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Abstract: The proton exchange membrane fuel cell (PEMFC) is taken to be the ultimate technical
direction of vehicle power. Cooling system is a key component which directly affects the fuel cell
performance, reliability and durability. For the purpose of keeping accurate temperature control
under dynamic loads and achieving rapid warm-up control during cold-start, a 35 kW PEMFC’s
cooling system dynamic model is established and validated by experiments firstly. According to the
simulation results, the model can well be fitted to the actual system. Then an integrate separate PID
(Proportional-Integral-Derivative) algorithm and cooling fan prestart strategy is proposed. The result
shows that it can effectively reduce the temperature overshoot under dynamic loads. In view of the
thermostat mechanical characteristics tend to cause large temperature fluctuation during warm-up
process, a thermostat control strategy is proposed to reduce the temperature fluctuation from 7.5 ◦C
to 0.4 ◦C.

Keywords: proton exchange membrane fuel cell; cooling system; modeling and simulating;
control strategy

1. Introduction

The proton exchange membrane fuel cell (PEMFC) has attracted much attention in recent years
because of its low operating temperature, fast start-up speed and high energy density [1,2]. However, in
order for the PEMFC system to be more widely used, its durability problem must be solved [3]. Working
temperature directly affects the fuel cell performance, reliability and durability [4,5]. Therefore, cooling
system should decrease temperature fluctuations under dynamic loads and reduce warm-up time.

For the purpose of achieving the goal of effective cooling, four cooling techniques have been
explored when researching this problem. The first is cooling with heat spreaders [6]. To maintain
the stack temperature at an optimum value, Lopez-Sabiron et al. calculated the needed air flow with
a simple one-dimensional model [7]. The second is cooling with separate air flow. Shahsavari et al.
reduced the cost by developing an air-cooled fuel cell system that combines a cooling function with a
cathode flow field [8]. The third is cooling with liquid. Soupremanien et al. cooled down the PEMFC
by using a fluid in boiling conditions [9]. The fourth is cooling with phase change. To solve the
non-isothermal two-phase flow problem, comprehensive multi-dimensional steady-state models have
been established [10–12]. In general, liquid cooling is currently the most common method for high
power fuel cell systems, due to its high heat transfer efficiency and compact structure.
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Great strides have already been taken to achieve the goal of effective cooling on models and
control strategies. For model applications, Saygili et al. achieved the cooling target for a 3 kW PEMFC
with semi-empirical model features by using a closed loop water circulation system [13]. Vasu et al.
achieved the temperature prediction by building a lumped parameter model in a 5 kW fuel cell
stack [14,15]. A capillary pumped loop system was adapted to fuel cell stacks over 50 W to well
control thermal [16]. Hu et al. proposed a fuzzy control strategy with a 100 W fuel cell dynamic model
which can be used to multi-parameter predictive control [17]. Considering the effect of fan power
and pressure drop on overall performance of the open cathode air-cooled PEMFC, a two-dimensional
numerical model was developed to investigate the forced air convection heat transfer [18]. Yu and
Jung developed a two-dimensional heat transfer model to study temperature distribution in cell active
area. And the parasitic losses of the pump and fan were calculated [19]. For an automobile thermal
management system, Rokni and Rabbani researched the influence of the cooling water pump and
radiator with fan [20]. A novel thermal control scheme for PEMFC generators was proposed [21].

For control strategy applications, Vega-Leal et al. used a proportional controller to control the
fan speed according to the actual and desired temperature of the stack [22]. A model reference
adaptive algorithm (MRAC) was proposed to improve the stability and convergence of temperature
control [23]. Based on a simplified system at different stack loads, Liso et al. carried out a feedback PID
(Proportional-Integral-Derivative) control in the research of fuel cell energy balance [24]. Chen et al.
investigated the feasibility of nonlinear feedforward and LQR (Linear Quadratic Regulator) state
feedback for temperature control [25]. A thermal management model was proposed under different
working conditions to keep the output performance of PEMFC stable [26]. There is a large volume of
research concerning the cooling control strategy [27–32].

