
energies

Article

Prediction of Metallic Conductor Voltage Owing to
Electromagnetic Coupling Via a Hybrid ANFIS and
Backtracking Search Algorithm

S. Hr. Aghay Kaboli 1,*, Amer Al Hinai 1,2, A.H. Al-Badi 2, Yassine Charabi 3 and
Abdulrahim Al Saifi 4

1 Sustainable Energy Research Center, Sultan Qaboos University, Muscat 123, Oman
2 Department of Electrical & Computer Engineering, College of Engineering, Sultan Qaboos University,

Muscat 123, Oman
3 Center for Environmental Studies and Research, Sultan Qaboos University, Muscat 123, Oman
4 Petroleum Development Oman (PDO), Muscat 100, Oman
* Correspondence: kaboli@squ.edu.om; Tel.: +96-824-141-989

Received: 22 July 2019; Accepted: 17 September 2019; Published: 24 September 2019
����������
�������

Abstract: The electromagnetic interference (EMI) generated by high voltage power systems can cause
a serious problem for nearby electrically conductive structures, such as railroads, communication
lines, or pipelines, that would place a system’s integrity and the operational safety of the structure at
high level of risk. According to the IEEE standard-80, by implementing a well-designed mitigation
system, the induced voltage on neighboring electrically conductive structure can reach a harmless
level. The mitigation system can enhance the overall integrity of pipelines and provide higher
operation safety for personal during working on the exposed parts of metallic pipelines or conductive
appurtenances. An accurate prediction about the level of induced voltage is absolutely necessary to
design a suitable mitigation system for metallic pipelines. Thus, in this work a hybrid prediction
methodology composed of an adaptive neuro-fuzzy inference system (ANFIS) and a backtracking
search algorithm (BSA) is developed to accurately predict the electromagnetic inference’s effects on
metallic pipelines with shared right-of-way (RoW) and high voltage overhead lines (OHLs). Through
the combination of BSA as a robust and efficient optimization algorithm in the learning process of an
ANFIS approach, a hybrid data mining algorithm has been developed to predict the induced voltage on
mitigated and unmitigated pipelines more accurately and reliably. The simulation results are validated
by data sets observed from the Current Distribution, Electromagnetic Interference, Grounding and
Soil Structure Analysis (CDEGS) software. From the simulation results it was confirmed that the
proposed hybrid method is effective in accurately predicting the induced voltage on pipelines
with changing system parameters. Furthermore, to evaluate the precision and applicability of the
developed approach in this paper, its estimates are compared with the results obtained from an
artificial neural network (ANN), a support vector regression (SVR) and an ANFIS optimized by other
well-known optimization algorithms. The obtained results indicate higher accuracy of the developed
hybrid method over other artificial intelligence based approaches.

Keywords: adaptive neuro-fuzzy inference system; backtracking search algorithm; electromagnetic
interference; overhead line; pipeline

1. Introduction

Due to the quick expansion of the economy in different countries, the demand for primary energy
resources, raw materials and electrical energy is serially growing. Thus, to effectively supply such
continuously increasing demands, it is essential to expand the existing high voltage overhead lines
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(OHLs), water, gas, and oil supply pipelines or construct new ones. To reduce both construction costs
and environmental damage, a set of government regulations has been generated that limit the access to
new distribution and transmission corridors [1–3]. Therefore, high voltage OHLs are constructed with
the shared transmission and distribution corridors for water, gas, and oil pipelines. When pipelines
are located in shared right-of-way (RoW) with high voltage OHLs, the neighboring pipelines would
suffer from very high induced currents and voltages, due to the electromagnetic interference (EMI)
effects generated by high voltage OHLs [4].

The EMI can be transferred from a high voltage AC power system to nearby metallic constructions
without any electrical connection. The AC interference is created in the neighboring metallic water, gas,
and oil pipelines due to the electromagnetic fields produced by high voltage OHLs. Thus, in the most
conditions above or underground, metallic pipelines are vulnerable to be effected by induced high
AC voltages and currents [5]. In the most severe conditions the metallic pipelines are located in close
adjacency to high voltage OHLs without any electrical connection to a mitigation system for reduction
in the level of induced voltage. These situations can be more severe during an OHL fault while the
level of induced voltage on unmitigated metallic pipelines can extend to thousands of volts [6].

According to the circuit configurations, capacitive, inductive, and conductive couplings are
considered as three different categories of AC interference coupling mechanisms [7].

Conductive coupling is generated through the ground voltage rise caused by discharging a very
high amount of current in to the ground at power system structures, especially at the grounding
systems of high voltage OHLs, high voltage substations, and power plants. The conductive coupling is
one of the main concerns during power system faults, particularly in the places where the metallic
pipelines are located in close proximity to high voltage OHLs [8].

Generally, inductive coupling is generated via the magnetic fields. The OHLs carrying a high level
of current by their conductors generate strong magnetic fields in the neighboring area. The generated
magnetic field around the high voltage OHLs induces voltage in the surrounding metallic structures
coupled by this magnetic field. This coupling is influenced by different factors, such as the level of the
OHLs’ current, the parallelism length, and the distance between OHLs and metallic structures [9].

The capacitive coupling is generated by the potential difference between two systems. The voltage
difference between high voltage OHLs and any nearby conductive structure, such as a metallic pipeline,
forms an electric field between the two systems.

To avoid the electrochemical corrosion and minimize the densities of the induced current,
an appropriate protection is essential for the underground metallic pipelines that are in permanent
touch with the electrolyte solution of the ground [10]. Uncontrolled corrosion of the buried metallic
supply pipelines can cause gas/oil spills with severe economic and ecological implications.

The induced voltage on the metallic pipeline would put the safety of persons who will touch the
exposed metallic parts of gas/oil pipeline at risk, due to a potentially powerful electric shock; and could
also damage the cathodic protection (CP) of the pipelines that is used for protecting the pipeline from
corrosion, and place the integrity of the pipeline at serious risk [11].

