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Abstract: In view of the water swelling of mudstone and the creep induction function of formations in
the process of oilfield water injection, the casing incurs collapse deformation under local lateral load.
In this study, according to the actual collapse deformation characteristics of the casing in the second
section of the Qing formation of the Songliao Basin in China, the yield surfaces of the casing collapse
deformation are considered as plane plastic areas (half rhombus) with symmetric parabola shaped
boundaries, and a mechanical model for the local lateral collapse deformation of casing is presented
based on the principle of virtual work. Four types of casing, 4 1

2 ”J55, 5 1
2 ”J55, 4 1

2 ”N80 and 5 1
2 ”N80,

are selected as examples. The relation of the casing intensity, the absolute reduction of intensity
and the relative reduction ratio of intensity change with casing wall thickness, yield stress, radial
maximum deformation, and deformation length are calculated and analyzed. The results show that
the casing intensity of the casing is reduced under local lateral load, which is lower than the design
standard value of the American Petroleum Association specification (API SPEC) 5CT. The relative
reduction ratio declines linearly with the wall thickness of the casing wall as the yield stress increases,
and increases linearly with increasing maximum deformation. In addition, the local lateral bearing
capacity of the casing reaches the minimum value when the plastic deformation length reaches the
critical value or the deformation quantity is less than the critical value. The conclusions provide
scientific guidance for preventing casing failure accidents caused by deformation.

Keywords: casing collapse; local lateral load; principle of virtual work; Jilin oilfield

1. Introduction

The problem of casing failure has a critical effect on the working lifetime of oil and gas wells and
restricts the efficiency mining of oil and gas and reservoir construction. There have been serious casing
failure problems in conventional and unconventional oil and gas fields [1–5].

Casing strength design is the precondition for researchers to prevent casing failure. In the
1940s, the Soviet Union mainly used the formula Gina as the reference standard for the design of
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casing strength. In the 1950s, G.M. Sarji Soe considered the influence of ovality and wall thickness of
casing, and established a calculation standard for casing collapse strength which was adopted as the
national standard. By the mid-1970s, most countries used API (American Petroleum Association) [6]
specification as the calculation standard of casing strength. At present, in order to optimize casing
design, an amount of important research achievements on the collapse strength of casing under uniform
and non-uniform loads have been made [7–12], from which some standards have been formed such
as the API 5C3 and ISO 10400. Although the API 5C3 and ISO 10400 [13] standards have presented
the prediction models and been adopted by the world oil industry, mechanical models based on two
standards are not suitable for strength criteria or prediction of casings under special conditions in the
process of strength design. Therefore, in view of some complex formation conditions and drilling and
production technology, some special forms of casing failure problems have not yet been solved [14–17].
The problem of casing collapse deformation under the lateral load of the Qing second formation in Jilin
oilfield is shown in Figures 1 and 2. The casing failures of the Qing second formation in Songliao Basin
are serious. The proportion of wells with such casing failure in Jilin oilfield is shown in Figure 3 [18].
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Figure 3. The ratio of casing failure wells in different areas of Jilin oilfield in China.

The study found that the main external causes of casing collapse is lateral local load formed since
the mudstone expands with water absorption and formation creep in the Qing second formation [19–21].
The boundary shape of deformation casing collapse area based on data statistics is shown in Figures 4
and 5. The radial deformation is an approximate half rhombus, and area boundaries of are approximate
symmetric parabolas. In addition, Jones et al. [22] reported that the bottom of the deformed area of
cylindrical shells with fixed ends under lateral load also present a plane shape through theoretical
analysis and experimental results. Therefore, in the present study, according to the actual collapse
deformation characteristics of the casing in the Jilin oilfield, the yield surface of the casing collapse
deformation is considered as a plane plastic zone with an arc-shaped boundary. A mechanical model
of casing collapse under local lateral load is presented, based on the principle of virtual work [23–25].
Taking the J55 and N80 type casings used in the oilfield as the research objects, the casing deformation
law under local lateral load was analyzed and compared with the API 5C3 standard for casing strength.
The relationship between the change of deformation quantity and deformation length for different
types of casings with lateral load strength was determined by analyzing the extent of decline of the
strength when the casings deform under lateral load.
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Figure 4. Side view of casing collapse deformation (Jilin oilfield, China).
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Figure 5. Front view of casing collapse deformation (Jilin oilfield, China).

