
energies

Article

Wind Farm NWP Data Preprocessing Method Based
on t-SNE

Jiu Gu 1, Yining Wang 1, Da Xie 1,* and Yu Zhang 2

1 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Minhang District, Shanghai 200240, China; sjtugujiu@sjtu.edu.cn (J.G.); wangyining531@gmail.com (Y.W.)

2 State Grid Shanghai Municipal Electric Power Company, Shanghai 200122, China; zhangyu@sh.sgcc.com.cn
* Correspondence: profxzg@hotmail.com; Tel.: +86-21-34204298

Received: 20 August 2019; Accepted: 12 September 2019; Published: 23 September 2019
����������
�������

Abstract: The operation prediction of wind farms will be accompanied by the need for massive data
processing, especially the preprocessing of wind farm meteorological data or numerical weather
prediction (NWP). Because NWP data are strongly correlated with wind farm operation, proper
processing of NWP data could not only reduce data volume but also improve the correlations
of wind farm operation predictions. For this purpose, this paper proposes a data preprocessing
algorithm based on t-distributed stochastic neighbor embedding (t-SNE). Firstly, the data collected
were normalized to eliminate the influence caused by different dimensions. The t-SNE algorithm
is then used to reduce the dimensionality of the NWP data related to wind farm operation. Finally,
the wind farm data visualization platform is established. In this paper, 22 index variables in NWP
data were taken as objects. The t-SNE method was used to preprocess the NWP historical data of
a wind farm, and the results were compared with the results of the principal component analysis
(PCA) algorithm. It outperformed PCA in error precision; in addition, t-SNE dimension reduction
preprocessing also had a visual effect, which could be applied to big data visualization platforms.
A long short-term memory network (LSTM) was used to predict the operation of the wind farm
by combining the preprocessed NWP data and the operation data. The simulation results proved
that the effect of the preprocessed NWP data based on t-SNE on the wind power prediction was
significantly improved.

Keywords: t-SNE algorithm; numerical weather prediction; data preprocessing; data visualization;
wind power generation

1. Introduction

Wind power is becoming one of the most important power sources in the power grid. At present,
China’s accumulated wind power capacity is 188 GW, and the total installed capacity has leapt to first
in the world [1]. While the penetration rate of wind power is increasing, it generates a huge amount of
data for recording the operational status of wind turbines, and so it needs to be studied using big data
technology [2,3].

The key technologies of power big data include the following five parts: data acquisition, data
storage, data preprocessing, data analysis, and data visualization. The five key parts of wind power
big data technologies are shown in Figure 1. In the Figure 1, SCADA means supervisory control and
data acquisition.
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Figure 1. Important technologies of wind energy big data processing. 

The acquisition and storage of data is the basis for an in-depth understanding of the operational 
status of wind turbines as contained in wind power big data; data preprocessing is a prerequisite for 
data analysis [4,5]; data analysis is the key to obtaining valuable information from massive data [6–
9]; and data visualization is an intuitive and effective method of data presentation. Data 
preprocessing refers to the review, screening, sorting, transformation, statute, summary, and other 
processing done before the collected data is processed [10]. Unprocessed data obtained after data 
collection often have some problems. After preprocessing of data, it is possible to select and extract 
appropriate features for model training. 

In terms of data preprocessing, Wang et al. [11] used data preprocessing techniques and swarm 
intelligence optimization algorithms to analyze wind speeds for wind energy potential assessment 
and prediction problems. Niu et al. [12] proposed a combined model for wind speed prediction, 
including a set of empirical mode decompositions of adaptive noise and a multi-target locust 
optimization algorithm. Jiang et al. [13] proposed a new hybrid model combining the de-drying 
method and an optimization algorithm with prediction technology for various unstable factors in 
complex power systems. Tian et al. [14] studied the accuracy of photovoltaic (PV) power prediction 
data, and proposed the processing of meteorological data by wavelet decomposition and principal 
component analysis. Malvoni et al. [15] proposed a cloud segmentation optimal entropy algorithm 
for the identification of unit anomaly data. Azimi et al. [16] proposed a new time-based K-means 
clustering method, including discrete wavelet transform, harmonic analysis, and multi-layer 
perceptual neural network methods, and developed a cluster selection method to determine the 
optimal training cluster. Zhao et al. [17] studied the feature reduction analysis of wind-induced 
anomaly data, and integrated the quadrilateral method and density-based clustering method to 
eliminate sparse outliers. Ye et al. [18] used the adjacent spatial correlation to establish an outlier 
identification algorithm based on the probabilistic wind farm power curve for the missing data 
problem in wind farm time series power data. 