Additionally, extreme coating stress potentials (the potential difference between the metallic
pipeline and local ground) would damage the coating, because of sped-up corrosion. If the level of
voltage is sufficiently strong it can harm the gas/oil pipeline walls. This voltage can also result in
damage to both insulating flanges and CP equipment [12].

The level of induced voltage on the pipelines can be reduce to a safe range, according to the IEEE
standard-80, by implementing an appropriate mitigation system [10]. The gradient control wire is
considered one of the greatest mitigation systems of those that are widely applied [13,14]. The AC
interference has to be well studied to design a suitable protection for metallic pipelines [15]. Especially
for designing an optimized mitigation system, a proper methodology is required to accurately predict
the induced voltage on metallic pipelines.
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2. Literate Review

Multitudinous interrelations exist in the calculation of AC induced currents and voltages on
metallic gas, oil, or water supply pipelines placed in the close proximity of high voltage OHLs that turn
this computation as a complex task. Generally, the generated coupling mechanism and electromagnetic
fields are modeled through the differential equations. The dedicated assessment approaches, such as
finite difference method (FDM) [1] or the finite element method (FEM) [16] are commonly used to
solve the differential equations. The EMI problems are transferred to a pure numerical simulation by
FEM [17]. However, the computation burden will exponentially increase by expanding dimensions of
simulation geometry and simulation complexity as a huge number of extended meshes and parameters
have to be assessed [18]. A new mesh discretization and new evaluation has to be considered for
each new simulation of the problem geometry. Nonetheless, immense computational power and time
are required to profoundly evaluate the EMI between high voltage OHLs and metallic pipelines for
various system arrangements via FEM [19]. Hence, any prediction methodologies capable of accurately
estimating the requested information from a specified set of problem configurations recently got more
attention [20].

The artificial intelligence (AI) based techniques have been considered a superior solution for the
computation of AC induced voltages [17,20]. AI based approaches often warranty a sufficient degree
of prediction accuracy for complex system modeling [21].

Among different AI-based techniques artificial neural networks (ANNs) are the most broadly
used approaches for modeling the induced voltages [22]. ANNs are of interest for predicting the
induced voltages on metallic pipelines placed in high voltage OHLs RoW due to their capabilities such
as precise pattern learning, a memory to recall information from past experience, determine relations
between dependent (output) and independent (input) variables and discover diverse discriminators
in the complex system [1,20,23–25]. The ANN can be applied for predicting induced voltage on
metallic pipelines on account of its ability for handling noisy information, having memory and parallel
calculation architecture. The accuracy and effectiveness of ANNs approaches are strongly associated
with convergence speed, neural network architecture, and the weight updating algorithm [26].
The multilayer perceptron (MLP) with the error back propagation training method as an effective class
of feedforward ANN was implemented in [27], to predict the level of induced voltages on a buried
metallic pipeline, located in the electromagnetic field caused by a high voltage OHL during single
phase to ground fault conditions. The resistivity of the ground, the distance between the OHL and
buried metallic pipeline, the magnitude of fault current, and the connection of the pipeline to the
mitigation system are considered as input for ANN in this study. Additionally, the induced voltage on
the buried metallic pipeline for a range of fault current and separation distances is directly estimated
by the applied method.

Support vector regression (SVR) is one more AI-based method, which has been widely used for
complex system modeling as an enhanced predictive method because of its capability to easily learn
and adapt to the complex patterns [28]. The main superiority of SVR in comparison with ANN is that
the global optimum in the training phase of SVR is always funded. Moreover, in comparison with
ANN, SVR has a lesser tendency for over fitting and it has plainer geometric interpretation. It also
provides more sparse results [29].

Due to the application feasibility and simplicity for the development of the hardware, the fuzzy
logic system (FLS) has been applied in various power system projects, and industrial processes. The FLS
was effectively used in [28] for the calculation of the level of magnetic fields nearby the an OHL
during a phase to ground fault condition. A major drawback of this approach is high complexity of
the gradient approach used to find the optimum parameters of fuzzy logic rules. Then, the genetic
algorithm (GA) optimization method is used to determine the optimum parameters of the requested
fuzzy logic rules [30]. Still, the FLSs are based on predetermined “if/then” rules that disrupt the
capability of fuzzy systems to adapt and learn from different conditions. To overcome this shortcoming
and offer a universal estimator approach with a high capability for the computation of induced
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voltages, hybridization of ANN with FLS as a neuro-fuzzy system has been proposed by the authors
in [26]. The adaptive neuro-fuzzy inference system (ANFIS) has a higher degree of generalization and
consistency. It provides great prediction accuracy throughout various range of input data.

The optimized neuro-fuzzy based method is developed in this work as an enhanced version of
ANFIS to further improve the prediction precision of the induced voltage on mitigated and unmitigated
pipelines. The backtracking search algorithm (BSA) as an efficient optimization algorithm is applied in
the learning process of ANFIS to promote the prediction accuracy by tuning the membership functions
for achieving a lower prediction error.

BSA is a recently developed optimization algorithm that not only delivers highly accurate solutions
but also has quite a simple mechanism with only one control parameter [31]. The performance of the
proposed hybrid approach was examined attentively in comparison with the results from ANN, and SVR
and ANFIS models optimized by two other robust and efficient metaheuristic optimization algorithms;
namely, the cuckoo search optimization algorithm (CSA) and the particle swarm optimization (PSO)
algorithm. Moreover, the obtained results are further validated by the observed data from the Current
Distribution, Electromagnetic Interference, Grounding and Soil Structure Analysis (CDEGS) program
developed by Safe Engineering Services & technologies (SES) company [32].

