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Abstract: To study the impact of the promotion of electric vehicles on carbon emissions in China,
the full life carbon emissions of electric vehicles are studied on the basis of considering such factors
as vehicle weight and grid mix composition, and fuel vehicles are added for comparison. In this
paper, we collect data for 34 domestic electric vehicles, and linear regression analysis is used to
model the relationship between vehicle weight and energy consumption. Then, a Hybrid Life Cycle
Assessment method is used to establish the life cycle carbon emission calculation model for electric
vehicles and fuel vehicles. Finally, the life cycle carbon emissions of electric vehicles and fuel vehicles
under different electrical energy structures are discussed using scenario analysis. The results show
that under the current grid mix composition in China, the carbon emissions of electric vehicles of the
same vehicle weight class are 24% to 31% higher than that of fuel vehicles. As the proportion of clean
energy in the grid mix composition increases, the advantages of electric vehicles to reduce carbon
emissions will gradually emerge.

Keywords: vehicle weight; grid mix composition; electric vehicle; life cycle assessment; carbon
emissions

1. Introduction

Due to the reduction of exhaust emissions during driving, electric vehicles are used by more and
more countries to promote low-carbon development and traffic emission reduction. Major developed
countries in the world have successively put forward the development strategies for electric vehicles [1].
To comply with the global trend of electric vehicle development, reduce automobile carbon dioxide
emissions, improve air quality and reduce dependence on international oil, China has taken the
development of electric vehicles as one of its national strategies [2]. According to The Global Electric
Vehicle Vision 2018 [3] released by the International Energy Agency, the global electric vehicles reached
3109.05 thousand in 2017, and is expected to reach 13 million in 2020 and nearly 130–228 million in
2030. By the end of 2018, China’s electric vehicles reached 2.61 million, accounting for 1.09% of the
total number of vehicles. In 2030, China’s electric vehicle market share will reach 26–40% [3].

For the research on the whole life cycle carbon emission assessment of electric vehicles, foreign
countries have put forward relevant methods which are being constantly improved [4]. At present, the
mature LCA models in other countries include GREET and e-balance; in the automobile field, it also
includes models built with GaBi 6 software, EIO-LCA model of university of Toronto, DfE model of
Mercedes-Benzes, etc. [5].

In China, the research on the application of full Life Cycle Assessment in the field of automobile
started in the early 21st century [6,7]. Around 2010, with the start and development of electric vehicles
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in China, Ou Xunmin et al. [8,9] used the Life Cycle Assessment theory to compare the carbon emission
and environmental impact of coal-electric vehicles with traditional fuel vehicles, proposed the China
Tsinghua-CA3EM model, and found that electric cars can save more than 35% energy and reduce
emissions by about 20% compared with fuel cars. Shi Xiaoqing [10,11] et al. believed that according
to different power supply scenarios, all-electric vehicles can achieve emissions reductions of 57% to
81.2%.

However, some experts and scholars think that the emission reduction effect of electric vehicles
is not obvious, and they may even increase the greenhouse gas emission under the influence of the
current high-carbon electricity. For example, Song Yonghua et al. [12] thought that the development
of electric vehicles is high carbon in terms of the national average carbon emissions from power
terminals. Zhang Lei et al. [13] believed that the full life cycle comprehensive environmental impact of
electric vehicle power system was 60.15% higher than that of internal combustion engine vehicle power
system. Feng Chao et al. [14] thought that in the current grid mix composition and technical conditions,
although electric cars had high energy efficiency and good oil substitution, their higher lifetime coal
consumption would result in higher greenhouse gas emissions than conventional gasoline vehicles,
in this case, large-scale development of the electric car is not good for greenhouse gas emissions.

