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Abstract: The battery state of charge (SOC) and state of power (SOP) are two essential parameters
in the battery management system. For power lithium-ion batteries, temperature variation and the
hysteresis effect are two of the main negative contributions to the accuracy of model-based SOC
and SOP estimation. Thereby, a reliable circuit model is established herein to accurately estimate
the working state of batteries. Considering the effect that temperature and hysteresis have on the
electrical system, a unique fully-coupled temperature–hysteresis model is proposed to describe the
interrelationship among capacity, hysteresis voltage, and temperature comprehensively. The key
parameters of the proposed model are identified by experiments operated on lithium-ion batteries
under varying ambient temperatures. Then we build a multi-state joint estimator to calculate the
SOC and SOP on the basis of the temperature–hysteresis model. The effectiveness of the advanced
model is verified by experiments at different temperatures. Moreover, the proposed joint estimator is
verified by the improved dynamic stress test. The experimental results indicate that the proposed
estimator making use of the temperature–hysteresis model can estimate SOC and SOP accurately
and robustly. Our results also prove invaluable in terms of the construction of a flexible battery
management system for applications in the actual industrial field.

Keywords: power lithium-ion battery; temperature variation; hysteresis effect; SOC and SOP
estimation; temperature–hysteresis model; joint estimator

1. Introduction

With the rapid development of the automobile industry, the energy crisis and environmental
pollution have accelerated the research and application of electric vehicles (EV) [1]. Power battery
is the heart of EV, and its safety and reliability should be ensured [2]. An accurate estimation of the
state of charge (SOC) achieves the remaining power of the battery accurately. Furthermore, the SOC is
the key factor for the battery management system (BMS) and the basis for the EVs’ power allocation
strategies [3–5]. The state of power (SOP) is an index reflecting the instantaneous power performance of
the battery. It can be used to judge whether the EV meets the requirements of acceleration, regenerative
braking, and gradeability [6–8]. Compared with the SOC and the State of Health (SOH), the SOP can
more directly reflect the exchange of energy between the battery system and the external system [9].
The battery’s SOP is constantly changing under the influence of factors such as temperature, internal
resistance, SOC, etc. Thus, as to ensure the safety of the battery, the exact monitoring and accurate
prediction for the SOP are necessary [10]. The researches on battery’s SOC and SOP estimation
algorithm based on modeling is able to provide a powerful basis for the optimization of EVs’ BMS.

In order to ensure the effectiveness of battery state estimation, it is necessary to establish an
accurate battery model. Because the working process of the battery is composed of a series of complex
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electrochemical processes, researchers model the battery from various perspectives. The introduction
of an equivalent-circuit model (ECM) makes the implementation of the battery model less difficult.
It works by using electrical components to characterize the key features of the battery during charging
and discharging [11]. Compared with the electrochemical Model, ECM is able to operate with
fewer inputs but high regression performance. The parameters in the model can be identified by
offline or online methods [12]. Compared with the model based on machine learning, ECM has the
advantages of a shorter calculation time, faster response speed, and parameters with definite physical
meanings. In addition, the model can be easily integrated into the BMS and power control system
of the electric vehicle. Therefore, ECM is a generic model for broad usage in practice. [13]. In the
previous researches, the first, second, and higher order resistor-capacitance (RC) models were used to
simulate the non-linear characteristics of batteries for ECM [14,15]. The higher order RC equivalent
circuit model reflects the dynamic performance of batteries more comprehensively. Furthermore,
multi-time scale filters are used to identify the parameters of the battery model and predict the battery
operating state [16]. However, the higher order of the model results in a more complicated calculation
process. As a result, considering the large computational complexity of high-order model and the
large error of the first-order model, most scholars choose the second-order or third-order RC model
as the research basis of state estimation, taking the calculation accuracy and real-time performance
into account [17]. Meanwhile, for Lithium-ion batteries, the hysteretic characteristics of open-circuit
voltage and charging state are very necessary to be characterized when ECM is selected as the battery
model [18]. The second-order RC ECM considering voltage hysteretic characteristics is simulated.
The simulation results show that the accuracy of the model is higher than that of the second-order RC
model alone, and it can track the actual voltage well [19]. Although the hysteresis characteristics are
introduced into the above model, the influence of temperature on battery modeling is not considered
at all, thus the accuracy of that battery model is still insufficient.