In terms of data analysis, Renani et al. [19] proposed a new backtracking algorithm for crossover 
and mutation operators for the problem of wind power prediction, and compared the advantages of 
an adaptive neuro-fuzzy inference system and other data mining algorithms. Zameer et al. [20] 
proposed a ML-STWP-based, machine-learning-based short-term wind energy prediction method for 
short-term wind power forecasting problems, and applied feature selection and regression learning 
techniques to wind power forecasting. Yuan et al. [21] proposed a hybrid model of the least squares 
support vector machine and gravity search algorithm for wind farm output power prediction. 
Abdoos et al. [22] used variational mode decomposition to decompose the time series for the wind 
power data prediction problem, and then used the Gram–Schmidt orthogonalization to eliminate the 
redundancy. Finally, the extreme learning machine algorithm was used to train the features. 

The above research has mainly been aimed at the cleanup of bad data in wind power big 
datasets, and the recovery of missing data in the wind speed–power model. Atmospheric dynamics 
and detailed weather data such as wind direction, wind speed, atmospheric pressure, and air density 
also have important impacts on the operating state of wind farms, but they have not been paid much 
attention. Research on data reduction processing with such a large variety of data is also insufficient. 

In this paper, a wind power data preprocessing method based on t-SNE has been proposed to 
reduce the dimensionality of the collected numerical weather prediction. The main work and 
problems of this paper are as follows:  

(1) Applying the data dimensionality reduction algorithm of t-SNE to the preprocessing of 
numerical weather prediction (NWP) data of wind farms, and comparing this with the principal 
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The acquisition and storage of data is the basis for an in-depth understanding of the operational
status of wind turbines as contained in wind power big data; data preprocessing is a prerequisite for
data analysis [4,5]; data analysis is the key to obtaining valuable information from massive data [6–9];
and data visualization is an intuitive and effective method of data presentation. Data preprocessing
refers to the review, screening, sorting, transformation, statute, summary, and other processing done
before the collected data is processed [10]. Unprocessed data obtained after data collection often have
some problems. After preprocessing of data, it is possible to select and extract appropriate features for
model training.

In terms of data preprocessing, Wang et al. [11] used data preprocessing techniques and swarm
intelligence optimization algorithms to analyze wind speeds for wind energy potential assessment and
prediction problems. Niu et al. [12] proposed a combined model for wind speed prediction, including
a set of empirical mode decompositions of adaptive noise and a multi-target locust optimization
algorithm. Jiang et al. [13] proposed a new hybrid model combining the de-drying method and an
optimization algorithm with prediction technology for various unstable factors in complex power
systems. Tian et al. [14] studied the accuracy of photovoltaic (PV) power prediction data, and proposed
the processing of meteorological data by wavelet decomposition and principal component analysis.
Malvoni et al. [15] proposed a cloud segmentation optimal entropy algorithm for the identification of
unit anomaly data. Azimi et al. [16] proposed a new time-based K-means clustering method, including
discrete wavelet transform, harmonic analysis, and multi-layer perceptual neural network methods,
and developed a cluster selection method to determine the optimal training cluster. Zhao et al. [17]
studied the feature reduction analysis of wind-induced anomaly data, and integrated the quadrilateral
method and density-based clustering method to eliminate sparse outliers. Ye et al. [18] used the
adjacent spatial correlation to establish an outlier identification algorithm based on the probabilistic
wind farm power curve for the missing data problem in wind farm time series power data.