In summary, domestic and foreign experts and scholars have carried out research on the full
life cycle carbon emission of electric vehicles, but there is still a dispute on whether it is beneficial to
reduce carbon emissions. Domestic scholars pay more attention to the research of whole-life cycle
carbon emission model, but ignore the fact that China, as a big producer and seller of electric vehicles,
produces electric vehicles with different vehicle weights, battery capacities and ranges, and different
carbon emissions over the whole life cycle [15,16]. Therefore, it is of great significance to study the
effects of vehicle weight, battery capacity and cruising range on carbon emission and environment.
Meanwhile, the grid mix composition is also an important factor affecting the carbon emission of
electric vehicles [17]. Therefore, it is also necessary to perform a comparative analysis of the influence
of grid mix composition on the carbon emission of electric vehicles [18].

To study the impact of the promotion of electric vehicles on carbon emissions, this paper studies
the full life cycle carbon emissions of electric vehicles, and makes a comparison with the full life cycle
carbon emissions of fuel vehicles [19]. In this paper, we use a hybrid life cycle assessment method to
calculate the carbon emissions of vehicles. The Hybrid Life Cycle Assessment (HLCA) combines the
advantages of the Process-based Life Cycle Assessment (PLCA) with the Economic Input-Output Life
Cycle Assessment (EIO LCA), which made the boundary more complete and the results more accurate.
In addition to this, it can significantly reduce the truncation error. To conduct a more accurate study
on the emission reduction effect of electric vehicles, this paper intends to use the HLCA method to
calculate the energy consumption and greenhouse gas emissions of electric vehicles.

The primary objective of this paper is to study the impact of vehicle weight and gird mix
composition changes on the life cycle carbon emissions of electric vehicles in China. For this purpose,
we compare the life cycle carbon emissions of the same class electric vehicles and fuel vehicles. A second
objective is to find out whether the development of electric vehicles in China can help reduce emissions
under the current conditions. The final objective is to explore the carbon emission proportion for each
phase of the life cycle of electric vehicles and fuel vehicles, which may help to develop an emission
reduction policy for vehicles.

2. Research Methods

At first, this paper uses the linear regression analysis to verify the relationship between vehicle
weight and energy consumption of 100 km, and then the Hybrid Life Cycle Assessment method is
used to calculate energy consumption and greenhouse gas emissions through Tinghua-CA3EM [8]
model built by Ou Xunmin et al. and with the same grade of fuel car for comparative analysis. Finally,
the scenario analysis of the full life cycle carbon emissions of electric vehicles and fuel vehicles under
the grid mix composition in 2020, 2030 and 2050 is conducted.
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2.1. Linear Regression Analysis

First of all, the functional relationship between the vehicle weight and energy consumption
of 100 km is established through the existing data of electric vehicles, and relevant parameters are
obtained accordingly. Furthermore, four electric vehicle models are obtained by modeling electric
vehicles. To understand the general situation of electric vehicles in China and determine the vehicle
models to be evaluated, this paper collected data of 34 popular all-electric vehicles in the Chinese
market(The parameters of the 34 electric vehicles are shown in Table A1), such as models, power types,
vehicle weight, power consumption of 100 km, battery capacity and range. For conventional vehicles,
the whole vehicle weight and energy consumption are strongly coupled [20], so the functional
relationship between the whole vehicle weight of these 34 models and the power consumption of
100 km is obtained (as shown in Figure 1). Although energy consumption is affected by many technical
characteristics other than vehicle quality [21], we can assume a linear regression curve. Through linear
regression analysis and testing, it is verified that there is a linear relationship between the energy
consumption of 100 km and the vehicle weight: y = 0.0051x + 6.0576, and the determination coefficient
R2 = 0.951, which proves that the model fits well. From the slope of the linear regression curve, it can
be known that every 100 kg increase in the vehicle weight will increase the energy demand of electric
vehicle by 0.0051 kWh/km.
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Because China has no electric vehicle classification standard at present, in this paper, with reference
to the classification standards in European and American countries and based on the electric car
manufacturers of electric vehicles from the classification (classification data from the Pacific automotive
network), four types of electric vehicles are modeled: mini car (segment A), small car (segment C),
compact car (segment D), medium and large car (segment F). According to the regression equation,
once the vehicle weight is determined, the 100-km energy consumption demand of the electric vehicle
can be determined, and the appropriate battery capacity and range can be determined [9]. To calculate
the total energy demand of electric vehicles, we assume that the charging efficiency of electric vehicles
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is 96% and the battery efficiency is 95% [15]. Related parameters of this model are shown in Table 1.
After modeling and determining parameters, relevant data can be collected and life-cycle carbon
emission calculation can be carried out.