The battery SOP is in effect affected by a series of key parameters, including battery capacity,
internal resistance, SOC, and temperature [20]. Because SOP cannot be measured directly, algorithms
are usually utilized to predict SOP throughout the experiments [21]. The commonly applied method
is the hybrid pulse power characteristic approach (HPPC). This unique way calculates the charging
and discharging peak power according to the designed maximum and minimum voltage limits [22].
Although this method is simple and feasible, it is only used in the laboratory and is not suitable for
the prediction of peak current in continuous time. On the basis of the voltage constraint method,
the Rint-model cannot simulate the relaxation effect of the battery, resulting in a certain deviation
between the estimated results and the actual performance [23]. The same problem exists in peak
power estimation based on SOC constraints because the model is too simple to describe the battery
characteristics accurately [24]. In order to overcome these problems, the multi-parameter constraints
method achieves the optimal estimation of the peak power. This method takes into account the limitations
of SOC, cut-off voltage, and the limiting current of the battery itself. Under the premise of ensuring the
safety of the battery, it maximizes the performance of the battery. On estimation algorithms for battery
SOP, some scholars have proposed a neural network method [25]. Although the estimation results of this
method are reliable, it requires a large number of data sets in the early stage, and the integrity of the data
sets will have a great impact on the accuracy of the estimation results. In summary, although there are
many methods for battery modeling and state estimation, it is difficult to accurately model and estimate
the battery state due to the possible influence of different working conditions. Therefore, further research
is urgently needed according to the current situation of the battery industry.

This paper aims to establish an equivalent circuit model incorporating both temperature and
hysteresis effects. The model characterizes the equivalent impedance, the open-circuit voltage (OCV), and
the parameters changing in real time with temperature and SOC, which is highly adaptable and accurate.
In addition, the adaptive unscented Kalman filter (AUKF) algorithm is applied to establish the adaptive
joint estimator for battery SOC and SOP. It is noted that the algorithm improves the prediction precision
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by adaptively updating the noise covariance. The accuracy and reliability of the proposed model and
state estimator is verified in the condition of the improved dynamic stress test (DST).

A temperature–hysteresis equivalent circuit model is established in Section 2. Online estimation of
battery SOC based on the AUKF algorithm and the combined current-voltage-SOC constraint condition
for the battery peak power prediction is proposed in Section 3. Simulation results and discussion are
presented in Section 4, followed by concluding remarks in Section 5.

2. Battery Model

An accurate battery model can fully reflect the non-linear characteristics of the battery during
charging and discharging. Higher-order models can improve the accuracy of the model but it also
increases the computational complexity, resulting in the poor real-time model. Therefore, after
weighing the model accuracy and complexity, considering the effect of hysteresis and temperature
on the parameters of battery during charging and discharging, we present a temperature–hysteresis
model based on second-order RC equivalent circuit model.

2.1. Temperature-Based Capacity Model

In order to explain the effect of temperature on battery capacity, it was necessary to test the
capacity of the battery at different temperatures [26]. The experiments were carried out at −10 ◦C, 0 ◦C,
10 ◦C, 25 ◦C, and 40 ◦C. The battery capacity data obtained at 5 different temperatures are plotted in
Figure 1.
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Figure 1. Battery capacity and coulombic efficiency at different temperatures.

Figure 1 illustrates that the battery capacity increases with the rise of temperature, thus we can
establish a relationship model to describe the relationship between battery capacity and temperature.
The following definition is intended to describe the relationship:

Q(T) = ρ1eθT + ρ2 (1)

where Q(T) is the battery capacity, T is the temperature of the battery, ρ1, ρ2, and θ are constants
obtained by the fitting of experimental data.

The coulombic efficiency, which reflects the operating efficiency of the battery, is defined as the
ratio of the amount of charge discharged to the amount of charge charged by the battery under standard
conditions [27]. According to Figure 1, the coulombic efficiency of the battery varies with temperature
in a non-linear manner. The following model is used to represent the relationship between the battery
coulombic efficiency and the temperature:

η(T) = aebT + c (2)
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where η(T) is the battery coulombic efficiency at temperature T, a, b, and c are constants obtained by
the fitting of experimental data.

2.2. Temperature-Based Hysteresis Voltage Model

The OCV is one of the important parameters of power battery and the SOC is defined as the ratio
of the remaining capacity to the nominal capacity. Figure 2 describes the variation trend of the average
OCV at each temperature point after charging and discharging [28]. The experimental results show
that the temperature changed from −10 ◦C to 40 ◦C, and the change of OCV was less than 10 mV. In the
study of thermoelectric coupling model of lithium-iron phosphate battery, the influence of temperature
on OCV was also not considered [29]. Therefore, this paper does not consider the effect of temperature
on the battery OCV.
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The SOC–OCV relation curve obtained by the incremental OCV test [28] at 25 ◦C is shown in
Figure 3. We can find that the OCV during charging was higher than that during discharging. The main
cause of this phenomenon was the hysteresis effect of the lithium-ion battery. Moreover, the difference
of the OCV between charging and discharging of the batteries was called the hysteresis voltage.
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In this paper, the characteristics of the lithium-iron phosphate battery were tested at 5 distinct
temperatures. Figure 4 shows the maximum hysteresis voltage curve at different temperatures. The
hysteresis voltage was affected by the ambient temperature. Therefore, we need to focus on the
relationship between temperature and hysteresis voltage.
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As shown in Figure 4, the hysteresis voltage decreased exponentially with the increase of
temperature in the same SOC. By fitting the curve in the graph, the relationship of the maximum
hysteresis voltage with both temperature and SOC can be obtained as follows:

UH(T, SOC) = K1(SOC) × eT×K2(SOC) + K3(SOC) (3)

where K1(SOC), K2(SOC), and K3(SOC) are the function of the battery SOC, which can be obtained by
fitting the experimental data, and UH(T, SOC) is the maximum hysteresis voltage, which is related to
the temperature T and SOC.