The calculation results show that under the action of local lateral load, the bearing capacity of
casing failure decreases. Casing strength design based on current API 5C3 standard cannot meet the
requirements of engineering, so it is necessary to design casing strength according to local lateral
load. The conclusions provide scientific guidance for designing the casing string and preventing
casing failure in the future, and also provides a scientific basis for further improving API strength
design standards.

2. Stress State of Downhole Casing and Mechanical Model

2.1. Mechanical Behavior of Casing Collapse Under Lateral Load

According to the mechanical state of casing in Figure 6, formation 1, formation 2 and formation 3
represent different layers of rock. The gap between the casing and the formation is cemented by the
cement, and the casing, cement sheath and formation form a combination, the top view of which is
shown in Figure 7. In the actual formation of the Jilin oilfield, formation 1 and formation 3 are sandstone
formations, and formation 2 is a rock formation with high mudstone content. In general, formation 2 is
bound by adhesive to form a perfect cement layer when drilling is below formation 2. However, a gap
exists between the cement ring and the formation due to the underdeveloped cementing quality, which
results in channeling between the oil and the groundwater, and the groundwater enters formation 2.
The formation 2 absorbs water causing it to swell and creep deformation to occur; squeezed by the
rock layers above and below, the local lateral load is finally formed.
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2.2. Mechanical Model of Casing Under Local Lateral Load

2.2.1. Geometric Characteristics of Casing Deformation and Assumptions

According to the shrinkage failure and mechanical state of the casing under the local lateral load
in the actual conditions of oilfields shown in Figures 6 and 7, the mechanical model of the casing can be
regarded as a cylindrical and thin-walled metal tube with a fixed support at both ends. The physical
and mechanical model of deformation under local lateral load is shown in Figure 8. According to the
mechanical model in Figure 8, the deformation characteristics of the deformation curve boundaries
AFB and AEB and the maximum deformation curve AGB determine the degree of failure of the casing,
as shown in Figure 9. In this paper, the mechanical calculation chart for casing collapse deformation
under lateral load on the casing was established based on the examples of casing collapse in Figures 4
and 5, as shown in Figure 8, where the lateral deformation curve boundaries AFB and AEB are
arc-shaped, the plastic deformation surface SAFBEA is a plane, point G is the center of the deformed
surface, and line AG and line GB are the broken lines, as shown in Figure 9.
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According to the mechanism of mechanical deformation in Figures 8 and 9, the assumptions made
concerning the research objects are as follows:

(1) The deformation constitutive relationship of the thin-walled metal tube material under local
lateral load satisfies the ideal rigid plastic deformation, and the compressive deformation of the
material is negligible. That is to say, the interface perimeter of the thin-walled metal short tube is equal
in the pre- and post-deformation.

(2) The bending and rotation of a short cylindrical tube under lateral loads are not considered.
(3) The depth of the depression in the deformed area varies continuously along the X-axis. The side

of the deformed depression is curved and the bottom of the depression is planar.
(4) The section of the casing tube after deformation is an arc-shaped curved section, and

the equal-area axis after plastic deformation passes through the center of the circular section
before deformation.

2.2.2. Geometric Relationship of Model

This paper assumes that the casing diameter is d, the tube radius is r before deformation,
the maximum deformation quantity of the tube under lateral load is δ(h), the deformation circular
boundary point is E’, F’ and G’ before deformation, the deformation circular boundary point is E, F
and G, after deformation, the tube radius is r̃ after deformation, the centers of the circle are O/O’ pre-
and post-deformation respectively, and the angles between the boundary and the main deformation
axis are α(h), α(h) and α(h)′ pre- and post-deformation respectively (refer to Figures 10–12).Energies 2017, 10, x FOR PEER REVIEW  7 of 24 
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According to the geometric relationship in Figures 9–12 and the assumed condition (1) in this
paper, we can obtain:

2πr = lEF + 2rarcsin
d− δ(h)

r
+ πr (1)

where lEF is the chord length between point E and point F after deformation. Arranging Equation (1),
we obtain:

lEF = πr
{

1−
2arcsin[(r− δ)/r]

π

}
(2)

From this, the coordinates of point A, point B, point E, point F and point G can be obtained:

A(0, d, 0)
B(2h, d, 0)

E
(
h, d− δ(h), lEF

2

)
F
(
h, d− δ(h),− lEF

2

)
G(h, d− δ(h), 0)

(3)

According to assumed condition (2), the parameters satisfy the following geometric relationships:
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α(h) = arccos
(

r− δ(h)
r

)
(4)

r′ =
πr−

(
π− α(h)′

)
r′

sinα(h)′
(5)

r′ sinα(h)′ = rα(h) (6)

r′ cosα(h)′ = (r− δ(h)) − (r′ − r) (7)

α(h)′ = arctan
[

rα(h)
r− δ(h)

]
(8)

According to assumed condition (3), the continuity equation from point A to point G of the tube is:

y = y(x) (9)

According to the conditions assumed in this paper, the plastic zone of the tube formed under the
external load is a plane. Consequently, the continuity equation of Equation (9) is:

y(x) =
δ(h)

h
· x (10)

In the same way, the continuity equation from point A to point E of the tube is:

z = z(x) (11)

According to the conditions assumed in this paper, the boundary of the plastic deformation zone
is arc-shaped, and the arc-shape can be regarded as a part of the parabolic equation. Accordingly,
Equation (11) can be expressed as follows:

z(x) = (mx + n)2 + k (12)

According to the coordinate relation among point A, point B and point E, Equation (12) can be
expressed as follows:

z(x) = −


√

r · α(h)
h

x−
√

r · α(h)

2

+ r · α(h) (13)

3. Calculation of Virtual Work for Pipe String Deformation

3.1. Principle of Virtual Work

The principle of virtual work represents the equilibrium equation of the particle system in the form
of virtual work [26,27], and it can be expressed that the indispensable condition and sufficient condition
for a particle system to be in equilibrium with ideal constraint is the sum of the elementary work that
the active force works on the virtual displacement of the particle system is zero [28]. The model in this
paper satisfies the principle of virtual work, and assumes that the work of internal force is negative
while the work of external force is positive in the process of casing deformation. The work of internal
force is equal to the work of external force when the casing incurs plastic deformation under local
lateral uniform load according to the principle of virtual work [29].

According to the above description, the following equation can be obtained:

Wex = Win (14)
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where Wex is the virtual work that the local partial uniform load works on the casing, Win is dissipative
work that the casing overcomes the plastic deformation [30–32] created by internal force.

3.2. Work Done by Internal Force and External Force in Pipe String Deformation

3.2.1. Dissipative Work Done by Internal Force from Which the Casing Overcomes Plastic Deformation

(1) Plastic dissipative work W1 when the plastic zone changes from the cylindrical surface to a
flat surface.

According to the conditions assumed in this paper, the plastic dissipative work when the casing
changes from the cylindrical surface to an arc-shaped surface under local partial load is:

W1 = 2
∫ h

0
Wsdx (15)

where Ws is the dissipative work on any arc length ds.
According to the geometric relationship in Figure 10, the dissipative work Ws on any given arc

length ds is:
dWs = 2N0αds (16)

where N0 is the ultimate axial force of the deformation mechanism [33–35].
According to the assumed conditions, the ultimate axial force can be expressed as:

N0 =
σ0D2

4
(17)

where σ0 is the yield strength of tube material, and D is the wall thickness of the tube.

The dissipative work on the whole arc
_
KL is:

Ws = 2
∫ s

0
N

0
αds = 2

∫ α(x)

0
2N0rαdα =

σ0D2rα2(x)
2

(18)

where α(x) is the angle between the line from the plastic zone boundary to the center and the concave
direction when any section ranges from a cylindrical surface to a flat surface.