This paper is organized as follows: Section 3 provides a brief description of ANFIS. Then, the main
principle of backtracking search algorithm (BSA) is presented in Section 4. Section 6 presents all
the simulation results together with the performance of developed hybrid ANFIS-BSA method in
comparison with other applied AI-based approaches. The statistical analysis is also provided in this
section to evaluate the robustness of the proposed hybrid ANFIS-BSA method for predicting the
induced AC voltage in mitigated and unmitigated pipelines placed in electromagnetic fields created
by an OHL in the case of a fault. Finally, the conclusion was drawn by consolidating the important
features of this study.

3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The fuzzy logic method is based on the predetermined “if/then” rules that lack the capability
of this system to adapt and learn from new conditions. Thus, to overcome this drawback, authors
in [33] hybridized a ANN with a fuzzy inference system (FIS) to form the ANFIS approach. The ANFIS
approach is categorized as an enhanced adaptive system like ANN, that, through training, adapts
the antecedent (fuzzy membership functions) parameters and the consequent (fuzzy system output
function) parameters.

The ANFIS gains the advantages of both ANN and FIS and it does not suffer from the drawbacks
associated with both methods. The complicated procedures of ANNs are solved by using linguistic
variables of FIS system, and the disadvantage of FIS is bypassed by using the neural inference system,
which provides the capability of ANFIS to adapt and learn from new conditions. Therefore, the ANFIS
approach has the ability to simulate complex systems using ANN learning with FIS, and it has been
classified as a universal estimator capable of predicting the output of complex systems.

ANFIS has been developed as an enhanced adaptive system with group of “if/then” fuzzy rules
and tunable membership function (MF) parameters in the training phase. The antecedent (fuzzy
membership functions), and the consequent (fuzzy system output function) parameters are two
different sets that are optimized during the training phase to provide the learning procedures for
ANFIS approach.

ANFIS comprises five different consecutive layers: the first layer is the if-part (fuzzification);
the second layer is the rules (production) part; the third layer is norm part; the fourth layer is the
then-part (defuzzification); and the fifth layer is the output part [34]. The main ANFIS structure with
two inputs (i.e., x and y) as independent variables and one output (i.e., fout) as the dependent variable
is illustrated by Figure 1.
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Figure 1. Overall configuration of the adaptive neuro-fuzzy inference system (ANFIS). 
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Figure 1. Overall configuration of the adaptive neuro-fuzzy inference system (ANFIS).

Sugeno and Mamdani are two different types of FISs. These two types of FISs have different
defuzzification procedures and consequences in “if/then” fuzzy rule sets.

ANFIS architectures represent both the Mamdani and Sugeno methods. In contrast to Sugeno-type
FIS, Mamdani has less flexibility to be integrated with the ANFIS approach to precisely model the
complex systems [35].

The “if/then” rules of ANFIS approach integrated with first order Sugeno FIS are defined as:

Rule 1: If x is A1 and y is B1 then z is f1(x, y; p1, q1, r1) = x p1 + y q1 + r1
Rule 2: If x is A2 and y is B2 then z is f2(x, y; p2, q2, r2) = x p2 + y q2 + r2

(1)

where fi (x, y; pi, qi, ri) is a polynomial function providing the output of fist order Sugeno FIS. In this
function, the two inputs of the ANFIS model are represented by x and y, and the output of the ANFIS
model is indicated by z. The fuzzy sets are represented by Ai and Bi.

Generally, different node functions constrict the layers of ANFIS approach. As illustrated in
Figure 1, the adaptive node, the adjustable variable, is indicated by a square and the fixed node,
fixed parameter, is indicated by a circle.

• First layer (if-part):

The first layer consists only of adaptive nodes, as represented by the flowing function:

Q1,i = µAi(x), i = 1, 2 (2)

Q1,i = µBi−2(y), i = 3, 4 (3)

The inputs to the node i are represented by x and y. Ai and Bi are different linguistic labels. The MF
for Ai and Bi fuzzy sets are represented by µAi and µBi, respectively. The membership degree of a
fuzzy set is represented by Q1,i. The node i output determines the grade to which each x or y input
complies with the quantifiers.

Generally, any form of typical MF can be implemented in ANFIS approach.
The Gaussian membership function is the most widely used MF that is specified as follows:

µA(x; c, σ) = e−0.5( x−c
σ )2

(4)

where σ and c determined the width and center of the Guassian membership function, respectively.

• Second layer (rules):

The second layer consists of only fixed nodes. The products of all connected signals to the node is
considered the output of each node in this layer. This layer determines the firing strength for each
fuzzy rule via multiplication of incoming signals as follows:

Q2,i = wi = µAi(x)µBi(y), i = 1, 2 (5)
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where the firing strength for fuzzy rule is represented by output signal of wi.

• Third layer (normalization):

The third layer consists of only fixed nodes. This layer normalizes the firing strength calculated in
the second layer, through computing the ratio of the ith firing strength of the fuzzy rule to sum of all
the firing strengths of fuzzy rules.

Q3,i = wi =
wi

w1 + w2
i = 1, 2 (6)

where the normalized firing strength of a fuzzy rule as output signal is represented by w.

• Fourth layer (then part):

In the fourth layer a node function is adaptive with each node i.

Q4,i = wi fi i = 1, 2 (7)

where the “if/then” fuzzy rules are defined by the following f1 and f2 functions:

Rule1: If x is A1 and y is B1 then z=f1(x, y; p1, q1, r1)
Rule2: If x is A2 and y is B2 then z=f2(x, y; p2, q2, r2)

(8)

where the parameter set known as the consequent parameters are represented by ri, qi, and pi.

• Fifth layer (output):

The fifth layer consists of only a single fixed node that calculates the ANFIS output through
adding all the arriving signals.