In actual use, the power batteries are often charged before they are fully discharged. Most of
the time, the battery is in a small loop [30]. In order to reflect the influence of the SOC on real-time
hysteresis voltage, this paper uses the following model:

dUh(SOC, t)
dSOC

= σsgn
(dSOC

dt

)
(UH(T, SOC) −Uh(SOC, t)) (4)

where Uh(SOC, t) is the real-time hysteresis voltage at time t, UH(T, SOC) is the maximum hysteresis
voltage at temperature T, σ is cyclic attenuation coefficient, sgn(·) is the sign function, and dSOC/dt
represents the charge and discharge behavior (dSOC/dt >0 for charge).

2.3. Temperature–Hysteresis Battery Model

Combined with temperature-based capacity model and hysteresis model, this paper proposes a
temperature–hysteresis model as shown in Figure 5. In this model, U(t) represents the terminal voltage
of the battery, UOCV(t) denotes the open-circuit voltage and its non-linear relationship with SOC will
change at different temperatures, then we can use the hysteresis voltage Uh(t) to correct the relationship
between OCV and SOC. For the convenience of research, this paper uses UOC(t) to express UOCV(t)
and Uh(t) together. There are 4 parameters in two series RC networks, Re and Ce separately are the
electrochemical polarization resistance and capacitance, Rd and Cd are the concentration polarization
resistance and capacitance, respectively [31]. Ro is the ohmic resistance. Moreover, after parameter
identification, the above resistance and capacitance values will change in real time with temperature
and battery SOC.
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According to the electric circuit model, the Kirchhoff equation is formulated as follows:

Uo(t) = RoI(t) (5)

Ue(t) = Re

[
I(t) −Ce

dUe(t)
dt

]
(6)

Ud(t) = Rd

[
I(t) −Cd

dUd(t)
dt

]
(7)

Model output equation:

U(t) = UOC(t) + Uo(t) + Ue(t) + Ud(t) (8)

UOC(t) = UOCV(t) + Uh(t) (9)

In order to simulate the characteristics of batteries more accurately, Equation (10) and (11)
are discretized:

Ue(k) = e−
τ
τe Ue(k−1) + Re

(
1− e−

τ
τe

)
Ik−1 (10)

Ud(k)= e−
τ
τd Ud(k−1) + Rd

(
1− e−

τ
τd

)
Ik−1 (11)

where, τe= ReCe and τd= RdCd.
The current integration method is used to estimate the battery SOC. The calculation of SOC is

as shown:

SOC(t) = SOC0 −
1

QN

∫ t

0
ηi(t)dt (12)

Equation (12) is discretized as follows:

SOC(k) = SOC(k−1) −
ητ

QN
Ik−1 (13)

According to Equations (8)–(11) and (13), the discretized state space equations are established
as follows:


SOC(k)
Ue(k)
Ud(k)

 =


1 0 0

0 e−
τ

τe(T) 0

0 0 e
−

τ
τd(T)




SOC(k−1)
Ue(k−1)
Ud(k−1)

+


−
η(T)τ
QN(T)

Re(T)
(
1− e−

τ
τe(T)

)
Rd(T)

(
1− e

−
τ

τd(T)
)

[Ik−1] + wk−1 (14)
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U(k) = UOC(k) + Ue(k) + Ud(k) + RoI(k) + vk (15)

where SOC(k) denotes the SOC of the battery at the moment k, η(T) denotes the coulomb efficiency,
QN(T) denotes the nominal capacity of the battery at temperature T, τ is the sampling period, wk is the
system noise of the battery model, and vk is the measurement noise of the battery terminal voltage.

3. Battery SOC and SOP Joint Estimator

3.1. SOC Estimation Based on the AUKF Method

The noise covariance was a fixed value when using the unscented Kalman filter (UKF) for battery
SOC estimation. However, the noise was continually changing during battery charging and discharging,
which caused the estimation result to be unstable. In order to solve this problem, the AUKF algorithm
was used to estimate the battery SOC [10]. The AUKF algorithm is shown in Table 1.

Table 1. Algorithm of adaptive unscented Kalman filter 1.