The concave depth is continuously changed along the direction of the X axis. In the process of
changing from x = 0 to x = l obtained by Equation (4), α(x) on any section satisfies the relationship:

α(x) = arccos
(r− δ(x))

r
(19)

where δ(x) is the concave depth on any section.
According to the binding relationship in Figure 10 and the assumed conditions, the following

relation is obtained:
δ(x)
δ(h)

=
x
h

(20)

Substituting Equation (19) and Equation (20) into Equation (18), Ws on any section can be obtained:

Ws =
2σ0D2

4
r ·

[
arccos

(
1−

δ(h)
rh

x
)]2

(21)

According to Equations (18)–(20), Equation (15) can be expressed as follows:
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W1 = 2
∫ h

0 Wsdx = 2
∫ h

0
2σ0D2

4 · r ·
[
arccos

(
1− δ(h)

r·h x
)]2

dx

= −σ0D2r2 h
δ(h)

(1− δ(h)
r

)
arccos2

(
1− δ(h)

r

)
− 2

√
1−

(
1− δ(h)

r

)2
+

2δ(h)
r − 4

 (22)

(2) Plastic dissipative work W2 when the surface curvature radius changes in the plastic zone.
The computational method of the plastic dissipative work W2 when the surface curvature radius

changes in the plastic zone is similar to that of the plastic dissipative work W1 when the plastic zone
changes from a cylindrical surface to a flat surface.

W2 = 2
∫ h

0

2σ0D2

4
· r · (π− α(x))

(
α(x)′ − α(x)

)
dx (23)

where, α(x)′ is the angle between the line from the boundary of any section to the center and the
concave direction when the surface curvature radius changes, as shown in Figure 11.

According to Equation (6) and Equation (7), we can obtain:

α(x)′= arcsin

 2α(x) · r · (d− δ(x))

α(x)2
· r2 + (d− δ(x))2

 (24)

According to the boundary conditions, α(x) = α(h) and α(x)′ = α(h)′ when x = h, Equation (24)
can be obtained and substitute it into the Equation (23).

(3) Plastic dissipative work W3 under axial tension in the plastic zone.
The ultimate bending moment M0 can be expressed as follows under local lateral uniform load in

the plastic deformation zone [36,37]:
M0 = σ0D (25)

According to the fundamental equation of dissipative work under axial tension [38], the plastic
dissipative work W3 under axial tension in the plastic zone can be expressed as:

W3 =

∫ ∆l

0
N0dl (26)

where ∆l is the axial tensile increment in the deformed zone. Based on the geometric relationship in
Figure 8, ∆l is:

∆l = GA− h (27)

As shown in Figure 7, the length of space curve
_

GA is:

GA =

√
h2 + [δ(h)]2 (28)

By re-arranging Equation (28), we obtain:

W3 =
2σ0D2

4

(√
h2 + [δ(h)]2 − h

)
(29)

(4) Plastic dissipative work W4 when the yield line EF rotates.
The plastic dissipative work W4 when the yield line of plastic deformation EF is constituted by

the plastic hinge E and the plastic hinge F can be expressed as follows:

W4 = N0(π− 2β) · EF (30)

According to the parameter relation in Figure 10, Equation (30) can also be expressed as follows:
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W4 =
σ0D2

4
(π− 2β) · 2r′ · sin

(
(α(h))′

)
(31)

(5) Plastic dissipative work W
_

EA
5 when the yield line

_
EA rotates.