Q5,i = fout =
∑

i

wi fi =
∑

i wi fi∑
i wi

= overal output i = 1, 2 (9)

The total output of the ANFIS approach is a summation of all consequent signals. Hence, the total
output of the ANFIS approach is defended as follows:

fout = w1 f1 + w2 f2 = w1
w1+w2

f1 +
w2

w1+w2
f2

= (w1x)p1 + (w2x)p2 + (w1y)q1 + (w2y)q2 + (w1)r1 + (w2)r2
(10)

Finally, a hybrid learning algorithm was applied with the ANFIS approach to accurately tune
the parameters.

4. Backtracking Search Algorithm (BSA)

BSA, as one of the newly developed metaheuristic optimization algorithms, has relatively simple
constriction, but is an efficient algorithm for finding the optimum solutions in non-convex and
multimodal optimization problems. Due to the quite simple structure of BSA, it has been applied to
solve various engineering optimization problems. During the evaluation of BSA, a trial population
was generated through two enhanced crossover and mutation operators. The structures of enhanced
mutation and crossover in BSA are extremely different, with the mutation and crossover operators
specified in former optimization algorithms, such as differential evolution (DE) and GA. Those two
enhanced operators are applied in this algorithm to provide a balance between exploitation of optimal
result and exploration of the optimization search space. BSA has efficient exploitation and exploration
capabilities because of several effective mechanisms defined in this optimization algorithm to generate
a trial population, control the boundaries of optimization search space and adapt the magnitude of the
search direction [34].
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BSA has only one control parameter and the performance of this optimization in not excessively
sensitive to the preliminary value of this parameter. It does not suffer from drawbacks associated
with other metaheuristic methods, such as being computationally expensive, being trapped in local
optima, having various control parameters, and being overly sensitive to the initial values of these
parameters. Additionally, a track of previous generations is stored in memory to share the past
experiences for generating a trial population. It stores a randomly chosen population from previous
generation in its memory for the generation of the matrix of the search-direction. The superiority
of BSA for finding optimum solutions in numerical optimization problems over different widely
used metaheuristic optimization algorithms is verified through the statistical analysis reported in [31].
Generally, six different steps construct the BSA structure as coded in Figure S1. The steps of BSA are
as follows:

Step 1: Initialization
Scattering the population members in the solution space
(Equation (11))

Pi, j;g = 0∼U(low j,up j) , yi = f (Pi)

f or
i =

{
1, 2, 3, . . . , nPop

}
, j = {1, 2, 3, . . . , nVar}

(11)

where:
nPop is population size. nVar signifies the optimization variable. Uniform
distribution function is U. lowj and upj are upper and lower search space limits of jth

variable. yi is productivity of ith individual. g is generation number.
Step 2: Selection-I

(1) Initializing a historical population (old P) to determine
the search-direction matrix (Equation (12));

(2) Redefining the historical population at each iteration
based on (if/then) rule by comparing two random
numbers, a and b. Subsequently, population (P) pursues
old P until it is changed to provide a memorization
process and facilitates the exploration search space
(Equation (13));

(3) At the end of step 2, a hierarchical sequence has been
permuted by shuffling random function (Equation (14));

oldPi, j ∼ U(low j, up j) (12)

where OldP is a historical population

i f a < b

∣∣∣∣∣∣ a, b ∼ U(0, 1)
then oldP := P (13)

where, := is the updated operation.
a and b are randomly generated numbers.

oldP := permuting(oldP) (14)

where,
permuting (oldP) is a random shuffling function.

Step 3: Mutation.
The Wiener process (F) is implemented to control the
amplitude of the search matrix according to Equation (15);

Mutant = P + F.(oldP− P)

F = 3.rndn

∣∣∣∣∣∣ rndn ∼ N(0, 1)
(15)

where,
N is standard normal distribution

Step 4: Crossover.
Determine the binary integer–valued matrix (map) and control
parameter of individuals in BSA according to Equation (16);

mapi, j = 1,

i f a < b

∣∣∣∣∣∣ a, b ∼ U(0, 1)
then

mapi,u(1:dmixrate.rnd.nVare)
= 0

∣∣∣∣∣∣ rnd ∼ U(0, 1), u = permuting(1, 2, 3, . . . , nVar)
else
mapi,randi(nVar) = 0
T := Mu tan t
i f mapi, j = 1 then Ti, j := Pi, j
f or
i =

{
1, 2, 3, . . . , nPop

}
, j = {1, 2, 3, . . . , nVar}

(16)

where mix rate is the control parameter of optimization algorithm.
Step 5: Boundary control.
At the end of step 4, if an individual in generated offspring (T)
violates the boundary condition, the control mechanism
developed in step 5 is updated according to Equation (17);

i f (Ti, j < low j)or(Ti, j > up j)thenTi, j ∼ U(low j, up j) (17)

where,
T is generated offspring

Step 6: Selection-II.
Calculating the fitness and the position (Equation (18)).

i f f (Ti) < yi then , yi := f (Ti), Pi := Ti
yg = min( f (Pg))

i f yg < yg−1 then global minimum := yg , global minimizer := Pg ,
g = g + 1
f or
i =

{
1, 2, 3, . . . , nPop

}
, g =

{
1, 2, 3, . . . , gMax

}
(18)
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5. System Modeling

The system modeled in this research is provided in Figure 2. It is comprised of 132 kV OHL and
a neighboring, well coated 16” pipeline. The total length of the metallic pipeline is 10 km, whereas
the high voltage OHL length is 20 km. The length of the parallelism of OHL with the pipeline is
10 km; the metallic pipeline is located at the central site with a burial depth of half meter, connected
to the gradient control wires as mitigation system. The gradient control wire, as an effective type of
mitigation system, is a horizontally-buried zinc anode wire placed at the bottom of the trench beside
the metallic pipeline [13], and regularly connected to the metallic pipeline, as illustrated in Figure 2.
The gradient control wires typically connect to the pipeline at intervals varying from 150 to 600 m.
The DC decoupling devices are connected between the pipeline and gradient control wire, which will
decouple the DC while remaining the AC coupled. The function of this device is providing a path for
the AC current to flow from the pipeline to the zinc ribbon grounding system, while blocking the DC
cathodic protection current from flowing to the zinc ribbon conductor.