Nonlinear state-space model{
xk+1 = f (xk, uk) + wk

yk = g(xk, uk) + vk
(16)

Step I: Initialization
For k = 0, set: x̂0 = E(x0) P̂0 = E

(
(x0 − x̂0)(x0 − x̂0)

T
)

(17)
Step II: Computation: For k = 1, 2, compute

Compute Sigma points and weights:
xi

k+1 =
x̂k+1 +

(√
(n + λ)Pk+1

)
i
, i = 1, · · · , n

x̂k+1 −
(√

(n + λ)Pk+1

)
i
, i = n + 1, · · · , 2n

x̂k+1, i = 0


W0

(m) = λ/(n + λ)

W0
(c) = λ

n+λ +
(
1− α2 + β

)
Wi

(m) = Wi
(c) = λ

2(n+λ) , i = 1, . . . , 2n

(18)

Predict state and error covariance:

xi
k+1/k = f

(
xi,k/k

)
x̂k+1/k =

2n∑
i=0

ω
(m)
i xi

k+1/k

Pk+1/k =
2n∑

i=0
ω
(c)
i (x̂k+1/k − xi

k+1/k)(x̂k+1/k − xi
k+1/k)

T
+ Qk

(19)

Predict measurement and covariance:

yi
k+1/k = g

(
xi

k+1/k

)
ŷk+1/k =

2n∑
i=0

ω
(m)
i yi

k+1/k

Pxk yk =
2n∑

i=0
ω
(c)
i [xi

k+1/k − ŷk+1/k][y
i
k+1/k − ŷk+1/k]

T

Pyk yk =
2n∑

i=0
ω
(c)
i [yi

k+1/k − ŷk+1/k][yi
k+1/k − ŷk+1/k]

T
+ Rk

(20)

Compute Kalman gain: Kk+1 = Pxk yk P
−1

yk yk
(21)

Compute the estimate: x̂k+1/k+1 = x̂k+1/k + K(yk+1 − ŷk+1/k) (22)
Compute the error covariance: Pk+1/k+1 = Pk+1/k −Kk+1Pyk yk KT

k+1 (23)
Adaptive law covariance matching:

Hk+1 = 1
M

k∑
i=k+L−1

(yk+1 − ŷk+1/k)(yk+1 − ŷk+1/k)
T

Rk+1 = Hk+1 +
2n∑

i=0
ωi

c[yi
k+1/k − ŷk+1/k][yi

k+1/k − ŷk+1/k]
T

Qk+1 = Kk+1Hk+1KT
k+1

(24)

1 Where xk is the system state vector, and uk is the system input vector at the kth sampling time; f (x k, uk

)
is the state

transfer function, g (x k, uk

)
is the observation function; wk denotes system noise and w ∼ N (0, Q), vk represents the

measurement noise in a nonlinear system and v ∼ N (0, R). Q is the covariance of the state equation, R represent
the covariance of the measurement equation, and M is window size for covariance matching.
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3.2. SOP Estimation Under Multiple Constraints

3.2.1. Current Constraint

In the temperature–hysteresis model, we proposed the Thevenin equivalent circuit with hysteresis
voltage put to use. The battery terminal voltage U(t) was composed of the following parts: Open-circuit
voltage (considering hysteresis) UOC(t), ohmic voltage Uo(t), and polarization voltages Ue(t) and
Ud(t). It was stipulated that the current value was positive when the battery was charging and negative
when discharging. The SOP estimation based on the current constraint was to use current as the single
constraint. Starting from time t, the power battery charged or discharged at a constant current within
pulse time ∆t. According to the ECM, the equation of the terminal voltage U(t) and the polarization
voltages Ue(t) and Ud(t) are as follows:

U(t) = UOC(t) + Uo(t) + Ue(t) + Ud(t) (25)
Ue(t) = Ue(t0)e

∆t
τe + ReI

(
1− e

∆t
τe

)
Ud(t) = Ud(t0)e

∆t
τd + RdI

(
1− e

∆t
τd

) (26)

Then we need to predict the change of the battery terminal voltage during pulse charging and
discharging. It is assumed that the parameters in the battery model are unchanged during the pulse
time ∆t. Meanwhile, Imax is the maximum charging current and Imin is the maximum discharging
current, thus that the charge peak terminal voltage U I,chg

max and discharge peak terminal voltage U I,dis
min

at time t+∆t are as follows:

UI,chg
max = UOC + RoImax + Ue(t)e−

∆t
τe + ReImax

(
1− e−

∆t
τe

)
+Ud(t)e

−
∆t
τd + RdImax

(
1− e−

∆t
τd

)
UI,dis

min = UOC + RoImin + Ue(t)e−
∆t
τe + ReImin

(
1− e−

∆t
τe

)
+Ud(t)e

−
∆t
τd + RdImin

(
1− e−

∆t
τd

) (27)

3.2.2. Voltage Constraint

When the battery was charged and discharged under voltage constraint, in order to make sure the
battery would not be over-charged or over-discharged, it was necessary to make the terminal voltage
of the battery reach the presetting cut-off voltage at the end of the predicted time. According to the
model we proposed, the variation of the battery terminal voltage ∆Ulim after a ∆t pulse charging and
discharging time was as follows:

∆Ulim = Ulim −U(t) = RoIlim + Ue(t)e−
∆t
τe + Re(t)