In this work, a method which can keep accurate temperature control under dynamic loads,
achieve target temperature under dynamic target temperatures and achieve rapid warm-up control
during cold-start for PEMFC’s cooling system is proposed. First, an entire cooling system model of
PEMFC is established and validated by experiments in Section 2. According to the simulation results,
the model can well be fitted to the actual system. Then, in Section 3, temperature control algorithms
are developed for better performance of the system. Finally, experimental results collected from the
test bench are shown in Section 4.

2. Modeling

Fuel cell system mainly consists of fuel cell stack, the balance of plant (BOP) system and DC/DC
converter. The BOP system includes hydrogen supply system, air supply system, cooling system and
control system. The cooling system plays an important role in controlling the temperature of fuel cell
stack. The main components include water pump, radiator, fan, thermostat, water tank, sensors and
the corresponding pipeline. Figure 1 shows the main structure of the cooling system in this paper.
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2.1. Model of Fuel Cell

The dynamic model of the open system of the fuel cell stack can be determined by (1):

CstMst
dTst

dt
= Qst −Qw −Qrc −Qvap, (1)

where Cst is the heat capacity of the stack (J·kg−1
·K−1), which is replaced by the heat capacity of the

bipolar plate, Mst is the quality of the stack (kg), Tst is the temperature of the stack (K), Qst is the heat
generated by the stack (W), Qw is the heat taken away by the coolant (W), Qrc is the heat taken away by
the heat radiation and heat conduction of the stack (W), Qvap is the heat taken away by the vaporization
of the product (W).

Ignoring heat radiation, heat conduction and heat taken away by the water vaporization,
the coolant outlet temperature is taken as the stack temperature, so the above equation can be
simplified as:

Tst,out(t + ts) =

∫
Qst −Qw

CstMst
dt, (2)

where ts is the delay time when the temperature of the stack changes.
Since the generated liquid water is little, it is considered to use a low calorific value as the output

energy of a single cell. The equivalent voltage at low calorific value is 1.25 V. Considering that 1.25 V is
the theoretical value obtained when the generated water is in a gaseous state, the actual situation may
be that liquid water is generated. Therefore, this part is multiplied by the proportional coefficient kst to
compensate the heat generated by the stack. According to the knowledge of thermodynamics,

Qst = ncellIst(1.25− Est/ncell)kst, (3)

where ncell is the number of cells, Est is the total output voltage (V) of the fuel cell and Ist is the total
output current (A) of the fuel cell.

The heat taken away by the coolant is:

Qw = cq,w
.

mw(Tst,out − Tst,in), (4)

where cq,w is the constant pressure specific heat capacity of the coolant (J·kg−1
·K−1),

.
mw is the mass flow

rate of the coolant (kg·s−1), Tst,out is the coolant outlet heap temperature (K) and Tst,in is the coolant
inlet heap temperature (K).

The fuel cell stack on the actual system is tested. Figure 2 shows its polarization curve. Table 1
shows the parameters of the fuel cell system.
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Table 1. Fuel cell system parameters.

Name Value

Brand of fuel cell stack POWERCELL S2 Series
Material of Bipolar plate Stainless steel

Number of cells in fuel cell stack 432 pieces
Coolant category Deionized water
Coolant density 1000 kg·m−3

Specific heat capacity of coolant at constant
pressure 4200 J·kg−1

·K−1

Stack mass 31 kg
Stack heat capacity 500 J·kg−1

·K−1

Ambient temperature 30 ◦C

2.2. Model of Pump

In the cooling system, the role of the pump is to overcome the flow resistance to ensure that the
coolant takes away excess heat from the fuel cell stack. The coolant circuit is an open system. The inlet
pressure of the pump can be approximated as a fixed value 108 kPa.

By adjusting the pump PWM duty cycle, the relationship between pump outlet pressure and flow
can be fitted by the following equations:

.
mw =

ρ

1000 + 60

(
kp1 ∗D2

pump + kp2 ∗Dpump
)
, (5)

Ppump,out = kp3 ∗D2
pump + kp4 ∗Dpump + kp5 , (6)

where Dpump is the PWM duty cycle of the pump, kpi is the fitting factor and Ppump,out is the pump outlet
pressure (kPa).

