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Abstract: The prognosis of lithium-ion batteries for their remaining useful life is an essential
technology in prognostics and health management (PHM). In this paper, we propose a novel hybrid
prediction method based on particle filter (PF) and extreme learning machine (ELM). First, we use
ELM to simulate the battery capacity degradation trend. Second, PF is applied to update the random
parameters of the ELM in real-time. An extreme learning machine prognosis model, based on particle
filter (PFELM), is established. In order to verify the validity of this method, our proposed approach
is compared with the standard ELM, the multi-layer perceptron prediction model, based on PF
(PFMLP), as well as the neural network prediction model, based on bat-particle filter (BATPFNN),
using the batteries testing datasets of the National Aeronautics and Space Administration (NASA)
Ames Research Center. The results show that our proposed approach has better ability to simulate
battery capacity degradation trends, better robustness, and higher Remaining Useful Life (RUL)
prognosis accuracy than the standard ELM, the PFMLP, and the BATPFNN under the same conditions.

Keywords: lithium-ion batteries; remaining useful life (RUL); extreme learning machine (ELM);
particle filter (PF)

1. Introduction

In recent years, lithium-ion batteries have been widely used in many fields, such as civilian
portable electronic devices, transportation, and aerospace, due to their long cycle life, low pollution,
wide temperature range, no memory effect, low self-discharge rate, and high energy density [1].
However, with the increase in the number of charge-discharge cycles, lithium-ion battery performance
becomes degraded, which is externally expressed as increased internal resistance, capacity decline,
and life degradation [2]. It directly affects the reliability and security of equipment. Therefore,
accurate RUL prediction of lithium-ion batteries is essential [3,4].