(
1− e−

∆t
τe

)
Ilim + Ud(t)e

−
∆t
τd

+Rd(t)
(
1− e−

∆t
τd

)
Ilim + UOC(t + ∆t) − (RoI(t) + Ue(t) + Ud(t) + UOC(t))

(28)

where Ue(t), Ud(t) and I(t) are the polarization voltage value and current value before the start of
the pulse process. Because the OCV does not change much during the pulse process, we assume
that UOC(t+∆ t) and UOC(t) are equal. According to Equation (28), Ulim is replaced by the maximum
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charge voltage Umax and the cut-off discharge voltage Umin, then the maximum charging current IV,chg
max

and the maximum discharging current IV,dis
min can be obtained as follows:

IV,chg
max =

∆Umax+RoI(t)+Ũe(t)
(
1−e−

∆t
τe

)
+Ũd(t)

(
1−e
−

∆t
τd

)
Ro+Re

(
1−e−

∆t
τe

)
+Rd

(
1−e
−

∆t
τd

)

IV,dis
min =

∆Umin+RoI(t)+Ũe(t)
(
1−e−

∆t
τe

)
+Ũd(t)

(
1−e
−

∆t
τd

)
Ro+Re

(
1−e−

∆t
τe

)
+Rd

(
1−e
−

∆t
τd

)
(29)

where Ũe and Ũd are polarization voltages estimated from the battery model.

3.2.3. SOC Constraint

SOP estimation under SOC constraints was based on the maximum SOC or minimum SOC
constraints during battery operation to obtain the charge and discharge peak current of power battery,
and then calculated the peak power. In order to protect the safety and performance of batteries in
practical applications, we needed to specify the SOC range of batteries. Therefore, assuming that the
upper limit of SOC for battery charging was SOCmax, the lower limit of SOC for discharging was
SOCmin, and the pulse charge and discharge time was ∆t. According to the current integration method,
the following equation can be obtained:

SOC(t + ∆t) = SOC(t) −
η(T)∆t
QN(T)

I(t) (30)

Based on the temperature–hysteresis model built in this paper, η(T) and QN(T) are the coulomb
efficiency and nominal capacity at temperature T, respectively. The charge peak current ISOC,chg

max and
the discharge peak current ISOC,dis

min under SOC constraint are as follows: ISOC,chg
max =

SOCmax−SOC(t)
η(T)∆t/QN(T)

ISOC,dis
min =

SOCmin−SOC(t)
η(T)∆t/QN(T)

(31)

3.2.4. Multiple Constraints

SOP estimation results under single constraint may exceed the extreme value of SOP estimation
under other constraints, which will lead to performance degradation and reduction of battery life.
Therefore, this paper used multiple constraints to estimate the battery’s peak power. This method can
significantly improve the accuracy of the estimation and ensure the safety of the battery thus that the
battery can operate better.

In the case of the above single constraint, the maximum charge and discharge current can be
obtained by calculation. Assume that IN,chg

max and IN,dis
min are used to represent the nominal maximum

charge and discharge current of batteries, respectively, then the maximum charge and discharge current
based on multiple constraints is as follows: Ichg

max = min
(
IN,chg
max , IV,chg

max , ISOC,chg
max

)
Idis
min = max

(
IN,dis
min , IV,dis

min , ISOC,dis
min

) (32)

Combined with the battery terminal voltage U(t), the peak power of the battery under multiple
constraints can be obtained as follows:  PPchg

max = Ichg
maxU(t)

PPdis
min = Idis

minU(t)
(33)
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3.3. Model-Based SOC and SOP Joint Estimator

Based on the model-based SOC and SOP estimators mentioned above, we propose a joint
estimator for these two states. The proposed method consists of 3 parts, including the establishment of
temperature–hysteresis model, SOC estimation based on the AUKF algorithm, and SOP estimation
under multiple constraints. Variables are passed through different modules to form a complete
framework, as shown in Figure 6.Energies 2019, 12, x FOR PEER REVIEW 11 of 25 
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4. Verification and Discussion

4.1. Model Identification and Verification

The configuration of the test bench is drawn in Figure 7, which contains four components: (1)
High-low temperature test box: It can control the battery operated under the designed temperatures.
(2) 18,650 LiFePO4 lithium-ion batteries: It can verify the proposed algorithm. (3) ITS5300 battery
charge and discharge test system: It can make the battery work under the designed loading profiles
and measure real-time data. (4) Host computer: It can record the measurement data and carry out the
simulation experiments by Matlab Simulink (R2016a, MathWorks, Natick, MA, USA).