Step 6: Selection-II. 
Calculating the fitness and the 
position (Equation (18)). 
 
 
 { } { },...,gMax3,2,1,g,...,nPop3,2,1i

for
1gg

,gPimizer:minglobal,gyimum:minglobalthen1gygyif
))gP(fmin(gy

iT:iP,)if(T:iy,theniy)if(Tfi

==

+=

==−<
=
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6. Simulation Results and Discussion

In this paper, ANFIS-BSA is applied to improve the accuracy of induced voltage prediction on
mitigated and unmitigated pipelines. The level of the induced pipelines voltage, depends on diverse
factors, such as the level of OHL voltage, parallelism length, the separation distance, resistivity of the
ground, the load current magnitude, OHL configuration, and the material of pipeline coating and
the mitigation system. The level of fault current, the separation distance, mitigation system, and the
resistivity of the ground have the higher impacts on the induced pipeline voltage, as reported in [26].
Generally, the single phase to ground fault condition is considered to evaluate the induced voltage on
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neighboring pipelines as it is the most frequent fault in the distribution and transmission power system
and it produces very high level of induced voltage on the metallic pipelines. This can be explained by
the fact that within the two or three phase-to-ground fault occurrences, cancellation of the magnetic
field will occur as a result of a poorer induced voltage generated on the metallic pipeline. Hence, in this
study, the maximum induced voltage on the pipeline is calculated for mitigated and unmitigated
pipelines with varying separation distances, various resistivities of ground, and a diverse level of
single line to ground fault currents. The parameters of the system used in this study are tabulated in
Figure 2. This data set of input variables covers diverse sets of possible situations.

The validity of the obtained models is verified by comparing the simulation results with the
corresponding results obtained from the CDEGS software. Furthermore, to assess the effectiveness
of ANFIS-BSA for predicting the induced pipeline voltage, its performances are compared with
the following methods: MLP, SVR, ANFIS, MLP-PSO, MLP-CSA, MLP-BSA, SVR-PSO, SVR-CSA,
SVR-BSA, ANFIS-PSO, and ANFIS-CSA.

The procedure of the proposed methodology for predicting the induced voltage on both mitigated
and unmitigated pipelines is illustrated in Figure 3. Commonly, for finding the practical models
generated by the machine learning algorithms, a similar process is carried out. Hence, for obtaining
the optimal AI based models to predict the induced voltage on the metallic pipelines, the following
serial steps are followed for all applied approaches in this study.

1. The independent variables consisted of four inputs representing fault current, soil resistivity,
separation distance, and mitigation system, while the dependent variable represented the total
pipeline’s maximum voltage.

2. Both dependent and independent variables were randomly distributed into two different phases:
fifty of the total sixty-five systems with different configurations as the training phase, and the
reminder as the testing phase. Since the range of dependent and independent variables varies
widely, both variables were normalized by Equation (19). To speed up the learning process,
the observed data were normalized prior to data processing. The main purpose of raw data
normalization was unifying the observed data into a common scale.

__
Z(t) =

Z(t) −min(Z)
max(Z) −min(Z)

+ 1 (19)

where Z is the data to be normalized and
__
Z is the normalized data, and t is the number of

observations.
3. The learning process occurred during the training phase. The computer programs that link the

input variables to the output were developed during learning process. The data required for the
training of the AI-based methods was obtained via the CDEGS program. This program is especially
designed to automate and simplify the modeling of complex RoW arrangements involving power
transmission lines and other utilities, such as water, oil, or gas pipelines. Its results were strongly
validated by analytical equations and by an experimental test rig reported in [8,36]. Although the
testing phase does not have any role in developing the models, it was employed to assess the
performance of the models obtained by AI-based methods. To measure the predictive accuracy of
the generated models, several evaluation criteria were used, such as Thiel’s inequality coefficient
(U-statistic), root mean square error (RMSE), absolute error, and mean absolute percentage error
(MAPE). The mathematical equations of those criteria are as follows:

MAPE% =
1
N

N∑
t=1

∣∣∣(EP(t)actual − EP(t)estimated)
∣∣∣

EP(t)actual
× 100 (20)

MAPE% =
1
N

N∑
t=1

∣∣∣(EP(t)actual − EP(t)estimated)
∣∣∣

EP(t)actual
× 100 (21)
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U =
RMSE√

1
N

N∑
t=1

(EP(t)actual)
2 +

√
1
N

N∑
t=1

(EP(t)estimated)
2

(22)

where the U-statistic provides a measure of how well fitted a time series of predicted values to a
corresponding time series of observed data. The U-statistic is always in the range of zero to one,
with a value closer to one indicating the estimation is no better than a naive estimate and the
value closer to zero demonstrates higher prediction accuracy with a great fit.

4. The Durbin–Watson (whiteness) test was calculated to guarantee that the generated models
sufficiently describe given data sets [37]. The whiteness test is calculated via a confirmatory
analysis. The main purpose of confirmation analysis is to guarantee the whiteness of estimated
residuals. The whiteness of estimated residuals (e(t)) indicates that they are uncorrelated.
The residuals autocorrelation function (RACF) is used to study the correlation of the whiteness of
estimated residuals through the following equation:

RACF =

∣∣∣∣∣∣ N∑
t=2

(e(t) e(t− 1))

∣∣∣∣∣∣
N∑

t=1
(e(t))2

(23)
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Figure 3. Procedure of ANFIS-BSA for induced pipeline voltage prediction. 
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summarized in Table 1. The optimization methods used the learning process of MLP according to 
[38] and the optimized SVR approaches were developed based on [39]. 