Generally, the remaining useful life (RUL) is defined as the number of remaining charge-discharge
cycles before the performance degenerates to the setting failure threshold for the first time [5].
Different methods for predicting RUL of lithium-ion batteries have been proposed. The existing
methods are mainly divided into three categories: Model-based methods, data-driven methods,
and hybrid methods [6,7]. Model-based methods are further divided into physical failure models and
empirical models. Physical failure models need to rely on the analysis of the degradation process
and failure mechanism of lithium-ion batteries. Then the relationship between the factors related to
battery life and observations is established to simulate the trends in battery capacity degradation [8,9].
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However, establishing an accurate physical failure model is complicated because of the need for detailed
analysis of the failure mechanism, complex experimental and professional equipment, which make
the physical failure models unsuitable for engineering applications. Therefore, the experience models
receive more attention. To update the model parameters for online RUL prognosis, filter algorithms are
widely used such as a particle filter (PF) algorithm [10], unscented particle filter (UPF) algorithm [11],
strong tracking particle filter (STPF) algorithm [12], Kalman filter (KF) algorithm [13,14], and extended
Kalman filter (EKF) algorithm [15]. For example, in [10], PF is used to predict the battery RUL by
estimating the parameters of the empirical exponential model. However, the problems involved in
particle degradation and impoverishment affect the estimation accuracy of the posterior probability
density (pdf), which reduce the prediction accuracy of RUL. To reduce the influence of particle
degradation and impoverishment, in [11,12], the UPF algorithm, and the STPF algorithm are proposed,
respectively. Although the effects of particle degradation and impoverishment are weakened to a certain
extent, there are still errors in the estimation results. Similarly, in [13], KF is used for RUL estimation,
but KF is more suitable for linear systems, and the capacity degradation process of lithium-ion batteries
is nonlinear, which is not conducive to accurately estimating the RUL. To improve the accuracy of RUL
prognosis, EKF is used in RUL estimation in [15]. However, based on the idea of linearizing nonlinear
systems, EKF is also not conducive to the accurate estimation of RUL. In addition, the empirical models
have inherent flaws that the models are not versatile for different types of batteries, which limits its
further application. Compared to the model-based methods, data-driven methods, not only require
less knowledge on the analysis of battery degradation and failure mechanisms, but can also be applied
to different types of battery RUL prognosis. It does not require the establishment of a physical failure
model. It can simulate the implicit relationship between the observations and the objective quantities
by extracting valid information from the available data. Data-driven methods contain Wiener Process
(WP) [16], neural network (NN) [17–20], support vector machine (SVM) [21], relevance vector machine
(RVM) [22], machine learning (ML) [23], deep learning (DL) [24], autoregressive sliding model (AR) [25],
and the Gaussian Process regression (GPR) [26]. For example, in [16], first, the authors introduce the
Reproductive Useful Time (RUT). Then, the authors use the linear Wiener process to predict the normal
degradation process, and use the normal distribution to establish the RUT model. Finally, the authors
propose a priori parameter estimation method, based on likelihood estimation and online update
under the Bayesian framework. Experimental results show that this method can effectively improve
the accuracy of RUL prediction. In [20], the authors employ a wavelet decomposition technology to
separate the capacity regeneration process from the normal degradation process, and then used the
nonlinear autoregressive neural network to predict battery capacity. The experimental results show that
this method has, not only high RUL prediction accuracy, but is also less affected by different prediction
starting points. Although, the data-driven approaches show good prognosis effects, the prediction
accuracy of such methods depends on a large amount of training data, which makes the cost of
such methods relatively high [19]. Considering the advantages and disadvantages of model-based
methods and data-driven methods, the combination of these methods has received more attention
from more researchers, namely the hybrid model [3,27–35]. For example, in [27], PF is employed to
estimate the parameters of the multi-layer perceptron (MLP) model in real-time, then the determined
MLP model is employed to predict battery capacity. Although, the experimental results show that
the multi-layer perceptron prognosis model-based on particle filter (PFMLP), has good prediction
performance, the influence of particle degradation and impoverishment is ignored. To weaken the
effect of particle degradation and impoverishment, the authors introduce the bat algorithm (BAT) to
optimize particles in [28]. Then they utilize the bat particle filter (BATPF) algorithm to estimate the
parameters of the neural network (NN) model in real-time. Finally, the determined MLP model is
utilized to predict the battery capacity and estimate RUL. The results show that the RUL prognosis
accuracy of the BATPFNN algorithm is higher than the traditional empirical model and standard PF
algorithm. Although, such methods have achieved good prognostic results, there are still inadequacies.
First, the MLP and NN contain at least three layers. The structural parameters, include input layer
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weights, hidden layer node thresholds, output layer weights, and output node thresholds. Numerous
parameters will increase the computational complexity, which requires higher hardware performance.
Second, the RUL prediction results are affected by different prediction starting points.

Reference [36] To improve the ability to track the decline in battery capacity, and reduce the accuracy
of RUL estimation by the predicted starting point, in this paper, a novel hybrid prognosis method,
based on particle filter and extreme learning machine (PFELM), to predict the RUL of lithium-ion
batteries, is proposed. Based on the unique theoretical derivation and the good approximation ability
of ELM [37], PFELM may show superior performance than PFMLP and BATPFNN, such as in higher
prediction accuracy and better robustness. To verify the superiority of the proposed algorithm, we
compare the results predicted by the ELM, the PFMLP, the BATPFNN, and the PFELM from different
starting points. The main evaluation indicators, include the mean error of the capacity error and
the absolute error, between the predicted RUL and the real RUL. To ensure the fairness of the four
algorithm comparison, we propose three pre-conditions. First, the number of nodes of each layer of
the ELM, the MLP, and the NN in the four algorithms is set to be the same. Second, the common
parameter values, owned by the four algorithms, are set to be the same. Finally, the test datasets of the
verification algorithm are the same in every comparison.

The remainder of this paper is organized as follows. The ELM algorithm and the PFELM algorithm
are introduced in detail in Section 2. Section 3 describes the source of battery testing data and the
evaluation index of results. The prediction results of different methods are compared and discussed.
In Section 4, the conclusions of this paper are discussed.

2. Basic Condition

2.1. Extreme Learning Machine (ELM)

ELM was proposed in 2004 [36]. ELM is an improved backpropagation neural network, and its
excellent approximation ability has been theoretically proved [37–39]. At present, ELM has been
successfully applied to many fields, such as engineering [40,41], medicine [42], and biology [43].