This study will perform a characteristic test for a short period of the battery life cycle, thus we do
not consider the battery aging phenomenon. Since the ITS5300 battery test system requires more than
one cell to collect field data, two cells were connected in series as a battery pack during the experiment,
and then three battery packs were used for the experimental data collection. The nominal capacity of
each battery pack was 1.4 Ah, and the nominal voltage was 6.4 V. In order to protect the battery safety,
7 V and 4.2 V were used as the charging cutoff voltage and discharging cutoff voltage, respectively.
Finally, we can get the experimental results of three battery packs, and then find the mean value for the
model parameter identification, SOC estimation, and SOP estimation.
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4.1.1. Model Parameters Identification

The temperature-based capacity model parameters can be solved by using the capacity data of
the battery at different temperatures [32], as shown in Table 2. Temperature-based hysteresis model
parameters can be obtained by using OCV data at different temperatures and SOC points [33], as
shown in Table 3.

Table 2. Parameters of the temperature-based capacity model.

ρ1 ρ2 θ a b c

−281.5 1462 −0.5098 −0.0139 −0.0659 0.9985

Table 3. Parameters of the temperature-based hysteresis voltage model.

Model Parameter Fitting Equation

K1(SOC) K1(SOC) = −1.104× SOC3+2.654× SOC2
− 1.79× SOC + 0.4953

K2(SOC) K2(SOC) = −0.1896× SOC3+0.4556× SOC2
− 0.3323× SOC + 0.003219

K3(SOC) K3(SOC) = 0.05447− 0.01035× cos(SOC× 8.953) − 0.003687× sin(SOC× 8.953)+
0.01589× cos(2× SOC× 8.953) − 0.01802× sin(2× SOC× 8.953)

The SOC–OCV data at different temperatures are averaged to obtain the final data for fitting
as shown in Table 4. We fit data using the SOC–OCV model expressed by the Equation (34) [34].
The results are shown in Figure 8 and the parameter identification results are: A1 = −713.1, A2 = 3210,
A3 = −6049, A4 = 6192, A5 = −3741, A6 = 1358, A7 = −289.7, A8 = 34.03, M = 4.736.

f (x) = A1x8 + A2x7 + A3x6 + A4x5 + A5x4 + A6x3 + A7x2 + A8x + M (34)

Table 4. OCV at different SOC.

SOC 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

OCV(V) 4.736 6.285 6.469 6.549 6.588 6.607 6.629 6.598 6.701 6.744 7.051
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The temperature–hysteresis model includes five unknown parameters: Re, Ce, Rd, Cd, and Ro. We
can identify these parameters according to the system input and output data. This paper adopts the
parameter direct identification algorithm, which is to use the Parameter Estimation function of the
Matlab toolbox to identify the battery parameters automatically. When the error between the simulated
output and the measured data reaches a predetermined threshold, the identified model parameters
are saved.

The model parameters were identified by the pulse discharge current and voltage data. Firstly, set
the initial parameters of the model and the range of parameters. Then the parameters were optimized
by the method of nonlinear least squares. Finally, the discharge current was input into the model, and
the parameters were estimated dynamically according to the fitting degree between the simulated
output voltage and the actual voltage. The higher the fitting precision is, the more accurate the
parameters are. In order to identify the parameters at different temperatures, the current value of the
battery measured at different temperatures is used as model input. Figure 9 shows the identification
results for the polarization capacitances. It can be seen that both polarization capacitances have a
significant correlation with the temperature. At the same SOC, the polarization capacitances increased
as the temperature rises.
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The identification result of polarization resistances is shown in Figure 10. The polarization
resistances decreased as the temperature increased. The ohmic resistance identification result is
shown in Figure 11. It can be seen that the internal ohmic resistance decreased with the increase of
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temperature. At the same temperature, when the SOC was in the range from 10% to 90%, the ohmic
resistance changed little; when the SOC was greater than 90% or less than 10%, the ohmic resistance
increased rapidly.
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Figure 11. Ohmic resistance identification results at different temperatures.

By analyzing the identification results of the battery model parameters, we can know that the
battery parameters in this paper are variable at different temperatures and SOCs. Consequently, it is
not easy to obtain the equation by the fitting curve. Therefore, the look-up table method is used to
obtain the parameters in the process of state estimation.

4.1.2. Model Verification Under Constant Temperature Condition

According to the battery parameter identification results, the battery temperature–hysteresis
model was built by Matlab Simscape. Then we used the improved DST profiles to verify the battery
model under constant and variable temperature conditions separately. The DST test was a typical test
cycle for power batteries, and it was often used to verify battery models and estimation algorithms [35].
In this paper, we improved the DST test according to the experimental conditions, and Figure 12 shows
the current profiles of the improved DST cycles in this experiment. The batteries were placed in the
25 ◦C temperature test box, and the model output was compared with the test voltage to verify the
accuracy of the model used in the present analysis. In addition, the second-order RC model without
hysteresis was compared with the model proposed in this paper to verify the compensation effect of
temperature–hysteresis model.
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In this paper, the identification results at 25 ◦C were used as simulation model parameters.
Figure 13 shows the simulation voltage curves of two different models under constant temperature
conditions, where the blue curve is the terminal voltage actually measured in the experiment, the
green curve is the output voltage of the temperature–hysteresis model, and the red curve is the output
voltage of the second-order RC model without the hysteresis. Comparing the two simulation results,
the simulation voltage of the proposed temperature–hysteresis model was closer to the measured value
than that of the model without hysteresis. And the conventional second-order RC model without
hysteresis cannot simulate the battery terminal voltage change in time during the charge and discharge
conversion process. Figure 14 shows the output voltage error of two simulation models. It can
be seen that the absolute error of the temperature–hysteresis model output voltage was less than
0.02V, while that of the second-order RC model output voltage was within 0.03V. The error of the
latter model was obviously higher than that of the former model, which verified the validity of the
temperature–hysteresis model at a constant temperature.
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4.1.3. Model Verification Under Variable Temperature Conditions