The plastic dissipative work W
_

EA
5 when the yield line of plastic deformation

_
EA constituted by

the plastic hinge E and the plastic hinge A can be expressed as follows:

W
_

EA
5 =

∫ _
EA

0
M0α(x)

′dx (32)

By substituting Equation (16) and Equation (24) into Equation (32), Equation (33) can be obtained:

W
_

EA
5 =

∫ _
EA

0

σ0D2

4
arcsin

 2α(x) · r · (d− δ(x))

α(x)2
· r2 + (d− δ(x))2

dx (33)

According to the geometric relation, the length of the space curve
_

EA is:

_
EA =

∫ h

0

√
1 +

(
∂y(x)
∂x

)2

+

(
∂z(x)
∂x

)2

dx (34)

In the same way, the plastic dissipative work can be obtained when the yield lines
_

AF,
_
FB and

_
BE

rotate, and Equation (35) can be obtained based on mirror symmetry:

W
_

EA
5 = W

_
AF
5 = W

_
FB
5 = W

_
BE
5 (35)

Consequently, the total dissipative work when the plastic hinge lines rotate is as follows:

W5 = W
_

EA
5 + W

_
AF
5 + W

_
FB
5 + W

_
BE
5 (36)

Therefore, the work done by internal force is:

Win = W1 + W2 + W3 + W4 + W5 (37)

3.2.2. Work Done by External Force

According to the mechanical state of casing in Figure 6, the work done by external force when the
casing is under lateral load can be expressed as follows:

Wex =

∫ h

0

∫ y(h)

0
qδ(h)dxdy = qVde f (38)

where q is the local lateral load, and Vde f is the plastic deformation volume of the casing under
external load.

According to the geometric deformation relation, the plastic deformation volume Vde f can be
expressed as follows:

Vde f = 2
∫ l

0

(
πr2
·

2α(x)
2π

−
2 · r · sinα(x) · r · cosα(x)

2

)
dx (39)
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3.2.3. Virtual Work Relation of Casing Deformation

According to Equation (14) in relation to the virtual work relationship, by combining and arranging
Equations (37) and (38), the mathematical expression of Equation (40) can be obtained as follows:

q · 2
∫ l

0

(
πr2
·

2α(x)
2π −

2·r·sinα(x)·r·cosα(x)
2

)
dx

= 2
∫ h

0
2σ0D2

4 · r ·
[
arccos

(
1− δ(h)·x

r·h

)]2
dx+

2
∫ h

0
2σ0D2

4 · r · (π− α(x))
(
α(x)′ − α(x)

)
dx+

2σ0D2

4

(√
h2 + [δ(h)]2 − h

)
+ 2σ0D2

4 (π− 2β) · 2r′ · sin
(
(α(h))′

)
+

4
∫ _

EA
0 σ0Darcsin

(
2α(x)·r·(d−δ(x))

α(x)2
·r2+(d−δ(x))2

)
dx

(40)

According to Equation (40), the relationship between casing deformation and load under local
lateral load can be calculated and analyzed.

4. Example Analysis

The second and third sections of the Qing formation in the Songliao basin were selected as the
research object to verify the mechanical model of plastic failure of casing proposed above. Combined
with the well group condition of actual casing collapse deformation in the Fuyu area of the Jilin oilfield,
four types of casing, 4 1

2 ”J55, 5 1
2 ”J55, 4 1

2 ”N80 and 5 1
2 ”N80, with three kinds of wall thickness were

calculated respectively for the well group of this section. The corresponding parameters and the results
of the calculation are shown in Table 1.

Table 1. Results of local lateral load for casings with different wall thicknesses.