In terms of data analysis, Renani et al. [19] proposed a new backtracking algorithm for crossover
and mutation operators for the problem of wind power prediction, and compared the advantages of an
adaptive neuro-fuzzy inference system and other data mining algorithms. Zameer et al. [20] proposed
a ML-STWP-based, machine-learning-based short-term wind energy prediction method for short-term
wind power forecasting problems, and applied feature selection and regression learning techniques to
wind power forecasting. Yuan et al. [21] proposed a hybrid model of the least squares support vector
machine and gravity search algorithm for wind farm output power prediction. Abdoos et al. [22] used
variational mode decomposition to decompose the time series for the wind power data prediction
problem, and then used the Gram–Schmidt orthogonalization to eliminate the redundancy. Finally,
the extreme learning machine algorithm was used to train the features.

The above research has mainly been aimed at the cleanup of bad data in wind power big datasets,
and the recovery of missing data in the wind speed–power model. Atmospheric dynamics and detailed
weather data such as wind direction, wind speed, atmospheric pressure, and air density also have
important impacts on the operating state of wind farms, but they have not been paid much attention.
Research on data reduction processing with such a large variety of data is also insufficient.

In this paper, a wind power data preprocessing method based on t-SNE has been proposed to
reduce the dimensionality of the collected numerical weather prediction. The main work and problems
of this paper are as follows:
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(1) Applying the data dimensionality reduction algorithm of t-SNE to the preprocessing of numerical
weather prediction (NWP) data of wind farms, and comparing this with the principal component
analysis algorithm, the superiority of the algorithm was proven. A long short-term memory
network (LSTM) network was used to predict the data after the dimension reduction using t-SNE
and the original historical data, which proved that the method improves the prediction accuracy.

(2) Based on this, a wind farm visualization platform was established to display various types of data.

2. Preprocessing Algorithm

2.1. Normalized Processing

Assuming that the dataset has 2 dimensions, first calculate the influence of the zero mean difference
and the covariance. The data after zero mean transformation is:{

x′ = x− x
y′ = y− y

(1)

The covariance of the new data is:

σ′xy =
1
n

n∑
i=1

(
x′i − x′

)(
y′i − y′

)
(2)

x′ = 0, y′ = 0, therefore:

σ′xy =
1
n

n∑
i=1

(
x′i

)(
y′i

)
(3)

The raw data covariance is:

σxy =
1
n

n∑
i=1

(xi − x)(yi − y) =
1
n

n∑
i=1

(
x′i

)(
y′i

)
(4)

Therefore:
σ′xy = σxy (5)

After the variance is normalized, we have: x′′ = x−x
σx

y′′ = y−y
σy

(6)

After the variance is normalized, the covariance is as shown in Equation (7).

σ′′xy =
1
n

n∑
i=1

(
x− x
σx

)(
y− y
σy

)
=

σxy

σxσy
(7)

The min–max normalization method is used for calculation, and the result of the linear function
transformation is: {

x′ = cx · x
y′ = cy · y

(8)

Calculate the covariance as:

σ′′xy =
1
n

n∑
i=1

(cx · xi − cx · x)
(
cy · yi − cy · y

)
= cxcyσxy (9)
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2.2. t-SNE Dimensionality Reduction Algorithm

2.2.1. Introduction to t-SNE Algorithm

t-distributed stochastic neighbor embedding (t-SNE) is a nonlinear machine learning algorithm
for dimensionality reduction. It is an improvement of the stochastic neighbor embedding (SNE) [23]
proposed by Laurens van der Maaten and Geoffrey Hinton. It is very suitable for high-dimensional
data dimensionality reduction to 2D or 3D for visualization. The essence of the process is mapping of
the similarity between data points in low-dimensional space to high-dimensional space.

2.2.2. Basic Principles and Derivation of the SNE Algorithm

SNE maps data points to probability distributions by affine transformation. From a mathematical
point of view, it can be understood that SNE first converts the Euclidean distance into a conditional
probability to express the similarity between points.