Figure 3 shows the flow and pressure fitting curves of the pump.
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2.3. Model of Radiator

At normal operating conditions, the coolant flow rate only needs to be adjusted within a small
range. So, the radiator has a great influence on the temperature of the fuel cell system.

According to the thermodynamic properties, the heat dissipation of the radiator can be calculated
by the equation:

Qrad = K ∗ S ∗ ∆T, (7)
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where Qrad is the heat dissipation power (W), K is the heat transfer coefficient of the radiator (W·m2
·k−1),

∆T is the heat dissipation temperature difference on both sides of the radiator (K) and S is the effective
heat transfer area of the radiator (m2).

In this paper, the test data of the radiator is analyzed and the experimental data is fitted to build
the radiator model. Three cooling fans are selected as the power sources of radiator and air heat
exchange. The effective duty cycle of a single fan ranges from 10% to 90% and the total duty cycle
of three fans ranges from 30% to 270%. Assuming that the fan output performance is consistent,
the radiators are tested by changing the fan duty cycle and cooling power. The obtained test data are
shown in Figures 4 and 5.
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Figure 4 shows that the relationship between the heat dissipation power and the temperature
difference is basically consistent with the theory of heat dissipation, which is linear. When the
temperature difference is constant, the heat dissipation increases with the increase of the opening
degree of the cooling fan. When the heat dissipation is constant, the heat dissipation temperature
difference becomes smaller as the opening degree of the cooling fan increases. Figure 5 shows the
coolant flow has little effect on the heat dissipation and it mainly affects the temperature difference
between the radiator inlet and outlet.

In summary, the heat dissipation capability of the radiator is fitted using the following
mathematical model:
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Trad =
(
Trad,out + Trad,in

)
/2, (8)

∆T = Trad − Tamb, (9)

Qrad = k1 ∗ ∆T ∗
[
k2 ∗ ek3∗D f an + k4 ∗ ek5∗D f an

]
, (10)

Trad,out = Trad,in −
Qrad
.

mwcp,w
, (11)

where Trad is the temperature of the radiator (K), Trad,out is the coolant temperature of the radiator outlet
(K), Trad,in is the coolant temperature of the radiator inlet (K) and Tamb is the ambient temperature
(radiator air side inlet temperature) (K), ∆T is the temperature difference between the radiator and
the ambient (K), D f an is the cooling fan duty cycle,

.
mw is the coolant mass flow (kg·s−1) and cp,w is the

specific heat capacity of the coolant at constant pressure (J·kg−1
·K−1), ki is the fitting coefficient.

2.4. Moedel of Thermostat

The thermostat can achieve fuel cell rapid warm-up. A small cycle is adopted to ensure the
coolant bypass the radiator. After reaching a certain temperature, the valve gradually opens and the
low-temperature coolant is mixed into the radiator to keep the temperature steady and continuously
rising to the optimal working temperature. The thermostat used in this system is a wax thermostat.
The working parameters are shown in Table 2.

Table 2. Thermostat parameters.

Physical Characteristics Electrical Characteristics Pipeline Interface

Opening temperature: 55 ◦C–60 ◦C;
Full open temperature: 65 ◦C

Working voltage: 9 V–36 V;
Duty cycle adjustment range: 5%–95% 38 mm-25 mm-38 mm

2.5. Model Validation

In the actual system, different fuel cell output current is set by VCU (Vehicle Control Unit).
The coolant flow is controlled by adjusting the water pump to drive the PWM. The PWM is driven by
the fan so that the temperature of the fuel cell stack inlet coolant is about 70 ◦C. The coolant temperature
at the outlet of the stack can be measured on the actual system. Based on the MATLAB/Simulink model,
the simulation test is carried out. The coolant temperature of the stack inlet is set to 70 ◦C and the
coolant flow is 2.23 kg·s−1. The relationship between fuel cell inlet and outlet coolant temperature and
output current of the stack in the actual system is shown in Table 3.