The performances of applied machine learning methods for predicting the total induced voltage 
on unmitigated pipeline are tabulated in Table 2. The RACF values in these tables verify the whiteness 
of estimated residuals within a confidence interval for all developed models. The prediction accuracy 
of the studied methods in terms of multi-criteria decisions, using the mean rank of the methods for 
each indicator (MAPE, U-statistic, absolute error, and RMSE) in whole set is ranked: ANFIS-BSA > 
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The RACF values come into the range of zero to one; if the value of RACF is meaningfully diverse
from zero, it will fall outside a confidence level. This specifies that the residuals are not correlated
(white) and an important input (independent) variable has been missed in the tested model.

Since there is no conformity in the optimal values of the machine learning algorithms’ parameters,
setting the control parameters of all applied AI-based approaches was done according to the successful
approaches in the literature. All parameter settings of applied methods are summarized in Table 1.
The optimization methods used the learning process of MLP according to [38] and the optimized SVR
approaches were developed based on [39].

Table 1. Parameter settings of applied methods.

Methods Parameters Value

ANN MLP
Hidden layer
Transfer function
Learning algorithm

1
logarithmic sigmoid
Levenberg-Marquardt PB

SVR RBF kernel
Kernel’s parameter (∂)
Soft margin parameter (C)
Fraction of error (υ)

1/6
1
0.5

ANFIS Subtractive clustering (SC)
Cluster radius 0.8
FIS structure Sugeno-type
Membership function Gaussian

Metaheuristic
optimization

PSO
Swarm population
w
c1=c2

100
[0.4, 0.9]
2

CSA
Number of nests
Distribution factor (ß)
Probability of an alien egg (Pa)

100
1.5
[0, 1]

BSA
Number of individuals 100
Control parameter rate (P) 100%

The performances of applied machine learning methods for predicting the total induced voltage
on unmitigated pipeline are tabulated in Table 2. The RACF values in these tables verify the whiteness
of estimated residuals within a confidence interval for all developed models. The prediction accuracy
of the studied methods in terms of multi-criteria decisions, using the mean rank of the methods for
each indicator (MAPE, U-statistic, absolute error, and RMSE) in whole set is ranked: ANFIS-BSA >

ANFIS-CSA > ANFIS-PSO > SVR-BSA > SVR-PSO > SVR-CSA > MLP-BSA > MLP-CSA = ANFIS >

MLP-PSO > MLP > SVR.
The comparison between the accuracy of methods applied for the prediction the induced voltage

on an unmitigated pipeline reveals that optimized ANFIS approaches outperform other studied
methods. Furthermore, it was found that the most efficient optimization algorithm applied for training
ANFIS was BSA, as the superior MAPE (1.1581%), U-statistic (0.0072), RMSE (0.0197), and absolute
error (1.0213) values reported in Table 2 belong to ANFIS-BSA. The performance of proposed method
(ANFIS-BSA) in testing and training phases is depicted in Figures 4 and 5.

For further examination of solution methodology, the performance of optimized ANFIS for
predicting the total induced voltage on mitigated pipeline is compared with those from other machine
learning methods, as shown in Table 3. The computed RACF values in this table specify that the
estimated residuals of all developed models are uncorrelated and attained models satisfactorily describe
the given data series.
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Table 2. Comparison between the accuracy of the applied approached for predicting the total induced
voltage on an unmitigated pipeline.

Methods Performance
Indexes MAPE (%) RMSE Absolute

Error U-Statistic RACF

MLP
Training 1.2836 0.0365 0.9328 0.0091 0.0007
Testing 1.9627 0.0559 0.7432 0.0154 0.0003

Whole set 1.5017 0.0462 1.6760 0.0110 0.0006

MLP-PSO
Training 1.2377 0.0343 0.9172 0.0088 0.0004
Testing 1.8974 0.0532 0.7232 0.0152 0.0022

Whole set 1.4534 0.0435 1.6404 0.0106 0.0014

MLP-CSA
Training 1.2034 0.0314 0.8973 0.0087 0.0043
Testing 1.8879 0.0522 0.7189 0.0150 0.0019

Whole set 1.4179 0.0399 1.6162 0.0104 0.0035

MLP-BSA
Training 1.1835 0.2845 0.8875 0.0086 0.0008
Testing 1.8661 0.5043 0.6959 0.0149 0.0035

Whole set 1.3979 0.0377 1.5834 0.0102 0.0021

SVR
Training 1.3045 0.0397 0.9520 0.0097 0.0032
Testing 1.9903 0.0599 0.7736 0.0158 0.0045

Whole set 1.6273 0.0483 1.7256 0.0114 0.0038

SVR-PSO
Training 1.1194 0.0264 0.8614 0.0084 0.0035
Testing 1.7287 0.0471 0.6567 0.0151 0.0007

Whole set 1.3586 0.0352 1.5181 0.0098 0.0025

SVR-CSA
Training 1.1208 0.0273 0.8706 0.0085 0.0017
Testing 1.7322 0.0486 0.6613 0.0147 0.0013

Whole set 1.3627 0.0367 1.5319 0.0101 0.0016

SVR-BSA
Training 1.1174 0.0253 0.8506 0.0081 0.0009
Testing 1.7248 0.0458 0.6423 0.0140 0.0074

Whole set 1.3541 0.0335 1.4929 0.0095 0.0028

ANFIS
Training 1.2158 0.0329 0.9003 0.0086 0.0008
Testing 1.8845 0.0518 0.7115 0.0149 0.0011

Whole set 1.4234 0.0406 1.6118 0.0103 0.0009

ANFIS-PSO
Training 0.9912 0.0249 0.8010 0.0074 0.0024
Testing 1.6432 0.0405 0.6023 0.0131 0.0028