To verify the accuracy of the battery model under variable temperature conditions, firstly, we
needed to place the batteries in the temperature test box with an initial temperature of 18 ◦C for 12h.
During the experiment, the temperature of the temperature test box rose from 18 ◦C to 36 ◦C, and
then remained at 36 ◦C until the end of the experiment. Finally, the battery model was verified by
the improved DST profiles under variable temperature conditions shown in Figure 15, where the red
curve represents the temperature change of the test box and the blue curve indicates the improved
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Under variable temperature conditions, the parameters of the model will be updated in real
time following the change of the temperature and the SOC. Figure 16 shows the simulation voltage
curves of the models under variable temperature conditions. The difference between the simulation
output of the second-order RC model and the measured voltage was obvious, while the output of
the temperature–hysteresis model could still accurately simulate the terminal voltage. Figure 17
shows the absolute error of the terminal voltage of two models under variable temperature conditions.
The absolute error of the temperature–hysteresis model was stable below 0.026V. However, the absolute
error of the second-order RC model increased obviously at variable temperatures. The maximum
absolute error was 0.083V, and the error fluctuated greatly. Therefore, we can know that the
compensation effect of the temperature–hysteresis model was more significant at various temperatures.
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4.2.1. Verification of the SOC Estimation

The paper used the DST profiles in Figure 12 to estimate the SOC at a constant temperature.
The SOC was estimated based on the AUKF algorithm using the temperature–hysteresis model and
the second-order RC model, respectively. The initial parameters of the AUKF algorithm are shown in
Table 5. As can be seen from Figure 18, the SOC estimation using the temperature–hysteresis model
was closer to the value of the reference.
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Figure 19 shows the error of two SOC estimation algorithms. The estimation error of the
conventional second-order RC model was significantly higher than that of the temperature–hysteresis
model. The maximum estimated error of the SOC using the temperature–hysteresis model was 0.0288,
and the root mean square error (RMSE) was 0.0262. The maximum estimated error of the second-order
RC model was 0.0356, and the RMSE was 0.0321. Therefore, the AUKF algorithm based on the
temperature–hysteresis model was more accurate for SOC estimation.
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The current profiles in Figure 15 are used as the input of the model to verify the SOC estimation at
variable temperatures. Likewise, the temperature still rose from 18 ◦C to 36 ◦C and then remained
unchanged. The initial parameters of the AUKF algorithm are shown in Table 5. The first stage was in
the stationary state thus that the SOC remained constant in the initial stage. Then the SOC changed
from the second stage of the working condition. The SOC estimation results based on two models at
variable temperature are shown in Figure 20, and the estimation error is shown in Figure 21. It can
be seen that the SOC estimation based on the temperature–hysteresis model was better than that
based on the second-order RC model. However, the error of both methods was increased compared
with the error under constant temperature condition. It was caused by the more complex change
of battery parameters under variable temperature conditions. The maximum error based on the
temperature–hysteresis model was 0.0371, the RMSE was 0.0317. The maximum error based on the
second-order RC model was 0.0489, the RMSE was 0.0436. The results showed that the AUKF algorithm
based on the temperature–hysteresis model still had high precision under variable temperature, and
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the robustness of the temperature–hysteresis model was verified. This is mainly because the internal
parameters of the proposed model can be updated with temperature thus that the estimation accuracy
of the SOC is greatly improved compared with the second-RC model. Moreover, the SOC estimation
value is used as the basis for the peak power estimation algorithm.
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4.2.2. Verification of the SOP Estimation

The current profiles of the DST cycles are used as an input to reflect the actual dynamic
characteristics of the battery. The operating time of a single DST was 354 s. As shown in Figure 22, five
DST cycles were used for the battery test. Figure 23 shows the terminal voltage profiles of the DST
cycles. The model parameters involved in the calculation used the identification results in Section 4.1.1.
The charge and discharge peak current under multiple constraints can be obtained by Equation (32).
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Two cells in series were used as experimental samples. It is necessary to ensure the safety of the
battery during pulse charge and discharge. Therefore, according to the parameters given by the battery
manufacturer, we assumed that the maximum battery charge current was 2.8 A and the maximum
discharge current was 7 A under the current constraint; the charge cut-off voltage was 7 V, and the
discharge cut-off voltage was 4.2 V under the voltage constraint; the upper limit of SOC was 0.9, and
the lower limit was 0.1 under the SOC constraint. The simulation pulse time was 10 s. According to
the actual operating state of the battery, the initial SOC value was set to 0.86, and the battery capacity
was 1.397 Ah.