Compared with the traditional BPNN and MLP, ELM is characterized by the input layer weights
and the bias of each node of the hidden layer, which are randomly generated or artificially set.
These parameters do not need to be updated. In other words, in the process of ELM learning, only the
output layer weights need to be calculated. Therefore, ELM has less computational complexity and
faster learning rate than traditional BPNN and MLP. Besides, ELM has better generalization ability [36].

As shown in Figure 1, it is the structure of an ELM, which has single hidden layer and single
output. It consists of three layers (input layer, hidden layer, and output layer), each with n, L, and one
node, respectively.
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In Figure 1, the array [x 1, . . . , xn] which can be represented as x1×n is the input vector, where n
is the number of nodes in the input layer. The output is represented as. The input weights matrix is
represented as:

wn × L =


w11 · · · w1L

...
. . .

...
w1n · · · wnL

 (1)

In Equation (1), L is the number of hidden layer nodes. The matrix b1 × L is the bias matrix,
which can be expressed as:

b1 × L = [b1, b2, · · · , bL] (2)

The symbol
∑

is a summation symbol. The symbol f (·) is the activation function, and in this
paper f (·) is represented as [44]:

f (x) =
1

1 + exp(−x)
(3)

The output weights matrix wL × 1 is expressed as:

wL × 1 =


w1

w2
...

wL

 (4)

The output is calculated as follows [44]:

H = f (x1 × n ·wn × L + b1 × L) (5)

O = H ·wL × 1 (6)

2.2. PFELM Algorithm (PFELM)

The input weight of the extreme learning machine, and the bias at each node of the hidden layer,
are very important. Because these parameters affect the outcome of the output weight, they eventually
affect the prediction of RUL. In this paper, first, we choose a three-layer ELM with a single output.
Second, the particle filter (PF) algorithm is used to optimize the input weight of ELM, and the bias at
each node of the hidden layer. The input weight, and the bias at each node of the hidden layer of the
ELM, are taken as the state vector of PF. The measured capacity value is taken as the measured vector
of PF. The measurement equation is represented by the form of ELM. The Discrete state-space model at
the kth cycle can be expressed as [28]:

xk = xk−1 +ωk−1 (7)

Qk = ELM(xk, k, ∆Tk, VTk) + υk (8)

where k indicates the number of charge-discharge cycles, Qk indicates the capacity value of the kth
cycle battery, ωk−1 and υk are the process noise and measurement noise,ELM(·) indicates a simple
description form of ELM, which combines the structural parameters of the ELM with the battery
capacity. The parameter xk indicates the structural parameter of the ELM, including the input weight,
and the bias at each node of the hidden layer of the ELM. The dimensions dis of the state vector, process
noise, and measurement noise vector can be calculated as follows:

dis = n× L + L (9)
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where n is the number of nodes in the input layer of the ELM, and L is the number of hidden layer
nodes of the ELM.

The parameters k,∆Tk, and VTk indicate input of the ELM. The parameter ∆Tk represents the
temperature increase in the kth cycle from the start of discharge to the end of discharge, which can be
calculated as follows:

∆Tk = Tend
k − Tini

k (10)

where Tend
k represents the temperature at the end of discharge in the kth cycle, Tini

k represents the
temperature at the beginning of discharge in the kth cycle.

The parameter VTk represents the average temperature change rate of the battery in the kth cycle,
which can be calculated as follows:

VTk = ∆Tk/t (11)

where t represents the time taken from the beginning of discharge to the end of discharge for the
battery in the kth charge-discharge cycle.

The components in the PFELM algorithm are as follows:

1. Particles initialization.

Suppose the initial state value is x0. N particles xi
0(i = 1, 2, · · · , N) are generated based on the

prior probability density x0 which follow a Gaussian distribution with a mean of 0 and a variance of 1,
and the weight wi

0(i = 1, 2, · · · , N) of each particle is 1/N, where N is 100 in this paper.

