision are used as the evaluation indexes of clustering results. The mathematical formulas
are as follows [32]:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

FM =
√

Precision× Recall =
√

TP
TP + FP

× TP
TP + FN

(8)

Jaccard =
TP

TP + TN + FP
(9)

Precision =
TP

TP + FP
(10)

where TP represents true positive, the set of common pairs of objects in both the sample cluster and
clustering result cluster; TN represents true negative, the set of objects are neither in the sample cluster
nor in the clustering result cluster; FP represents false positive, the set of objects in the result cluster but
not in sample cluster; FN represents false negative, the number of pairs of objects in the sample cluster but
not in result cluster.

The range of values of these clustering evaluation indicators is between 0 and 1. The larger their
values are, the better the clustering effect of the improved clustering algorithm will be. If the value
of the evaluation index is 1, it shows that the clustering effect of the clustering algorithm is exactly
the same as the label in the real data set. In the process of experiment, the evaluation indexes of the
four clustering algorithms need to be considered and the effectiveness of the algorithms should be
evaluated comprehensively.The comparison results are shown in Table 3.
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Table 3. Comparisons of clustering results in data sets.

Data Sets
DBSCAN Improved DBSCAN

Accuracy FM Jaccard Precision Accuracy FM Jaccard Precision

Iris 0.6467 0.6396 0.5951 0.5951 0.8733 0.8651 0.7190 0.8384
Wine 0.6238 0.6014 0.4527 0.5268 0.7917 0.7701 0.5329 0.5768

Aggregation 0.7112 0.7004 0.6367 0.7037 0.8922 0.8696 0.7109 0.8246
DS1 0.5856 0.5798 0.3616 0.3826 0.8108 0.8019 0.3642 0.3966
t4.8k 0.5456 0.5310 0.3383 0.3715 0.7001 0.6833 0.3553 0.3879

t7.10k 0.3971 0.3506 0.2297 0.2384 0.8334 0.8367 0.6121 0.6606

From the clustering results, it can be seen that the improved algorithm has better clustering effect than
the traditional DBSCAN algorithm in data sets with uneven density distribution. In addition, in order to
better verify the efficiency of the improved algorithm, the time complexity of clustering method is verified
by the traffic location data of the T-Drive project of Microsoft Research Institute.

3.2.3. Clustering Time Comparison

This section tests the clustering efficiency and spatial memory consumption of the improved DBSCAN
algorithm on location big data and compares it with traditional DBSCAN. Each algorithm sets the same
parameters on the same data set. The parameters on each data set are Eps = 0.005 and MinPts = 20.
The CPU time trend graph consumed by each algorithm is shown in Figure 9a, and the memory
consumption is shown in Figure 9b.
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Figure 9. Comparisons of Clustering Performance of Microsoft Taxi Location Data Set: (a) CPU Time (Log);
(b) Memory.
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4. Cluster Analysis of Passenger Position Data in Urban Rail Stations

In this section, the simulation shows that the passenger flow position data has uneven distribution
characteristics, and then the method validity is verified by using the peak time data of the actual platform.

4.1. Uneven Distribution of Passenger Position Data

Cross-interference between passenger streamlines will lead to uneven density distribution of
passenger groups in the station. On the basis of field investigation and simulation by Anylogic, the location
distribution map of passenger groups at different times on the platform can be obtained. The simulation
model of Anylogic in this paper is mainly divided into four modules: pedestrian behavior logic module,
train logic module, Guo Gongzhuang platform physical environment module. In the pedestrian behavior
logic module, pedestrian behavior logic module is constructed from two aspects: inbound passenger flow
and outbound passenger flow. Part of the passenger flow goes directly to the platform for waiting, while
the other part leaves the platform through stairway. When the train arrives and the waiting passengers
finish boarding, the passenger flow disappears. The train logic module mainly simulates the process
of subway train entering and leaving the station through Rail Libraiy. The module functions include
the generation and disappearance of the train, the alighting of passengers and the boarding of waiting
passengers after the arrival of the train. The physical environment module of the station includes the key
facilities such as the wall, obstacles and stairs of the station. It is constructed with space marking tools
in the pedestrian database. The parameters in the simulation are derived from the field investigation of
Guogongzhuang Station on 23 July 2019. During peak hours, the departure interval of adjacent trains
is about 150 s, and the average time of train stopover is 55 s. The ratio of passenger flow from left and
right entrance to opposite platform is about 8.7:1.3 and 8.4:1.6. It can be seen that there is a more obvious
non-uniform density distribution characteristic, as shown in Figure 10.
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a) The simulation time T=1, the passenger flow distribution on the platform at the first arrival of the upstream train