Table 1. Basic parameters of different levels of electric vehicles.

Classification The Vehicle
Weight (kg)

Battery Capacity
(kWh) Range (km) Energy Consumption per

100 km (kWh/100 km)

Segment A—mini car 1100 17.7 151 11.67
Segment C—small car 1500 24.4 177 13.71

Segment D—compact car 1750 42.1 281 14.98
Segment F—medium

and large car 2100 59.9 357 16.77

2.2. Hybrid Life Cycle Assessment

According to different system boundaries and principles, Life Cycle Assessment methods can
be divided into process-based Life Cycle Assessment (PLCA), input-output Life Cycle Assessment
(EIO LCA) and Hybrid Life Cycle Assessment (HLCA).Hybrid Life Cycle Assessment is a method
combining PLCA and EIO-LCA, which cannot only eliminate the truncation error of PLCA, but also
overcome the weakness of weak pertinence of EIO LCA, and also bring the use and scrapping stage
of products into the evaluation scope [22]. HLCA is mainly divided into three forms: hierarchical,
split input-output sectors and integrated mixed analysis, according to the data availability and accuracy,
this paper adopts hierarchical HLCA. The direct emission of each stage is calculated by PLCA method,
while the indirect emission is calculated by EIO-LCA. Greenhouse gas emissions in the whole life cycle
are the sum of direct and indirect emissions in each sub-phase [23].

According to the usage conditions and scenarios of PLCA and EIO LCA [22,24,25], the boundary
between PLCA and EIO LCA in the HLCA model of the full Life Cycle Assessment of electric vehicles
is divided: in the research of the full life cycle of the fuel of electric vehicles, the PLCA method is
directly adopted; in the study of the whole life cycle of electric vehicles, the production process of
vehicles is decomposed. EIO LCA method is adopted in the upstream process from raw material
mining to parts production, and PLCA method is adopted in the stage of vehicle assembly, production,
transportation and final scrapping.

2.3. Evaluation Objectives and System Boundaries

In the past, the boundary of vehicle Life Cycle Assessment system was mainly defined as fuel
cycle material cycle [5], fuel cycle and vehicle cycle [26], with reference to the selection of whole life
cycle of the past boundary, the evaluation boundary in this paper includes fuel cycle and vehicle cycle,
and the life cycle process covers the production stage, use stage and scrap stage of the whole life cycle
(Figure 2).

1. Fuel cycle: The analysis is based on the full grid mix, which includes coal-fired power
generation and other power generation forms. The system boundary includes the production and
transportation of electricity. For example, the coal-fired power generation include the processes
from coal mining and transportation to power plants, power generation processes and power
transmission processes to charging piles and the consumption process of vehicles. Because our
country electric grid mix composition including other power generation methods except coal,
water power, wind power, solar power, nuclear power, etc. They generate electricity with different
carbon emissions and environmental impacts; therefore, this article will fully consider these
power generation methods, according to the proportion of 2017 years of Chinese electric grid mix
composition energy (source: China statistical yearbook, 2018). In contrast, the fuel cycle of a fuel
truck includes the extraction, transportation to a chemical plant, refining, transportation to a gas
station and consumption of fuel truck.
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2. Vehicle cycle: vehicle cycle includes the mining of raw materials, production and assembly of
parts, use and scrap of electric vehicles. As there are many similar processes in the process of
production, maintenance in the process of use, parts replacement and final scrapping, the vehicle
maintenance parts with small energy consumption and emission are ignored in this paper for the
whole life cycle.
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2.4. Greenhouse Gas Emission Calculation Model

When selecting the calculation model of greenhouse gas emissions, taking into account the
characteristics of China, this paper selects the Tinghua-CA3EM model proposed by Ou Xunmin [9]
and others for calculation.