2. Prediction.

The prediction values of the state vector and the measurement vector are predicted by Formulas (7)
and (8).

3. Weight update.

Particle weights are updated according to Equations (12) and (13) [45]:

erri
k = Qk − Q̃k (12)

wi
k =

1
√

2πR
exp

{
(erri

k)
2 1

2R

}
(13)

where Q̃k is the predicted value calculated by Equation (8) at the kth cycle, and R is 1.2668 in this paper.

4. Weight normalization.

The calculation formula of weight normalization can be expressed as [45]:

wi
k =

wi
k

N∑
i=1

wi
k

(14)

5. Re-sampling judgement.

Calculate the number of valid samples Ne f f by Equation (15) [45].

Ne f f =
1

N∑
i=1

wi
k

2

(15)

If Ne f f < Nth, resampling process begins, and weight of resampled particles are 1/N; otherwise go
directly to the next stage. Where Nth is the sampling threshold.
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6. State estimation.

The state estimation calculation formula can be expressed as [45]:

x̃k =
N∑

i=1

xi
kwi

k (16)

7. Capacity estimation.

Each element of the state vector, obtained by the previous step, is assigned as the input weight of
the ELM and the bias at each node of the hidden layer at the kth cycle. The output weight is calculated
by [44]:

w = H−1
·Q (17)

Then the capacity at the kth cycle can be predicted by formula (5) and (6).

8. RUL prognosis.

RUL is the number of charge-discharge cycles that the battery capacity can withstand before the
capacity failure threshold is reached for the first time. The posterior probability density (pdf) of RUL
at the kth cycle can be estimated by [28]:

p(RULk|Q1:k) =
N∑

i=1

wi
kδ(RULk −RULi

k) (18)

The prediction value of RUL can be estimated by [28]:

RULk =
N∑

i=1

wi
kRULi

k (19)

The workflow of the PFELM algorithm is shown in Figure 2.
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3. Experiment and Analysis

3.1. Data Description

In this paper, the battery datasets are from datasets published by the National Aeronautics and
Space Administration Ames Research Center. We selected the testing data from B0005, B0006, B0007,
and B0018. The tests of these four batteries were carried out at a constant room temperature of 24 ◦C for
the charge and discharge experiments. In the charging phase, at first, the four batteries were charged
at a constant current of 1.5 A until the battery terminal voltage reached 4.2 V. Then constant voltage
charging was performed until the charging current drops to 20 mA; in the discharging phase, B0005,
B0006, B0007, and B0018 were discharged at a constant current of 2 A until the four terminal voltages
reached 2.7 V, 2.5 V, 2.2 V, and 2.5 V, respectively. The capacity fade curves of the four batteries are
shown in Figure 3. It is worth noting that MATLAB R2016a (MathWorks, Natick, MA, USA) software
is used for all data processing of this paper.
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In general, lithium-ion batteries are considered to be invalid when the capacity reached 80% of
the initial capacity. However, in this paper, in order to verify the performance of the algorithm over a
wider capacity range, we set the capacity failure thresholds of the B0005, B0006, B0007, and B0018 to
75%, 70%, 80%, and 75%of the initial capacity, respectively.

3.2. Determination of Algorithm Parameters and Evaluation Index of Results

3.2.1. Number of Layers and Nodes in Each Layer of ELM

In this paper, we chose a three-layer ELM. Three nodes were present in the input layer.
Considering that the temperature is an essential factor affecting the RUL of battery [46], we took the
temperature change value and the average temperature rate of change of the cell, at each discharge,
as two inputs. The number of charge-discharge cycles was the third input. There was one node in
the output layer, which was the output for the battery capacity. The nodes of the hidden layer were
determined experimentally. The evaluation indicators of prediction results include maximum error,
minimum error, mean error, and mean square error. The statistical results are shown in Table 1.

Taking into account the amount of calculations and prediction results in Table 1, we set four nodes
in the hidden layer.

To ensure the equality of the external conditions, we set four hidden layer nodes in the ELM of
PFELM, in the MLP of PFMLP and in the NN of BATPFNN.
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Table 1. Capacity prediction results of different hidden layer nodes number.