b) The simulation time T=2, the passenger flow distribution on the platform at the first arrival of the upstream train

c) The simulation time T=3, the passenger flow distribution on the platform at the second arrival of the upstream train
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Figure 10. Location Distribution Map of Passenger Flow on Urban Rail Platform at Different Times.

In order to further verify the practicability of the proposed algorithm, the actual data of an
urban rail transit station in Beijing was used to perform clustering analysis using the traditional
DBSCAN algorithm and the proposed algorithm. The data of 18:00–18:30 in the evening peak period
of Guogongzhuang subway station on 18 July 2016 is used as experimental data to investigate the
performance and accuracy of the clustering algorithm. The data sample has a total of 50,000 sampling
points. Table 4 shows the information of each attribute data of some sampling points. Each sample
point consists of attributes such as ID, time, longitude, and latitude. The data source is the passenger
position data that is continuously uploaded to the database server in a fixed period (10s) during the
test of the WIFI positioning system in the transfer station.

Table 4. Format of pre-processed WiFi positioning data.

Number User_ID TimeStamp X Y

1 0017 20160718180110 117.78 8.76
2 0059 20160718180130 86.40 5.78
3 0068 20160718180150 23.20 8.48
4 0094 20160718180210 102.84 8.84

. . . . . . . . . . . .
49,500 0397 20160718182920 72.90 3.68
49,510 0415 20160718183000 113.09 7.89

The first column in the table is the data number, the second column is the mobile device (or
passenger) number, the third column shows the time of data acquisition, and the fourth and fifth
columns record the geographical coordinates of the passenger at that time.

4.2. Cluster Analysis of Passenger Position Data Based on Traditional DBSCAN Algorithm

The traditional DBSCAN algorithm is used to perform cluster analysis on the above-mentioned
passenger position data. The threshold parameter Minpts is set to 4, and different clustering effects

Figure 10. Location Distribution Map of Passenger Flow on Urban Rail Platform at Different Times.
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In order to further verify the practicability of the proposed algorithm, the actual data of an urban rail
transit station in Beijing was used to perform clustering analysis using the traditional DBSCAN algorithm
and the proposed algorithm. The data of 18:00–18:30 in the evening peak period of Guogongzhuang
subway station on 18 July 2016 is used as experimental data to investigate the performance and accuracy
of the clustering algorithm. The data sample has a total of 50,000 sampling points. Table 4 shows the
information of each attribute data of some sampling points. Each sample point consists of attributes such
as ID, time, longitude, and latitude. The data source is the passenger position data that is continuously
uploaded to the database server in a fixed period (10 s) during the test of the WIFI positioning system in
the transfer station.

Table 4. Format of pre-processed WiFi positioning data.

Number User_ID TimeStamp X Y

1 0017 20160718180110 117.78 8.76
2 0059 20160718180130 86.40 5.78
3 0068 20160718180150 23.20 8.48
4 0094 20160718180210 102.84 8.84

. . . . . . . . . . . .
49,500 0397 20160718182920 72.90 3.68
49,510 0415 20160718183000 113.09 7.89

The first column in the table is the data number, the second column is the mobile device (or passenger)
number, the third column shows the time of data acquisition, and the fourth and fifth columns record the
geographical coordinates of the passenger at that time.