Table 3. The relationship between fuel cell inlet and outlet coolant temperature and output current.

Output Current
(A)

Inlet Temperature
(◦C)

Actual Outlet
Temperature (◦C)

Simulation Outlet
Temperature (◦C) Error (%)

70 70 72 72.05 0.07
80 70 72.5 72.41 −0.12
90 70 72.7 72.75 0.07

100 70 72.9 73.13 0.32
110 70 73.3 73.52 0.30
120 70 73.6 73.87 0.37
130 70 74.3 74.25 −0.07

According to the comparison between the actual data and the simulation data, the maximum
error calculated is 0.37%. It can be seen that the thermodynamic model of the stack has high precision
and can well reflect the temperature change process of the fuel cell system.
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3. Control Algorithm

There are many kinds of temperature control algorithms but the PID control algorithm is widely
used due to it has a low dependence on the accuracy of the model [13]. The fuel cell system has
the characteristics of large inertia and long delay time. Conventional PID adjustment is controlled
according to temperature changes and it is difficult to overcome the large overshoot caused by the
inertia of temperature. Therefore, overshoot is an important consideration in control algorithms.
The heat production power of the stack affects the temperature change of the stack. The heat power
generated by the stack is directly related to the output current, the output voltage and the number of
cells. For a particular fuel cell system, the output characteristics of the stack and the number of cells are
definite. Therefore, it is necessary to perform a certain compensation of the controlled value according
to the fluctuation of the current, thereby achieving the purpose of overcoming overshoot.

3.1. Integral Separation PID Algorithm

In this paper, a compensating integral separation PID control algorithm is designed. The heat
production of the stack is calculated based on a simplified mathematical model of the stack. According
to the heat dissipation at the temperature balance, the difference between the given duty cycle and
the actual duty cycle is calculated, so as to compensate the PID output and roughly adjusting the
temperature. Finally, the temperature is precisely adjusted by PID. The control flow chart of the
algorithm is shown in Figure 6.
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Specific steps are as follows:
1. Integral separation

The integration part can eliminate the steady-state error and increase the accuracy of the control
system. In the start and end process, the deviation is too large, which causes the integral operation to
exceed the limit value, causing a large overshoot. Therefore, the integral is usually separated in the
PID control. The specific method is:

The threshold of the deviation (ε) is set according to the actual system control requirements.
The coefficient (α) is introduced. When the system deviation is relatively large,

∣∣∣e(t)∣∣∣ ≥ ε, PD control is
adopted, α = 0. When the system deviation is relatively small,

∣∣∣e(t)∣∣∣ < ε, PID control is adopted, α = 1.
Then put this coefficient into the discrete PID control equation to get:

u(t) = Kpe(k) + Kiα
k∑

j=0

e( j) + Kd[e(k) − e(k− 1)]. (12)

2. Calculate the compensation output
In practical applications, calculating the heat dissipation by using the exponential calculation in

Equation (11) increases the complexity. In order to simplify the design and retain certain accuracy,
Taylor expansion is considered to be used and the first term is taken:

ekx = 1 + kx. (13)
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Then Equation (11) can be simplified as:

Qrad = k1 ∗ ∆T ∗
[
k2 ∗

(
1 + k3D′f an

)
+ k4 ∗

(
1 + k4D′f an

)]
. (14)

The compensation can be obtained:

Dcomp = D′f an −D f an. (15)

In the case of small current fluctuations, PID can maintain the output at the set value according to its
own adjustment, so the compensation mainly acts on the case where the output current changes greatly.
3. Tuning of PID parameters

A two-dimensional table is constructed based on e(k) and ∆e(k) and the interval is controlled and
divided. Then, based on the model simulation parameters, the PID parameters are adjusted according
to the changing rules of the actual system.
4. Calculation of control output

The final output is obtained by adding the discrete PID output and the compensation output:

D f an = Kpe(k) + Kiα
k∑

j=0

e( j) + Kd[e(k) − e(k− 1)] +
∑

Dcomp. (16)