L Maximum Error Minimum Error Average Error Mean Square Error

3 0.059 −0.076 0 0.018
4 0.032 −0.044 0 0.013
5 0.052 −0.038 0 0.015
6 0.044 −0.044 0 0.012
7 0.045 −0.037 0 0.013
8 0.037 −0.039 0 0.013
9 0.048 −0.052 0 0.016
10 0.030 −0.025 0 0.010

3.2.2. Evaluation Index of Results

In this paper, the following three parameters were considered as results evaluation indicators of
RUL prognosis.

1. Remaining Useful Life (RUL)

Remaining Useful Life (RUL) is defined as the number of charge-discharge cycles that the battery
capacity can withstand before the capacity failure threshold is reached, for the first time, at a certain
charge and discharge condition. It can be formulated as:

RUL = Cycle(Qreal) −Cycle(Qcurrent) (20)

where Cycle(Qreal) represents the actual number of charge-discharge cycles from the current periods to
the battery failure, Cycle(Qcurrent) represents the predicted number of charge-discharge periods from
the current periods to the battery failure.

2. Absolute Error (AE)

Absolute Error (AE) is the absolute value of the difference between the predicted RUL and the
real RUL, which can be formulated as:

AE =
∣∣∣RULprediction −RULreal

∣∣∣ (21)

where RULprediction represents the predicted RUL, RULreal represents the real RUL.

3. Mean Square Error (MSE)

Mean Square Error (MSE) reflects the accuracy between the predicted capacity value and the real
capacity value. The smaller the value, the better the average prognosis performance of the algorithm.
It can be expressed as:

MSE =

√√√
1
M

M∑
k=1

(Qk − Q̃k)
2

(22)

where M represents the total number of cycles, Qk represents the true capacity value, Q̃k represents the
predicted capacity value.

3.3. Experimental Results Presentation

In this section, we use the batteries datasets of B0005, B0006, B0007, and B0018 from NASA Ames
Research Center to test the performance of the ELM, the PFMLP, the BATPFNN, and the PFELM four
algorithms. Considering the uncertainty of the starting point of the battery RUL starting prediction
point in the practical operating conditions, we selected three different starting prediction points, at;
1, 50, and 70. Finally, we compared the prognosis performance of the four algorithms. Note that in
all the figures in this section, the black point represented the real capacity value corresponding to
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each cycle, and the black dotted line parallel to the horizontal axis is the battery failure threshold line.
The blue curve, cyan-blue curve, green curve and red curve are the capacity decline curves obtained by
fitting the battery capacity value predicted by the ELM, the PFMLP, the BATPFNN, and the PFELM,
respectively. The cyan-blue region, green region and red region represent the pdf of RUL estimated
by the PFMLP, BATPFNN, and PFELM, respectively. RULreal and RULpre represent the real RUL,
and the predicted RUL in all the figures in this section, respectively.

3.3.1. Comparison of Prognosis Results of B0005

From Figure 3, we can see that the initial capacity of B0005 is 1.8565 Ah, and its failure capacity
value is 75% of the initial capacity.

Figures 4 and 5 show the predicted RUL results and capacity prediction errors starting from the
first cycle, respectively. Figures 6 and 7 show the predicted RUL results and capacity prediction errors
starting from the 50th cycle, respectively. Figures 8 and 9 show the predicted RUL results and capacity
prediction errors starting from the 70th cycle, respectively. Table 2 shows the prognosis results of the
four algorithms.
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Table 2. Comparison of Prognosis Results of B0005.

Prediction
Point

Real
RUL Method Predicted

RUL AE MSE RUL Pdf
Range

1 126

ELM 125 1 0.0111 None
PFMLP 78 48 0.1949 [76,81]

BATPFNN 95 31 0.1338 [94,99]
PFELM 126 0 2.9424 × 10−16 [124,129]

50 77

ELM 76 1 0.0058 None
PFMLP 29 48 0.2431 [76,80]

BATPFNN 57 20 0.0818 [105,110]
PFELM 77 0 3.2119 × 10−16 [124,128]

70 57

ELM 56 1 0.0038 None
PFMLP 16 41 0.2111 [84,89]

BATPFNN 46 11 0.0438 [112,118]
PFELM 57 0 3.0353 × 10−16 [125,130]

3.3.2. Comparison of Prognosis Results of B0006

From Figure 3, we can see that the initial capacity of B0006 is 2.0353 Ah, and its failure capacity
value is 70% of the initial capacity.