4.2. Cluster Analysis of Passenger Position Data Based on Traditional DBSCAN Algorithm

The traditional DBSCAN algorithm is used to perform cluster analysis on the above-mentioned
passenger position data. The threshold parameter Minpts is set to 4, and different clustering effects can
be obtained by selecting different Eps values. The x of different colors in the figure represents different
categories.o represents the noise point.

When MinPts = 4, Eps = 1.0, the clustering effect of the algorithm is shown in Figure 11a. Only the
cluster analysis of high-density passenger position data can be achieved, but for low-density passenger
position data, it is basically impossible to complete. Clustering results in a large number of passenger
position data being treated as noise points, and it is not possible to present the aggregation and distribution
characteristics of passenger mass transfer behavior.

When MinPts = 4, Eps = 1.5, the clustering effect of the algorithm is shown in Figure 11b, which can
satisfy the cluster analysis of low-density distribution of passenger position data. However, because the
value of the neighborhood parameter Eps is too large, it cannot correctly identifying the clustering and
distribution characteristics of passenger clusters in similar areas results in the high density distribution of
passenger location data being clustered into the same category.
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Figure 11. DBSCAN algorithm for passenger location data clustering effect chart (a) MinPts = 4, Eps = 1.0;
(b) MinPts = 4, Eps = 1.5.

It can be seen that using the traditional DBSCAN algorithm, cluster analysis is performed on the
passenger position data with uneven density distribution. If the global Eps parameter value is selected by
referring to the high-density passenger position data, the low-density passenger position data cannot be
clustered, and a large number of noise points are generated. If the global Eps parameter value is selected
by referring to the low-density passenger position data, the high-density passenger position data will be
merged into the same cluster, which affects the accuracy of the clustering result.

4.3. Cluster Analysis of Passenger Position Data Based on Improved DBSCAN Algorithm

Using the DBSCAN algorithm based on the Gaussian mixture model proposed in this paper,
the clustering test is conducted for the above dataset. The Gaussian mixture model was used to fit
the test passenger position data set, and the model order was set to m = 4. The probability density function
formula was obtained from Equations (1) and (2) to fit the distribution of the passenger position data
set on the platform at the moment. feature. In the fitting process, the EM algorithm parameters given
in Table 1 are used to solve the process, and the unknown parameter θi = {αi, µi, Σi} (1 ≤ i ≤ 4) in the
Gaussian mixture model is estimated. The estimated results of each parameter are shown in Table 5.

Table 5. Gaussian mixture model parameter estimation results.

Gaussian Branch Mixing Ratio Mean (x,y) Covariance Matrix [2*2 Order]

1 0.3003 (13.4299, 5.4690) [25.7538 −10.7629; −10.7629 14.6453]
2 0.1864 (46.9046, 3.7905) [25.7538 0.1623; 0.1623 24.6453]
3 0.2322 (73.2017, 6.4068) [16.8556 −0.8974; −0.8974 17.0216]
4 0.2811 (106.4897, 4.7309) [30.2539 15.4563; 15.4563 16.1026]
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The location of the passenger’s location determines the range of the mean value of the single Gauss
distribution to a certain extent, and the point of the passenger location data is fitted to the corresponding
single Gauss distribution, while the remaining test passenger location data is fitted to the most suitable
single Gauss distribution.

Figure 12 shows the iterative process that the parameters of the Gauss model are gradually convergent
and stable.

By setting the appropriate threshold and dividing the data set, we can get the hierarchical result for
the dataset, as shown in Figure 13.

According to the parameter determination method of the single density hierarchical data set,
the clustering parameters of the first density data of the data concentration are Minpts = 4, Eps = 1.0,
and the clustering parameters of the second density hierarchical data are Minpts = 4, Eps = 1.5. According
to the order from small to large, the clustering is carried out in order, the higher density level of passenger
location data is first clustered, and then the data of the lower density level are clustered, and the cluster is
labeled as Cij (the j cluster of the density level is Di) so as to ensure that the sample points completing the
clustering will not be repeated again. When the data of all density levels are clustered, the data points that
are not clustered are labeled as noise points. With the local clustering results of different density level data,
the aggregation and distribution characteristics of the passenger group behavior on the station platform
can be obtained, as shown in Figure 14.