Given N high-dimensional data x1, x2, . . . , xN, we first construct a conditional probability p ji
proportional to the similarity between xi and x j, using the calculation formula Equation (10).

p ji =
exp

(
−‖xi − x j‖

2/
(
2σ2

i

))
∑

k,i exp
(
−‖xi − xk‖

2/
(
2σ2

i

)) (10)

In the formula, σi is the Gaussian function variance of data point xi.
For low dimensions yi and the variance of the Gaussian distribution as 1

√
2
, q ji indicates the

similarity between two points, as defined in Equation (11):

q ji =
exp

(
−‖xi − x j‖

2
)

∑
k,i exp

(
−‖xi − xk‖

2
) (11)

As with Equation (10), we assume that p ji = 0. If yi, y j precisely retain the probability distributions
of xi, x j, it indicates a better dimension reduction effect, from which Equation (12) is established:

p ji = q ji (12)

As can be seen from the above, the goal of t-SNE is to find a different way of expressing data that
can minimize pi j and q ji. By optimizing the distance between these two probability distributions pi j and
q ji, namely KL scatter (Kullback–Leibler divergences), the objective function is given by Equation (13):

C =
∑

i

KL(Pi‖Qi) =
∑

i

∑
j

p ji log
p ji

q ji
(13)

In Equation (13), Pi represents the conditional probability distribution of its data points after xi.
Different points have different σi, and the entropy of Pi increases as σi increases. SNE uses the

concept of perplexity to represent the best σ by binary search. The confusion is:

prep(Pi) = 2H(Pi) (14)

In Equation (14), H(Pi) is the entropy of Pi:

H(Pi) = −
∑

j

p ji log2p ji (15)
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The physical interpretation of confusion is the number of valid neighbors near a point.
After determining the value of σ, the problem becomes a solution to the gradient. Therefore,
the gradient formula of the objective function of t-SNE can be derived as shown in Equation (16):

δC
δyi

= 4
∑

j

(
pi j − qi j

)(
yi − y j

)(
1 + ‖yi − y j‖

2
)−1

(16)

Generally, the Gaussian distribution under a small σ is used for initialization. In order to speed up
the optimization process and avoid falling into the local optimal solution, a large momentum is needed
in the gradient update, that is, the parameter update needs to introduce the gradient accumulating
term of the previous gradient accumulation. The parameter update formula is Equation (17):

Y(t) = Y(t−1) + η
δC
δY

+ α(t)
(
Y(t−1)

−Y(t−2)
)

(17)

In Equation (17), Y(t) represents a solution of iteration t times, η represents a learning rate, and α(t)
represents a momentum of iteration t times.

2.2.3. t-SNE Principle and Derivation

t-SNE uses the t-distribution in low-dimensional space to characterize the similarity between two
points. As can be seen from Figure 2, the red line represents a normal distribution and the blue dashed
line represents a t-distribution. Due to the difference in the probability distributions of the normal
distribution and the t-distribution, the t-distribution has a longer and longer tail effect than the normal
distribution. Therefore, in the high-dimensional space where the data values are relatively compact,
the data distribution after the dimensionality reduction can be made larger by using the t-distribution.
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Figure 2. Comparison—normal distribution and t-distribution. (a) Distribution without outliers;
(b) distribution with outliers.

As seen in Figure 2a, in the absence of outliers, the t-distribution can better describe the edge data;
as can be seen from Figure 2b, the t-distribution can better reflect the probability distribution of the
data in the presence of outliers. The smaller distances are larger than in the normal distribution after
mapping, which captures the overall characteristics of the data.
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The qi j changes after using the t-distribution can be shown by Equation (18):

qi j =

(
1 + ‖yi − y j‖

2
)−1

∑
k,l

((
1 + ‖yi − y j‖

2
)−1

) (18)

In addition, in the computational time complexity, since the t-distribution is a linear sum of
Gaussian distributions, it does not increase the time complexity. The post-gradient is optimized by
t-distribution, as in Equation (19):

δC
δyi

= 4
∑

j

(pi j − qi j)(yi − y j)(1 + ‖yi − y j‖
2)
−1

(19)

According to the derivation of the above algorithm, after summarizing, the flow chart of the t-SNE
algorithm as shown in Figure 3 can be obtained. The program can then be implemented according to
the steps of the algorithm flow chart.
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3. Weather Forecast Data Preprocessing Scheme and Application

3.1. Composition of Wind Farm Operation Data

Classified by its electrical connection and hardware configuration, wind power big data can be
divided into three sources: wind farms, wind turbines, and system access points. The composition of
wind power big data is shown in Figure 4. In Figure 4, AGC means automatic generation control, AVC
means automatic voltage control, STATCOM means static synchronous compensator.
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Figure 4. Components in wind power data during operation.