Figures 10 and 11 show the predicted RUL results and capacity prediction errors starting from the
first cycle, respectively. Figures 12 and 13 show the predicted RUL results and capacity prediction
errors starting from the 50th cycle, respectively. Figures 14 and 15 show the predicted RUL results
and capacity prediction errors starting from the 70th cycle, respectively. Table 3 shows the prognosis
results of the four algorithms.
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Table 3. Comparison of Prognosis Results of B0006.

Prediction
Point

Real
RUL Method Predicted

RUL AE MSE RUL Pdf
Range

1 105

ELM 101 4 0.0110 None
PFMLP 62 43 0.2169 [59,64]

BATPFNN 76 29 0.0710 [74–79]
PFELM 105 0 3.2414 × 10−16 [102,107]

50 56

ELM 52 4 0.0098 None
PFMLP 18 38 0.2963 [66,71]

BATPFNN 33 23 0.1129 [81,86]
PFELM 56 0 2.4341 × 10−16 [104,109]

70 36

ELM 32 4 0.0061 None
PFMLP 3 33 0.1789 [71–76]

BATPFNN 15 21 0.0721 [81,87]
PFELM 36 0 2.6965 × 10−16 [104,109]

3.3.3. Comparison of Prognosis Results of B0007

From Figure 3, we can see that the initial capacity of B0007 is 1.8911 Ah, and its failure capacity
value is 80% of the initial capacity.

Figures 16 and 17 show the predicted RUL results and capacity prediction errors starting from the
first cycle, respectively. Figures 18 and 19 show the predicted RUL results and capacity prediction
errors starting from the 50th cycle, respectively. Figures 20 and 21 show the predicted RUL results
and capacity prediction errors starting from the 70th cycle, respectively. Table 4 shows the prognosis
results of the four algorithms.
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Prediction
Point

Real
RUL Method Predicted

RUL AE MSE RUL Pdf
Range

1 123

ELM 119 4 0.0110 None
PFMLP 58 65 0.2946 [68,74]

BATPFNN 75 48 0.1328 [86,91]
PFELM 123 0 3.1124 × 10−16 [119,125]

50 74

ELM 74 6 0.0102 None
PFMLP 23 51 0.1893 [70,75]

BATPFNN 46 28 0.0863 [94,99]
PFELM 74 0 3.0464 × 10−16 [121,126]

70 54

ELM 0 0 0.0043 None
PFMLP 16 38 0.1532 [83,88]

BATPFNN 32 22 0.0877 [101,105]
PFELM 54 0 3.2416 × 10−16 [121,126]
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3.3.4. Comparison of Prognosis Results of B0018

From Figure 3, we can see that the initial capacity of B0018 is 1.8550 Ah, and its failure capacity
value is 75% of the initial capacity.

Figures 22 and 23 show the predicted RUL results and capacity prediction errors starting from the
first cycle, respectively. Figures 24 and 25 show the predicted RUL results and capacity prediction
errors starting from the 50th cycle, respectively. Figures 26 and 27 show the predicted RUL results
and capacity prediction errors starting from the 70th cycle, respectively. Table 5 shows the prognosis
results of the four algorithms.
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Point

Real
RUL Method Predicted

RUL AE MSE PDF Range

1 98

ELM 99 1 0.0145 None
PFMLP 32 66 0.3982 [29,35]

BATPFNN 78 20 0.0715 [76,81]
PFELM 98 0 3.3752 × 10−16 [95,100]

50 49

ELM 48 1 0.0103 None
PFMLP 18 31 0.1286 [67,71]

BATPFNN 25 24 0.1136 [72,76]
PFELM 49 0 2.0824 × 10−16 [98,102]

70 29

ELM 28 1 0.0077 None
PFMLP 7 22 0.1284 [54,59]

BATPFNN 15 14 0.0438 [84,88]
PFELM 29 0 3.2504 × 10−16 [97,102]

3.4. Experimental Results Comparisons and Discussion

Taking the experimental results of B0005, as an example, we analyze the experimental results from
two aspects: RUL prediction accuracy and robustness in detail.