The coolant temperature of the stack inlet is used as a control target for stable temperature control.
In general, the optimum inlet temperature of fuel cell stack is 60–80 ◦C, the optimal outlet temperature
is 65–85 ◦C and the difference of inlet and outlet temperature is 5–10 ◦C. According to the fuel cell
datasheet, the target inlet temperature setting is 70 ◦C in this paper. And the maximum overshoot
temperature is expected to be ±2 ◦C. Take 5 A as the current change threshold to compensate the
controlled variable. Since it takes time to pull down the load, the current change is determined every
5 s as the time interval. Table 4 shows the PID parameters in controller.

Table 4. PID parameters.

e(k) ∆e(k) Kp Ki Kd∣∣∣e(k)∣∣∣ ≥ 1
≥ 0
< 0

2
2

0
0

1
0

0.5 ≤
∣∣∣e(k)∣∣∣ <1

≥ 0
< 0

3
3

0
0

1
0

0 ≤
∣∣∣e(k)∣∣∣ < 0.5

≥ 0
< 0

4
4

0.001
0.001

1
0

3.2. Fan Prestart Algorithm

Since the fan causes a current surge, the fan controller performs a corresponding soft start. Test the
performance of the fan to get a delay of about 5 s from the start. If the stack maintains a constant current
start, due to the influence of negative integral accumulation and temperature inertia, the overshoot is
bound to be too large. As can be seen from the Figure 7a, the overshoot is 2.5 ◦C. Therefore, the fan
startup needs to be processed. According to the radiator model, when the heat dissipation temperature
difference is 45 ◦C, all three fans are 10% open and the heat dissipation power is about 20 kW. Assuming
that each fan has the same heat dissipation capability, each fan has a cooling power of 6.6 kW. Set the
fan prestart power range from 5 kW to 10 kW and the current range is 20–40 A according to Equation
(3). Therefore, to overcome the effects of fan startup, the fan prestart duty cycle is set to 10% and the
temperature setting rules are shown in Figure 7b.
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3.3. Rapid Warm-up Control During Cold-Start

The fuel cell stack is configured with small cycles during startup to quickly reach optimal operating
temperatures. However, opening the valve during the cycle switching can cause abrupt changes in
temperature and pressure, which can adversely affect the performance of the stack. In this paper,
the electronic thermostat is adjusted to reduce this adverse effect.

3.3.1. The Thermostat Performance Calibration

Performance tests are performed on the test bench for the thermostat at different water temperatures
(35–55 ◦C) with different duty cycle outputs (10%–55%). The thermostat opening is defined as the ratio
of flow in the large cycle to total flow:

ot =

.
ml

.
mt

=

.
mt −

.
ms

.
mt

, (17)

where ot is the thermostat opening,
.

ms is the small circulation flow (L·min−1),
.

ml is the large circulation
flow (L·min−1) and

.
mt is the total circulation flow (L·min−1).

The output flow of the thermostat with different duty cycle is assigned at different coolant
temperatures. According to Equation (17) and flow distribution, the variation of thermostat opening is
shown in Figure 8.
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3.3.2. The Thermostat Open Algorithm

Combined with the dynamic performance diagram of the thermostat, it can be seen that at 55 ◦C,
when the duty cycle is given 30%, the thermostat opening can be considered to be close to the full value.
At temperatures below 50 ◦C, the dynamic performance of the thermostat is unstable, with a delay
time of up to 25 s at 40 ◦C, which is extremely unfavorable for control. According to the data sheet, the
thermostat has a mechanical characteristic at 55–60 ◦C and can reach the full value at about 65 ◦C. In
order to reduce the coupling relationship between mechanical properties and electronic properties,
electronic control is selected at 50–60 ◦C.