Wind farm big data is composed of primary equipment data, secondary equipment data,
and equipment temperature measurement data; wind turbine big data is composed of electrical
quantity data, mechanical quantity data, and other data; power system access point big data mainly
includes power flow data, AGC, AVC, STATCOM, etc.

The object of this paper is the preprocessing of wind farm NWP data, which is part of the wind
turbine big data. As shown in Figure 5, the wind turbine big data mainly includes wind turbine
mechanical quantity data, electrical quantity data, and other data including NWP. The mechanical
data and electrical data have lower dimensionality and are important operational data, and have no
need for dimensionality reduction; NWP data has a high dimensionality which must be considered,
so dimension reduction processing must be considered. The dimensionality-reduced data can be
applied to the analysis of various problems, including forecasting, running scheduling, and so on.
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For the prediction of wind power output, the current research focused on the wind speed–power
model. However, considering only the influence of wind speed on power, other indicators related
to power output may be ignored, resulting in a decrease in prediction accuracy. Detailed NWP data
such as wind direction, wind speed, atmospheric pressure, and air density of wind farms are used
as references for dimension reduction processing, which plays an important role in wind power
forecasting and operation scheduling.

3.2. Numerical Weather Data Acquisition and Processing Steps

Numerical weather forecast data has a large number of meteorological indicator variables.
The processing method used to date is to select meteorological indicator variables according to
experience, but the accuracy of selecting meteorological indicators by experience alone cannot be
guaranteed. In addition, low correlation or redundant variables will also adversely affect the cost
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and time of prediction. In order to improve the efficiency of the model, the N-dimensional data were
reduced by the t-SNE dimensionality reduction method.

The purpose of preprocessing wind power data is to normalize, reduce dimensionality, and predict
the error of the collected NWP data. The specific implementation steps are as follows:

(1) The operating status of N fans is measured by various sensors installed on the fan and uploaded
to the main station of the wind airport.

(2) The dimension equivalent of each dimension of the collected data is calculated according to
Equations (1)–(10) to avoid the influence of different dimensions.

(3) According to Equations (11)–(19), the dimensionality of the different indicators in the NWP data
is reduced to reduce the redundancy of the phase data.

(4) The effectiveness of the preprocessing is verified by using the LSTM network for power prediction.
(5) Visualize the forecast data and historical data.

4. Case Analysis

4.1. Data Source

The sample data used in this paper were from the data segment collected by a wind turbine.
The sampling start time was 13:33 on 6 August 2013, and a total of 2.4 million pieces of data were
collected. After eliminating the missing variables, the NWP data has 22 remaining dynamics, pressure,
temperature, humidity, wind speed, and wind direction at different heights, as shown in Table 1.

Table 1. Numerical weather prediction NWP variables.

Number of Variables Index Shorthand Unit

1 Air pressure p mbar
2 Air temperature T degC
3 Thermodynamic temperature Tpot K
4 Relative humidity rh %
5 Relative pressure VPact mbar
6 Absolute humidity sh g/kg
7 Air density rho g/m3

8 Minimum wind speed minWs m/s
9 Rainfall TP mm

10 Photosynthetically active radiation PAR µmol/m/s
11 Logarithmic temperature Tlog degC
12 Carbon dioxide concentration CO2 ppm
13 Maximum wind speed maxWs m/s
14 10 m wind speed wv m/s
15 10 m wind direction wd deg
16 10 m wind level ws /
17 20 m wind speed wv m/s
18 20 m wind direction wd deg
19 20 m wind rating ws /
20 30 m wind speed wv m/s
21 30 m wind direction wd deg
22 30 m wind rating ws /

As can be seen from Table 1, the dimensionality of the NWP data was very high, and it was not
possible to determine whether each feature affects the operating state of the wind farm. If the data
were subsequently input into the prediction model without processing, too many data would not only
lead to a large increase in computation time, but would also affect the ability of the model to express
features. Therefore, it was necessary to select valuable features from the appropriate algorithms. In this
part, the t-SNE method introduced above was used for feature selection, and compared with the PCA
dimensionality reduction algorithm.
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4.2. Wind Power Big Data Dimensionality Reduction Based on t-SNE Algorithm