3.4.1. RUL Prediction Accuracy Analysis

From Figure 4a, we can see that the ELM has good capacity decline tracking ability. However,
the ELM cannot express uncertainty about the prediction results. According to Figure 4b,c, we can
see that the BATPFNN has a better ability to track the capacity decline than the PFMLP, which is
mainly due to the optimization of particles by the bat algorithm, which weakens the effect of particle
degradation and impoverishment. From Figures 4 and 5, it is very obvious that the capacity prediction
values of the PFELM algorithm are closest to the true values and the errors are very small. The same
conclusions can also be drawn from Figure 6, Figures 7–9.

From Figures 5, 7 and 9, we can see that the capacity prediction error curves of the PFELM
algorithm are about 0. However, the errors still exist. According to the statistical results in Table 2,
there are still errors between the predicted capacity and the real capacity, but these errors are very small
and have little effect on the RUL prognosis. For example, the capacity mean square error predicted by
the PFELM algorithm from the 50th cycle is 3.2119 × 10−16, but the RUL absolute error is 0. Therefore,
the PFELM algorithm has the highest capacity and RUL prediction accuracy among the four algorithms.
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3.4.2. Robustness Analysis

Figures 4, 6 and 8 represent the capacity and RUL prediction results of the four algorithms,
starting from the first cycle, the 50th cycle, and the 70th cycle, respectively. We can see the differences
between the real RUL and the RUL prognosis results, by the ELM, the PFMLP, and the BATPFNN are
variable when predicting from different starting cycle points. However, the RUL prediction values by
the PFELM are always guaranteed to be same as the real RUL, when predicting from different cycle
points, which reflects the good robustness of the PFELM algorithm.

In addition, from Figures 4, 6 and 8, it can be seen that the RUL pdf width and height differences,
estimated by the PFMLP, the BATPFNN, and the PFELM are very small. However, the RUL pdf height
by the BATPFNN is the highest among the PFMLP, the BATPFNN, and the PFELM three algorithms,
because the extent of particle impoverishment is weakened due to the introduction of the bat algorithm.
However, the RUL pdf width and height are not the concern of this paper. Particle impoverishment
does not affect the accuracy of RUL estimation from the current experimental results. Therefore, we do
not make redundant introductions.

The same conclusions can also be drawn from experimental results of B0006, B0007, and B0018.
Therefore, we can conclude that the PFELM algorithm can provide more accurate RUL estimation for
B0005, B0006, B0007, and B0018.

4. Conclusions

In this paper, we presented a novel hybrid method for particle filter based extreme learning
machine for RUL estimation of lithium ion batteries. And the results predicted by the ELM, the PFMLP,
the BATPFNN, and the PFELM has been analyzed in detail. The results show that, compared with ELM,
PFMLP, BAPFNN algorithm, (1) the PFELM algorithm has lower capacity prediction error and higher
RUL prediction accuracy; (2) the PFELM algorithm can provide accurate and stable RUL prognosis
results predicting from different starting cycle points, which indicates that the PFELM algorithm has
better robustness.

Although the proposed PAFELM algorithm perform good RUL prognostic effect. However,
the universality of the PFELM algorithm remains to be verified. Different types of batteries have
different capacity degradation behaviors, under different operating conditions, such as the ambient
temperature, the discharge current, and the depth of discharge. Besides, the state initial values,
the process noise, and the measurement noise are the potential factors that influence the PFELM
algorithm prediction accuracy and robustness. Therefore, finding the factors of affecting the algorithm
prediction accuracy and exploring whether the PFELM algorithm is universal, will be investigated in
our next research.
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