Casing
Type

Thickness
D/mm

Yield
Stress
σ0/kN

Plastic
Deformation
Length 2 h/m

Maximum
Deformation

Quantity
δ(h)/mm

Local
Lateral

Load/MPa

Collapsing
Strength

of
API/MPa

Reduction
Value of
Intensity
/MPa

Relative
Reduction

Ratio of
Intensity/%

5 1
2 ”J55

6.20 988 0.2 1.60 15.41 21.5 6.09 28.34

6.99 1103 0.2 1.42 22.59 27.9 5.31 19.04

7.72 1215 0.2 1.33 30.36 33.9 3.54 10.44

5 1
2 ”N80

7.72 1766 0.2 1.30 28.23 43.3 15.07 34.80

9.17 2073 0.2 1.00 48.54 60.9 12.36 20.30

10.54 2358 0.2 1.00 71.82 76.9 5.08 6.60

4 1
2 ”J55

5.21 676 0.2 1.85 12.75 22.8 10.05 44.09

5.69 734 0.2 1.78 18.46 27.6 9.14 33.12

6.35 819 0.2 1.56 25.58 34.2 8.62 25.20

4 1
2 ”N80

7.52 1557 0.2 1.39 31.60 50.0 18.4 36.80

9.19 1878 0.2 1.24 57.85 72.4 14.55 20.10

11.1 2229 0.2 1.00 87.12 88.0 0.88 1.00

The results show that the bearing capacity when the casing string incurs deformation failure is
significantly less than the collapsing strength of the API standard design under local lateral load, which
illustrates that the main trigger of casing failure is the reduction of collapse strength (intensity) induced
by local lateral load. It is therefore essential to propose a design scheme for collapsing strength under
local lateral load for similar formation conditions.

As shown in Table 1, under local lateral loads, four types of casing collapse occur under external
loads significantly lower than the collapse strength of API 5C3 standard. Further analysis shows
that the plastic hinge formed in the deformation area of casing under local lateral load is the main
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reason for the decrease of casing collapsing strength and collapse deformation. Without doubt, when
the casing is subjected to local lateral load, the design of casing collapsing strength based on current
API 5C3 standard cannot meet the design requirements. Therefore, it is necessary to form new
casing strength design standards and control schemes to prevent casing damage according to such
formation conditions.

In order to clarify the internal relationship between casing deformation and lateral load, four
types of casing (4 1

2 ”J55, 5 1
2 ”J55, 4 1

2 ”N80 and 5 1
2 ”N80) with three kinds of wall thickness in the Fuyu

block of the Jilin oilfield were selected to calculate and analyze the relationship of casing intensity,
the absolute reduction value of intensity and the relative reduction ratio of intensity change with casing
wall thickness, yield stress, maximum deformation and the deformation length. The concrete results
are summarized in Figures 13–30.
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Figure 14. Relation between absolute reduction value of intensity and wall thickness.

The results shown in Figures 13–18 give the change regulations for the absolute reduction
value of intensity (API 5C3 standard collapsing strength) and the relative reduction ratio of intensity
(the percentage of the absolute reduction value of intensity to API 5C3 collapsing strength) when the
wall thickness of the casing, the yield stress and the maximum deformation quantity change. The results
show that the relative reduction ratio of intensity and the absolute reduction value of intensity decrease
when the wall thickness of the casing and the yield stress increase, while they increase with increased
maximum deformation and the relative reduction ratio of intensity changes approximately linearly.
The results also show that the larger the wall thickness and the yield stress, the smaller the maximum
deformation, and the smaller the reduction of intensity when the casing incurs deformation. That is
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to say, increasing the casing wall thickness and the yield stress, and taking measures early to control
casing deformation, can effectively prevent the problem of lateral load-induced casing failure.
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Figure 17. Relation between relative reduction ratio of intensity and maximum deformation.

The results shown in Figures 19 and 20 show that the bearing capacity of the casing increases with
the increasing casing wall thickness and yield stress. According to the deformation of four types of
casing in the Jilin oilfield, the bearing capacity of the casing has an approximately linear relation with
the casing wall thickness and changing yield stress. This provides a scientific basis for the judgment of
casing bearing capacity with changes in wall thickness and yield stress when other types of casing
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undergo similar failure. The result of Figure 21 show that the thicker the wall thickness, the smaller
the deformation angle of the casing for the same type of steel with the increase of local lateral load.
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Figure 18. Relation between absolute reduction value of intensity and maximum deformation.
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Figure 19. Relation between local lateral load and wall thickness of casing.
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Figure 21. Relationship between local lateral load and angle.

In order to verify the casing deformation, finite element simulation was carried out. The results
displayed in Figure 22 show that casings of the same steel type have the same elastic modulus. When the
same load is applied, the casing deformation is the same. When the wall thickness of the casing is
different, the deformation of the casing decreases with the increasing load. The casing deformation of
four types under local lateral load based on finite element simulation is consistent with the analysis
results of virtual working principle. Therefore, when the loads are the same, the deformation of the
casing gradually decreases with the increase of the wall thickness of the casing. Relevant simulation
material parameters are shown in Table 2.