In order to remove the noise of the NWP samples and visually reflect the characteristics of wind
farm meteorological data in low-dimensional space, the sample set was reduced from 22 dimensional
to 2 dimensional space using the t-SNE algorithm, the confusion was set to 20, and iteration was set
to 5000 times. The effect of confusion was to balance the weights of the t-SNE local transformation
and the global transformation. It can be understood that the confusion was used to set the number
of adjacent points of each point. The greater the confusion setting, the more attention is paid to the
global data distribution. Usually, the confusion parameter is roughly equal to the number of neighbors
needed. In this paper, it was determined based on the NWP variables. The number of iterations was
based on the parameters recommended by the authors in the literature [23].

We selected 3000 data from a single day to show the dimensionality reduction results of the t-SNE
algorithm, as shown in Figure 6. The dots in the figure represent data points, and the different colors
represent different variables.
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As shown in Figure 6, the data of the input NWP were color-coded according to the number of
data categories in the default series of RGBA, RGBA is the color space representing red green blue
and alpha. The t-SNE algorithm was able to clearly represent all data points in a 2 dimensional space,
and most of the data points of different features exhibited a short-line structure of one or several
segments. The t-SNE algorithm clearly separated the different categories of data.

At the same time, it can be seen from Figure 6 that when the algorithm was used to reduce the
original data to 2 dimensions, some data points overlapped, for example, the red and blue in the figure
overlap, making them more difficult to distinguish. Therefore, the following attempt was to to reduce
the original sample set to the three dimensional subspace using the t-SNE algorithm. The confusion
was set to 20 and iteration was set to 5000 times. We again selected 3000 data to show the dimensionality
reduction results, as shown in Figure 7. The colors of the input data were color-coded according to the
format of “RdYlGn”, which is the order from red to green.

In order to verify the generalization of the t-SNE model, the meteorological data segment of
this wind farm at other times was used as the experimental object, and the sampling start time was
8 August 2013. After the data were input into the model using the same preprocessing method,
the dimensionality reduction visualization that resulted is shown in Figure 8.
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It can be seen from the above simulation results that the t-SNE algorithm could clearly represent
all data points in three dimensional space. Most data points presented a one- or several-segment
short-line segment structure that reflected the temporal continuity of weather changes. It can be seen
that dots of different colors represent different features that were distinctly distinguished in three
dimensions. The simulation results demonstrated the effectiveness of the t-SNE algorithm in processing
meteorological data in wind farm operating data.

Analysis of the distance relationship between data points does not provide quantitative information
about the data. Therefore, the purpose of the t-SNE dimensionality reduction method is mainly to
visualize the data, so that we can have a macroscopic understanding of the data patterns that need to
be mined. For a certain set of data, if t-SNE performs well on the segmentation feature, it is highly
probable that a machine learning method that projects this set of data into different categories will be
found. Conversely, if t-SNE is generally represented on segmentation features, such as in the case of
class overlaps, then a more complex model needs to be built.

4.3. Comparison with the PCA Algorithm for Dimensionality Reduction

The idea of principal component analysis is to find one or several projection directions so that the
variance of the original data samples after projection is maximized. The original m-dimensional features
are projected onto a new n-dimensional space, which is characterized by the principal component.
The main evaluation method of principal component selection is to use variance. The larger the
variance of new features, the more information contained in this feature can be reflected. Therefore,
the percentage of contribution of cumulative variance is calculated to select the principal component.
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Assuming that the sample set X = {x1, x2, . . . , xm} satisfies the centralization, it is assumed that the
new coordinate system after the projection transformation is {w1, w2, . . . , wd}, where wi is the standard
orthogonal basis vector and ‖wi‖2 = 1. The projection of a data point xi in the new coordinate system
{w1, w2, . . . , wd} is WTxi. If the projection of the data points in the original sample set can be effectively
separated under this new coordinate system, the variance of the different sample data points in the
new coordinate system is

∑
i

WTxixT
i W, so the optimization goal is to maximize this variance:

 max
w

tr
(
WTXXTW

)
s.t. WTW = 1

(20)

For Equation (20), the Lagrangian multiplier method is used, giving:

XXTW = λW (21)

Therefore, it is only necessary to perform eigenvalue decomposition on the covariance matrix
and sort the obtained eigenvalues: λ1 ≥ λ2 ≥ . . . ≥ λm. Generally, a dimension with a
cumulative contribution rate of about 75% to 95% is selected as the reference dimension after PCA
dimensionality reduction.