At 50 ◦C, the thermostat startup has a delay of nearly 10 s and the thermostat opening varies
greatly with the same duty cycle of 50–55 ◦C. Therefore, at 50 ◦C, the thermostat must be preheated
with power in advance. Based on the above discussion, the control strategy of thermostat is shown in
Figure 9.
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4. Result and Discussion

In order to validate the control algorithm. A 35 kW fuel cell system test bench was established and
a self-designed embedded controller is used as the control system. The validity of the control algorithm
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is verified by three experiments. Figure 10 shows the 35 kW fuel cell system test bench. Table 1 shows
the parameters of the fuel cell system. Table 5 shows the parameters of the control system.
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Brand of master control chip NXP MPC5746R
Brand of Compiler WINDRIVER
Brand of Debugger LAUTERBACH LA-300

Software development kit NXP_MCAL
Software development platform Matlab/ Simulink

4.1. Accurate Temperature Control Under Dynamic Loads

To verify the feasibility of the control algorithm under dynamic loads, an experiment was
conducted. The target fuel cell inlet temperature is 70 ◦C. The fuel cell output current increases from 60
A to 120 A in 10 A steps.

Figure 11 shows the current, fuel cell temperature and fan opening data. In general, the temperature
fluctuation is relatively small and the temperature is relatively stable. According to the first 500 seconds
data, it can be seen that the fan opening is frequently adjusted to meet the control requirements when
the temperature has just reached the target temperature. According to the first 3000 seconds data, it
only allows 2 fans when the output current under 90 A, due to the minimum fan opening is 15%. So,
the three fans must not work in sync under small loads. In addition, it can be seen that the number of
opening of each fan is relatively average under heavy loads.

Figure 12 shows a partial enlarged view. As the current increases, the temperature changes within
0.6 ◦C, which is relatively stable. As can be seen from the experimental data, the prestart of the fan
effectively slows down the rate of temperature rise at the start of the stack.
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4.2. Accurate Temperature Control Under Dynamic Target Temperatures

To verify the feasibility of the control algorithm under dynamic target temperature, an experiment
was conducted. The target fuel cell output current is 120 A. The fuel cell target temperature is 72 ◦C, 70
◦C, 65 ◦C, 60 ◦C, 65 ◦C, 70 ◦C, 72 ◦C.

Figure 13 shows the current, fuel cell temperature and fan opening data. According to the test
data, if the target temperature decrease 5 ◦C, the opening of fan will increase rapidly to excrete excess
heat. And the opening of fan will decrease rapidly when the temperature is close to the target. If the
target temperature increases 5 ◦C, the fan will close to wait for warming to the target value. The target
temperature will not be changed frequently in a specific fuel cell. So, the temperature can achieve
target value rapidly in practice by use this control algorithm.
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4.3. Rapid Warm-up Control During Cold-Start

The control strategy of thermostat open algorithm is also applied to the controller. A group of
comparative experiments were conducted in the actual system. Figure 14 shows the test results when
only the mechanical characteristics are used and the thermostat electronic characteristics are enabled.
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It can be seen from the comparison of the above two figures that if the electronic characteristics of
the thermostat are disabled, the temperature will fluctuate greatly, dropping by about 7.5 ◦C. If the
thermostat is electronically controlled using the above control strategy, the temperature fluctuation is
about 0.4 ◦C. When the temperature up to 55 ◦C, the mechanical valve will open rapidly. Too much
cold water enters the fuel cell and causes the temperature drop. The valve opening speed can be
lowered through the control algorithm. According to the comparison results, this control strategy
effectively reduces the temperature fluctuation of the coolant of the stack inlet.

5. Conclusions

Temperature control is a key which directly affects the fuel cell performance, reliability and
durability. In this paper, a 35 kW PEMFC’s cooling system dynamic model is established firstly. Then
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an integrate separate PID algorithm and cooling fan prestart strategy is proposed. The result shows
that it can effectively reduce the temperature overshoot under dynamic loads and achieve target
temperature under dynamic target temperatures. In view of the thermostat mechanical characteristics
tend to cause large temperature fluctuation during warm-up process, a thermostat control strategy is
proposed to reduce the temperature fluctuation from 7.5 ◦C to 0.4 ◦C. The experiments results show
that this control algorithm can keep accurate temperature control under dynamic loads and achieve
rapid warm-up control during cold-start.
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