Compared with the clustering results shown in Figure 11a,b, the improved algorithm has a better
clustering effect for high density distribution and low density distribution of passenger location data.
At the same time, a large number of passenger location data are avoided to be mishandled as noise points,
thus overcoming the defects of the traditional algorithm for the failure of the passenger cluster in the
similar areas.

4.4. Passenger Location Aggregation Visualization

In order to intuitively describe the differences in the number, size, and degree of density between
different passenger clusters, visualization of the heat map is used to present the aggregation and
distribution characteristics of the passenger groups so as to facilitate the operator’s organization of the
passengers and the evacuation of abnormal passenger flows. By establishing a reasonable mapping
relationship between the passenger cluster characteristics and the visualization object, the discrete
parameters of the passenger cluster are converted into a continuous form, and the passenger position data
distribution characteristics are transmitted using the color change.

First, the passenger cluster space coordinates are projected to the interface coordinates, and the
average of the coordinates of each passenger location in the cluster is worth the centroid of the map.
The appropriate icon size is set by the envelope area method, so that it can truly reflect the range of the
passenger cluster activity, and the passenger cluster is characterized by setting the color coverage range.
In order to describe the difference between the density of the different passenger clusters and standardize
the maximum density of the density, the degree of the aggregation of the passenger cluster is expressed
by the linear gradient color, so as to ensure the fast and accurate identification of the passenger cluster
with different distribution characteristics. The aggregation and distribution characteristics of the tested
passenger groups at a certain time on the platform are visualized, as shown in Figure 15.
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Figure 12. Parameter convergence process of Gauss mixed model (a) α convergence process; (b) µx

convergence process; (c) µy convergence process; (d) Σx convergence process; (e) Σy convergence process.
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Figure 13. Schematic diagram of passenger location data density level division.
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Figure 14. Improved DBSCAN algorithm for passenger location data clustering (MinPts = 4; Eps1 =

1.0, Eps2 = 1.5).
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Figure 15. Passenger location aggregation visualization.

In Figure 15, the degree of aggregation of passengers is gradually reduced by red, yellow, and green.
The red area is the area where passengers gather most densely. The blue area shows that there is basically no
aggregation of passengers. Therefore, according to the visualization of the passenger’s location aggregation
analysis results, the basic situation of the aggregation and distribution of the passenger group behavior
can be effectively identified.

5. Conclusions

The purpose of this study is to cluster and analyze the location data with inhomogeneous density
distribution. The Gaussian distributed probability density function is used to implement the dataset
delamination, which eliminates the effect of uneven density distribution on the clustering effect. The rapid
expansion of clusters improves the inefficiency of algorithm execution. The numerical experiments show
the effectiveness of the algorithm by using the open data set and the influence of clustering accuracy,
clustering time efficiency and noise intensity on clustering results. This method is applied to the recognition
of passenger clusters at urban rail transit stations and verifies the practicability of the algorithm.
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Through accurate clustering analysis of passenger location data in the station, not only can the
aggregation of conventional areas be clearly presented, but also real-time passenger hot spots can be found
in the station, so that the operators can organize and guide the behavior of passenger groups. In addition,
when an emergency occurs in a station, the aggregation and distribution characteristics of passenger
group behavior at the current moment can be used to continuously update and display the changes of
passenger group behavior during evacuation process. Station operators can communicate in real time
through information sharing, and adopt targeted measures such as manual and broadcast guidance to
make reasonable arrangements. The number and location of guides can effectively adjust the passenger
route selection scheme and improve the passenger evacuation speed.

The method in this paper needs to set the order parameter of the Gaussian mixture model artificially.
In the follow-up study, researchers can explore whether information can be obtained from the distribution
of data sets to determine the order of the model. In addition, when clustering location data, researchers
can further consider extracting trajectory characteristics and mining the internal rules of trajectory data.
So as to provide support for emergency decision-making.
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