Whole set 1.2105 0.0279 1.4033 0.0081 0.0019

ANFIS-CSA
Training 0.9868 0.0207 0.7412 0.0065 0.0004
Testing 1.6247 0.0322 0.5708 0.0114 0.0011

Whole set 1.1940 0.0255 1.3120 0.0078 0.0010

ANFIS-BSA
Training 0.9684 0.0160 0.6007 0.0058 0.0012
Testing 1.5849 0.0261 0.4206 0.0100 0.0017

Whole set 1.1581 0.0197 1.0213 0.0072 0.0015
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MLP-BSA 
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Whole set 1.3979 0.0377 1.5834 0.0102 0.0021 

SVR 
Training 1.3045 0.0397 0.9520 0.0097 0.0032 
Testing 1.9903 0.0599 0.7736 0.0158 0.0045 

Whole set 1.6273 0.0483 1.7256 0.0114 0.0038 

SVR-PSO 
Training 1.1194 0.0264 0.8614 0.0084 0.0035 
Testing 1.7287 0.0471 0.6567 0.0151 0.0007 

Whole set 1.3586 0.0352 1.5181 0.0098 0.0025 

SVR-CSA 
Training 1.1208 0.0273 0.8706 0.0085 0.0017 
Testing 1.7322 0.0486 0.6613 0.0147 0.0013 

Whole set 1.3627 0.0367 1.5319 0.0101 0.0016 
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Whole set 1.3541 0.0335 1.4929 0.0095 0.0028 

ANFIS 
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Testing 1.8845 0.0518 0.7115 0.0149 0.0011 

Whole set 1.4234 0.0406 1.6118 0.0103 0.0009 
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Table 3. Comparison between the accuracy of the applied approached for predicting the total induced
voltage on a mitigated pipeline.

Methods Performance
Indexes MAPE (%) RMSE Absolute

Error U-Statistic RACF

MLP
Training 0.7451 0.0227 1.7845 0.0097 0.0002
Testing 2.4101 0.1541 1.4712 0.0310 0.0005

Whole set 1.1125 0.0478 3.2557 0.0189 0.0004

MLP-PSO
Training 0.6521 0.0201 1.5924 0.0088 0.0017
Testing 2.2273 0.1287 1.2873 0.0251 0.0022

Whole set 0.9547 0.0421 2.8798 0.0157 0.0020

MLP-CSA
Training 0.7017 0.0218 1.6738 0.0093 0.0004
Testing 2.3414 0.1324 1.3671 0.0275 0.0002

Whole set 1.0987 0.0441 3.0409 0.0170 0.0003

MLP-BSA
Training 0.6013 0.0193 1.5024 0.0080 0.0032
Testing 2.2014 0.1214 1.2017 0.0223 0.0006

Whole set 0.9101 0.0400 2.7041 0.0125 0.0019

SVR
Training 1.2349 0.0332 2.2145 0.0128 0.0032
Testing 2.7497 0.1762 2.0011 0.0398 0.0045

Whole set 1.5743 0.0624 4.2156 0.0296 0.0038

SVR-PSO
Training 0.5978 0.0186 1.4786 0.0076 0.0040
Testing 2.1785 0.1204 1.1963 0.0217 0.0021

Whole set 0.9002 0.0387 2.6749 0.0118 0.0028

SVR-CSA
Training 0.6213 0.0195 1.5207 0.0085 0.0015
Testing 2.2314 0.1225 1.2203 0.0232 0.0016

Whole set 0.9230 0.0421 2.7041 0.0137 0.0015

SVR-BSA
Training 0.5723 0.0178 1.4122 0.0071 0.0014
Testing 2.0994 0.1192 1.1801 0.0202 0.0018

Whole set 0.8879 0.0371 2.5923 0.0105 0.0015

ANFIS
Training 0.3534 0.0128 0.7789 0.0049 0.0021
Testing 1.9876 0.0560 0.5823 0.0207 0.0003

Whole set 0.8634 0.0343 1.3612 0.0116 0.0013

ANFIS-PSO
Training 0.3134 0.0120 0.7567 0.0042 0.0009
Testing 1.9392 0.0532 0.5668 0.0198 0.0013

Whole set 0.8083 0.0327 1.3235 0.0111 0.0012

ANFIS-CSA
Training 0.3034 0.0109 0.7387 0.0039 0.0007
Testing 1.9233 0.0503 0.5523 0.0193 0.0002

Whole set 0.7954 0.0310 1.2910 0.0105 0.0005

ANFIS-BSA
Training 0.2730 0.0095 0.6890 0.0036 0.0014
Testing 1.9011 0.0442 0.5147 0.0184 0.0010

Whole set 0.7740 0.0258 1.2037 0.0100 0.0011
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The prediction accuracy of applied approaches in terms of multi-criteria decisions using the mean
rank of methods for each indicator (MAPE, U-statistic, absolute error, and RMSE) in whole data set is
ordered: ANFIS-BSA > ANFIS-CSA > ANFIS-PSO > ANFIS = SVR-BSA > SVR-PSO > MLP-BSA >

SVR-CSA > MLP-PSO > MLP-CSA > MLP > SVR.
The comparison between accuracy of studied methods for predicting the total induced voltage on

mitigated pipeline reveals that optimized ANFIS approaches outperform the other studied methods.
The superior MAPE (0.774%), U-statistic (0.01), RMSE (0.0258), and absolute error (1.2037) values
reported in Table 3 belong to the ANFIS-BSA model. Thus, it can be determined that the most
effective applied optimization algorithm for training ANFIS is BSA. Figures 6 and 7 demonstrate the
performance of the ANFIS-BSA method for predicting the total induced voltage on a mitigated pipeline
during training of the design phase and testing phase.

Table 3. Comparison between the accuracy of the applied approached for predicting the total induced 
voltage on a mitigated pipeline. 