The variance contribution rate and the cumulative variance contribution rate are, respectively:

ηi =
100%λi∑

m λi
(22)

η∑(p) = p∑
i

ηi (23)

The eigenvectors corresponding to the first x eigenvalues constitute the solution of principal
component analysis W = (w1, w2, . . . , wx).

In order to compare the dimensionality reduction effect of the t-SNE and PCA algorithms, the data
of wind farm meteorological data segment 1 were reduced to 2D, 3D, 5D, and 8D space, and credibility
was used as the evaluation standard. Credibility indicates the retention of the local structure of the
original structure of the data when dimension reduction to low-dimensional space is carried out.
The size range of credibility is [0,1]. The greater the credibility, the better the data retention, and the
lower the credibility, the worse the data retention after dimension reduction. The mathematical
definition of credibility is given by Equation (24).

T(k) = 1−
2

nk(2n− 3k− 1)

n∑
i=1

∑
j∈ui

(r(i, j) − k) (24)

In Equation (24), r(i, j) represents the rank of the low-dimensional data points j, determined
according to the pairwise distance between the low-dimensional data points, and Uk

i represents the set
of neighbor data points k in the low-dimensional space. The following will be used to compare the
reliability of high-dimensional data to 2, 3, 5, and 8 dimensions using PCA and t-SNE.

Table 2 and Figure 9 show the comparison of the reliability of the data after dimension reduction
using the t-SNE algorithm and the PCA method. Through the graph, it can be seen that t-SNE gave a
significant improvement in the dimensionality reliability of the experimental low-dimensional space
compared with PCA, and t-SNE basically retained the time-series characteristics of the original data.
PCA means principal component analysis
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Table 2. Comparison of trustworthiness of low-dimensional representations of the data set.
PCA—principal component analysis.

Dimension PCA t-SNE

2 0.918 0.921
3 0.970 0.975
5 0.975 0.983
8 0.977 0.989Energies 2019, 12, x FOR PEER REVIEW 12 of 16 
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4.4. Comparison of Wind Speed Prediction Before and After Data Preprocessing

Here, the long-short-term memory (LSTM) was selected as the wind speed prediction model to
evaluate the effect of the wind power data preprocessing. As a complex nonlinear unit, LSTM uses a
deeper neural network to reflect long-term memory effects and has deep learning ability [24,25].

The preprocessed data were divided into training data and test data. Among them, 1300 pieces of
data are used as training data, and the remaining 500 pieces of data are used as test data.

In the error analysis of the prediction results, it is often evaluated by two evaluation indicators:
mean absolute percentage error (MAPE) and root mean square error (RMSE). The error calculation
formula is given by reference to Equations (25) and (26), respectively.

εMAPE =
1
n

n∑
i=1

∣∣∣P̂N(i) − PN(i)
∣∣∣

PN(i)
× 100% (25)

εRMSE =

√√
1
n

n∑
i=1

(P̂N(i) − PN(i))
2 (26)

In Equations (25) and (26), PN(i) and P̂N(i) (i = 1, 2, 3, . . . , n) are the actual measured and predicted
values of the data point i, respectively, and n represents the length of the data used for verification.

Table 3 shows the prediction results of the wind farm data through the preprocessing method
of this paper and the direct use of the original data. It can be seen from Table 3 that the prediction
results εMAPE and εRMSE after preprocessing by t-SNE were reduced compared with the prediction
results using historical data, which effectively improved the prediction accuracy. The results also show
that after the dimension reduction preprocessing, the analysis of less relevant invalid variables can
be avoided, and only the highly correlated useful variables were retained, which helps to improve
the prediction performance of the LSTM model. In addition, after using the dimensionality reduction
preprocessing method of this paper, the input variables were much fewer than the original, which is
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conducive to large-scale data calculation. MAPE is mean absolute percentage error and RMSE means
root mean square error.