To calculate the peak power, we should analyze the peak currents under various constraints.
Figure 24 shows the multi-constrained charge peak current curves. The current profiles under each
constraint condition can be seen clearly. Current changes under SOC constraints are more obvious
than those under voltage constraints and current constraints. Since the initial SOC value was 0.88,
the voltage constraint condition will be reached quickly during charging. The current under the SOC
constraint is useful only at the beginning of charging. As the battery charging continues, the voltage
constraint begins to play a dominant role. However, the actual current will be limited by the current
constraint, when the actual current exceeds the peak current specified by the manufacturer. Therefore,
to ensure the safety of the battery and to slow down the aging of the battery, the minimum current
under three constraints is taken as the peak current, as shown by the purple curve in Figure 24.
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Figure 24. Multi-constrained battery charge peak current curve.

Figure 25 shows the multi-constrained discharge peak current curves obtained by simulation.
In the simulation time, the multi-constraint discharge peak current mainly depends on the current
value under the voltage constraint and the current constraint. In this paper, the whole discharge process
cannot be shown because only five DST cycles were used. However, with the analysis of Figure 24, the
current based on the SOC constraint at the later stage of the discharge will be smaller than the current
under other constraints. The peak current at this time mainly depends on the SOC constraint.
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Figure 26 shows the prediction results of charging peak power, and Figure 27 shows the prediction
results of discharging peak power. As can be seen from Figure 27, the peak power value of the battery
decreased significantly from 315 s to 345 s due to the large discharge current, and the discharge
ability of the battery became weak in a short time. When the small discharge current was used,
the peak power value increased, and the discharge ability of the battery became strong. Compared
with the conventional HPPC method, the peak charge and discharge power value obtained by the
multi-constraint method was much smaller, and this was because the model adopted by the HPPC
method was much simpler, and the current constraint and the SOC constraint were not taken into
account in the practical calculation. Therefore, the proposed peak power prediction method based on
multi-constraint conditions was more effective.
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5. Conclusions

In a short summary, we have presented physical perspectives of the energy output characteristics
of lithium iron phosphate battery from both mathematical modeling and experimental tests. The effect
of temperature and hysteresis on battery modeling is analyzed, then the temperature–hysteresis model
based on the second-order RC model is established. And the direct identification method is used
to identify battery parameters. The modeling simulation is completed in MATLAB. Experimental
results show that the error of the temperature–hysteresis model is smaller than that of the traditional
RC model under constant and variable temperature conditions. The state space equation of the SOC
estimation is established by introducing a temperature–hysteresis model, and the battery SOC is
estimated online based on the AUKF algorithm. The peak current of the battery is calculated based
on the current-voltage-SOC joint constraints, and then the peak power is estimated. The simulation
results show that the reliability of peak power estimation using the multi-constraint method is higher
than that using the HPPC method. This method effectively solves the problem of inaccurate battery
SOP estimation caused by the single constraint condition during the charge and discharge process.
To the best of our knowledge, this may be the first trial on an in-depth theoretical analysis of the
dynamic charging state of lithium-ion batteries under different temperatures exploiting multi-state
joint estimator, thus that any relevant conclusion that comes out in the present study can provide useful
guidelines on the elaborate design of temperature–hysteresis model-based battery device in the broad
context of energy conversion systems for modern industrial field. It is our belief that these results are
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to spur interdisciplinary research in power system, energy harvesting, and battery vehicles, and cause
positive interactions among applied mathematicians, electrical engineers, and physical scientists in the
near future.
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Nomenclature

Symbols
Q battery capacity: mAh
T battery temperature, ◦C
η coulombic efficiency
I load current, A
UH maximum hysteresis voltage, V
Uh hysteresis voltage, V
Sgn(·) sign function
UOCV open-circuit voltage, V
Ro ohmic resistance, Ω
Re electrochemical polarization resistance, Ω
Rd concentration polarization resistance, Ω
Ce electrochemical polarization capacitance, F
Cd concentration polarization capacitance, F
τ sampling period, s
xk system state vector
uk system input vector
wk system noise
vk measurement noise
Subscripts and Superscripts
k time step index
chg charge
dis discharge
max maximum
min minimum
ˆ estimation value
Abbreviations
SOC state of charge
SOP state of power
EV electric vehicle
AUKF adaptive unscented Kalman filter
UKF unscented Kalman filter
ECM equivalent circuit model
OCV open-circuit voltage
HPPC hybrid pulse power characteristic
DST dynamic stress test
RMSE root mean square error
C discharge rate
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