Methods Performance 
Indexes MAPE (%) RMSE Absolute 

error U-statistic RACF 
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Training 0.7451 0.0227 1.7845 0.0097 0.0002 
Testing 2.4101 0.1541 1.4712 0.0310 0.0005 

Whole set 1.1125 0.0478 3.2557 0.0189 0.0004 
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Table 4 tabulates all the statistical factors of the developed models by ANFI-BSA for predicting 
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Table 4. Statistical factors of the ANFIS-BSA models for predicting the total induced voltage on 
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Figure 7. Actual versus predicted results of ANFIS-BSA for mitigated pipeline.

Different statistical indexes are applied for further validation of the obtained ANFIS-BSA models.
To evaluate the performance of the developed model, the following attributes were recommended [40]:

1. There is a strong correlation between the observed data and the predicted values if the generated
model provides 0.8 < | R |.

2. There is a moderate correlation between the observed data and the predicted values if the
generated model provides 0.8 > | R | > 0.2.

3. There is a weak correlation between the observed data and the predicted values if the generated
model provides 0.2 > | R |.



Energies 2019, 12, 3651 15 of 18

Table 4 tabulates all the statistical factors of the developed models by ANFI-BSA for predicting
the total induced voltage on mitigated and unmitigated pipelines. As shown, the developed models
fulfill all the required conditions. The validation phase confirms that proposed method (ANFIS-BSA)
generates accurate models, which is strongly applicable for predicting the total induced voltage on
mitigated and unmitigated pipelines.

Table 4. Statistical factors of the ANFIS-BSA models for predicting the total induced voltage on
mitigated and unmitigated pipeline.

Item Formula Condition ANFIS-BSA
Unmitigated

ANFIS-BSA
Mitigated

1 R 0.8 < R0 0.9997 0.9965

2 K =

∣∣∣∣∣∣ n∑
i=1

(hi×ti)

∣∣∣∣∣∣
n∑

i=1
hi2

0.85 < k < 1.15 0.9975 0.9993

3 K′ =

∣∣∣∣∣∣ n∑
i=1

(hi×ti)

∣∣∣∣∣∣
n∑

i=1
ti2

0.85 < k’ < 1.15 1.0014 1.0017

4 m = R2
−R0

2

R2 |m| < 0.1 −0.0024 −0.0014

5 n = R2
−R0

2

R2 |n| < 0.1 −0.0013 −0.0033

6 Rm = R2
× (1−

√∣∣∣R2 −R0
2
∣∣∣) 0.5 < Rm 0.9981 0.9923

Where
R0

2 = 1−

n∑
i=1

(hi−t0
i )2

n∑
i=1

(ti−ti)2
, h0

i = k× ti 0.8 < R0
2 < 1 1.0000 1.0000

R0
2 = 1−

n∑
i=1

(hi−t0
i )2

n∑
i=1

(hi−hi)2
, t0

i = K′ × ti 0.8 < R0’
2 < 1 1.0000 1.0000

Furthermore, from the connections of the generated ANN models it can be found that separation
distances, mitigation effect, soil resistivity, and the phase current’s magnitude have the highest
contributions to the induced pipeline voltage levels, respectively. As the separation distance between
OHL and pipeline RoW is the most influential parameter on the magnitude of induced voltage, it should
be determined prudently to keep the pipelines at safe distances from OHLs. It also indicates that a
mitigation system presents significant influence on the level of pipeline voltage. Thus, the developed
ANSIS-BSA method was applied to predict the mitigated and unmitigated pipeline voltages at different
fault currents and soil resistivities for a wide range of separation distances. Additionally, to validate
the reliably of the proposed method, its estimates are compared with those observed from CDEGS
program. The comparison between the observed and predicted total pipeline voltages at different soil
resistivities and fault currents for a range of separation distances, with and without a mitigation system,
are illustrated in Figure 8. According to the simulation results it was found that there is an adequate
agreement between the ANFIS-BSA predictions and the observed data. The simulation results clearly
indicate that by increasing the separation distances the strength of the electromagnetic field will be
reduced; consequently, the pipeline’s voltage level will be decreased. It also can be seen that in the
small separation between the OHL and the pipeline, the effect of fault current on the total pipeline
potential is more severe than the effect of soil resistivity. Moreover, the obtained results confirmed
that mitigation systems can be used in order to significantly reduce the induced pipeline voltage to
acceptable level for various fault conditions.
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7. Conclusions

In this work, a hybrid approach composed of ANFIS and BSA has been developed for predicting
the voltage on mitigated and unmitigated metallic pipelines built in OHLs’ right-of-way. The actual
parameters of the system, the mitigation system, fault current, resistivity of the ground, and separation
distance, are taken as the inputs (independent variables) and the pipeline voltages predicted are
the output (dependent variable). Regardless of which practical system is investigated, the obtained
results indicated that the developed models by ANFIS-BSA provide enhanced estimations over other
solutions from AI-based methodologies. Total induced voltage on the pipeline has been modeled by
ANFIS, SVR, ANN, and an optimized version of these approaches. According to the obtained results,
the ANFIS-BSA models consistently give superior predictions to other studied AI-based methods.

Excellent agreement between obtained data from CDGES program and ANFIS optimized by
BSA has been obtained. The relative importance of the independent variables has been also studied.
This paper clearly specified the potential of the applied methodology for capturing the interactions
between the levels of pipeline voltage and the independent variables, and even for the investigation
of the relative importance of these input variables. Additionally, the results demonstrate that
developed approach can accurately predict the total pipeline voltage for a wide range of input
variables, with and without a mitigation system. The accuracy of the predicted pipeline potential
is important for designing mitigation systems that will increase the overall pipeline integrity and
safety. The developed methodology can be plainly applied for diverse environmental, dimensional,
and power system conditions.
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