Table 3. Error analysis of the forecasting result.

Index Type of Data εMAPE (%) εRMSE

Active power Preprocessed data 0.603 2098.866
historical data 0.711 2293.650

Phase current
Preprocessed data 3.1589 73.358

historical data 3.722 80.577

Phase voltage Preprocessed data 2.224 32.68
historical data 2.517 37.955

4.5. Visualization Platform Implementation

We designed a visualization system for statistical and real-time status monitoring of wind power
big data. In order to display relevant information in a timely manner, the platform uses Grafana as a
visualization tool and the timing database InfluxDB as a data storage container. In the experimental
part, the Python language was used to implement various functions, including client and server
building, reading, and writing to InfluxDB.

InfluxDB is backed by Norwest Venture Partners, Sapphire Ventures, Battery Ventures, Trinity
Ventures, Mayfield, Harmony Partners, Sorenson Capital, Bloomberg Beta and Y Combinator, its
location is San Francisco, CA 94103, USA. Grafana is created by raintank co-founder Torkel Odegaard
and located in San Francisco, USA. Python is created by Guido van Rossum and managed by Python
software foundation, located in Beaverton 97008, USA.

4.5.1. System Architecture and Implementation Process

The overall architecture of the wind farm monitoring data visualization platform is shown in
Figure 10. The visualization platform was mainly composed of a data processing module and a
data visualization module. The data processing module was responsible for processing the raw
data and importing it into the database. The visualization module was responsible for reading and
aggregating the data and visualizing it. The data visualization module also included data query and
data aggregation functions. Through these two functions, the wind farm monitoring data visualization
platform can be realized.
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The visualization implementation process is shown in Figure 11. The data were processed and
filtered, transformed into visually expressible geometric data by mapping, and finally rendered into
user-visible image data.
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4.5.2. Visualization Platform Implementation

The data visualization platform included the following three modules: a data processing module,
a data aggregation module, and a data visualization module. The data processing module converted
the wind power data in the form of a csv file into Json format and wrote it to the InfluxDB database
in batches. The data aggregation module compressed aggregated operational data through the data
retention function and continuous query (CQ) function provided by InfluexDB. Data visualization
module: Connect the data in the InfluxDB database to Grafana and select the appropriate visualization
panel to visualize meteorological data such as precipitation, pressure, temperature, humidity, and wind
speed and direction.

Currently, there are six types of panels, including Graph, Singlestat, Heatmap, Dashlist, Table,
and Text. The visualization panel for each meteorological factor of the wind farm is shown in Figure 12.
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5. Conclusions

In this paper, the preprocessing links in wind farm big data mining were studied, and data
preprocessing methods were discussed and applied. The t-SNE algorithm was used to preprocess and
analyze numerical weather prediction (NWP) data. The main conclusions are as follows:

(1) Due to the large size of meteorological indicator variables in NWP data, the traditional feature
selection method is no longer effective. For this reason, the t-SNE algorithm was used to reduce
the NWP data. Using actual NWP data collected by a wind farm, the experiment proved that
t-SNE can better preserve the local similarity of sample points in the original high-dimensional
space in 2 dimensional space; the t-SNE data preprocessing method improved the computational
efficiency of the subsequent data analysis model while ensuring accuracy.

(2) By comparing two different data preprocessing methods, t-SNE and PCA, it was found that the
dimensionality reliability of t-SNE was slightly better than the PCA dimensionality reduction
method in each low-dimensional space of the experiment; the data preprocessing results of the
t-SNE and PCA algorithms were applied to wind power prediction based on a deep learning
LSTM network, which proved that the preprocessed data had better prediction accuracy.

(3) The wind farm monitoring data visualization platform consisted of a data processing module,
a data aggregation module, and a data visualization module, able to realize the visualization
of the massive data recorded during the operation of the wind farm. It not only provides
important understanding of the operating state of the wind farm, but also provides a basis for the
construction of subsequent trend prediction models.
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