Table 2. Related simulation material parameters.

Casing
Type Thickness/mm External

Diameter/mm
Local Lateral

Load/MPa
Young’s

Modulus/MPa
Poisson’s

Ratio Density/g/cm3 Angle/◦

5 1
2 J55

6.20 76.05 15.41 2.03 × 105 0.3 7.8 16.905788

6.99 76.84 22.59 2.03 × 105 0.3 7.8 15.812929

7.72 77.57 30.36 2.03 × 105 0.3 7.8 15.215541

5 1
2 N80

7.72 77.57 28.23 2.07×105 0.28 7.87 15.038393

9.17 79.02 48.54 2.07 × 105 0.28 7.87 13.025594

10.54 80.39 71.82 2.07 × 105 0.28 7.87 12.911906

4 1
2 J55

5.21 75.06 12.75 2.03 × 105 0.3 7.8 18.348888

5.69 75.54 18.46 2.03 × 105 0.3 7.8 17.926281

6.35 76.2 25.58 2.03 × 105 0.3 7.8 16.669382

4 1
2 N80

7.52 77.37 31.6 2.07 × 105 0.28 7.87 15.585058

9.19 79.04 57.85 2.07 × 105 0.28 7.87 14.537777

11.1 80.95 87.12 2.07 × 105 0.28 7.87 12.866283

The results presented in Figures 23–26 show that the bearing capacity decreases with the increase
of the deformation length, and the variation law of the four types of casing is similar. When deformation
length of casing is less than the critical value, the bearing capacity decreases rapidly and the curve
changes steeply as deformation length increases. When the deformation length reaches the critical
value, the bearing capacity of casing decreases slowly, approximating constant value. Therefore,
the casing deformation should be prevented as early as possible when deformation length is less than
the critical value.
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The results presented in Figures 27–30 show that the bearing capacity of casing decreases as the
maximum deformation increases. When the maximum deformation is less than the critical value,
the bearing capacity of casing decreases rapidly. On the contrary, the reduction of the bearing capacity
of casing is smaller, and the bearing capacity of different wall thickness casing is approximately equal,
that is to say, increasing the thickness of casing cannot prevent the occurrence of casing collapse when
deformation reaches a certain value. Therefore, in order to effectively control casing failure, preventive
measures should be carried out when radial deformation of casing is smaller.
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2 N80 casing.
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5. Conclusions

1. According to the actual collapse deformation characteristics of the casing in the oilfield, the yield
surface of the casing collapse deformation is considered as a plane plastic zone with an arc-shaped
boundary. The internal work of the casing is equal to the external work of the casing in the process
of casing collapse deformation. In this paper, a mechanical model and a calculation method
for the local lateral collapse deformation of the casing are presented based on the principle of
virtual work.

2. The bearing capacity when the casing string incurs deformation failure is significantly less than the
collapsing strength of the API SPEC 5CT standard design under local lateral load, which illustrates
that the main trigger of casing failure is the reduction of collapse strength (intensity) induced
by local lateral load. According to the results for the selected examples, the maximum absolute
reduction value of intensity is 14.55 MPa, and the maximum relative reduction ratio of intensity is
44.09%. Therefore, the design standard of API collapsing strength is not suitable for the local load
of casing, and it is necessary to develop new collapsing strength designs under local lateral load.

3. According to the results, the relative reduction ratio of intensity and the absolute reduction value
of intensity decline with the increase of wall thickness of the casing and yield stress. They will
also increase with the increase of maximum deformation. They change approximately linearly.

4. The results show that the casing bearing capacity decreases rapidly with the increase of the length
of the deformation and the radial deformation amount in the initial stage. Moreover, the influence
of the radial deformation is greater than that of the length of deformation on the bearing capacity
of the casing. Therefore, the measures should be proposed as soon as possible, and controlling
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radial deformation of casing will be more significant to prevent casing collapse for formations
under local lateral loading.
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