The model first calculates the emissions of CO2, CH4 and N2O in each process, and finally converts
them into CO2 equivalent according to the Global Warming Potential (GWP). According to the results
of the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC), the GWP of
CH4 and N2O are 34 and 298, respectively [27].

The total equivalent of greenhouse gas emission of the jth type of energies is denoted as Gj (j = 1,
. . . , 7), CO2, CH4 and N2O emissions of the jth type of energies are denoted as CO2,j, CH4,j, N2Oj, then:

G j = CO2, j + 34×CH4, j + 298×N2O j. (1)

The lifecycle emissions of each particular type of greenhouse gas can be calculated by adding the
direct emission intensity of upstream emissions and the process fuels (electricity, diesel, gasoline, etc.)
used throughout the process. Take CO2 emissions generated by coal power generation in power plants
as an example:

CO2,coal = ENcoal
(
CO2,upstream coal + CO2,direct

)
, (2)

CO2,direct =
44
12

CCcoalFORcoalCO2,coal. (3)
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CO2,upstream coal is the upstream CO2 coal emission factor (g/MJ), CO2,direct is the direct CO2

emission factor (g/MJ) of coal as fuel, CCcoal is the carbon content (g/MJ) of coal, FORcoal is the carbon
oxygen content rate of coal.

Among them,

ENcoal =
SHcoal

ηpower plant
, (4)

where ENcoal is the amount of coal used in the factory for each MJ of final power generation, SHcoal is
the proportion of coal in the total power generation; ηpower plant is the energy efficiency of coal-fired
power plants. Similarly, CH4 and N2O emissions are calculated accordingly.

Taking into account the production time and location of PV modules and wind turbines,
Dr. Wilfried van Sark [28] calculated and found that the carbon emissions per kWh of photovoltaic
and wind power generation is only 1/10 to 1/20 of fossil energy in 2015. There is an overwhelming
advantage for renewable power generation in reducing carbon emissions. Overall, whenever the
installed capacity of clean energy doubles, the energy consumption of PV modules and wind turbines
will drop by about 12%, and carbon emissions will fall by 17–24% [28]. As the proportion of clean
energy increases and production technology advances, carbon emissions from renewable energy
generation will be greatly reduced. Therefore, in the calculation of carbon emissions, carbon emissions
from renewable power generation could be negligible.

3. Data Collection

The calculation process of carbon emission in the whole life cycle of automobiles involves the
collection of a large number of basic data. With reference to the existing literature, the data collected in
this paper and their approaches are shown in Table 2.

Table 2. Data sources.

Data Name Source

Green House Gas (GHG) emission factor IPCC [29], Guidelines for Compiling Provincial GHG
Inventory [30]

Total energy consumption coefficient China statistical yearbook 2018 [31]

Automobile production process data Comparative analysis of dynamic system life cycle
environmental impact of electric and fuel vehicles [32]

Fuel upstream raw material mining, fuel
processing, transportation

Statistical data, professional internal reports, literature and
expert consultation of national bureau of statistics,

transportation, coal, petroleum and petrochemical, electric
power and other departments [33–38]

Data related to the driving process of the car Pacific automotive network [39]

According to the “Introduction to the Operation of Renewable Energy Grid-Connected in 2018” [40],
the “2018 National Electric Power Process Statistics Express List” [41], and the “National People’s
Republic of China 2018 National Economic and Social Development Gazette” [42] and Grid mix
composition estimates based on national energy and power development strategy goals, the grid mix
composition of China in 2020, 2030 and 2050 is shown in Figure 3 (The grid mix composition data of
China is shown in Table A2).
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4. Research Results

4.1. Carbon Emission Comparison between Electric Vehicles and Fuel Vehicles under the Current Electric
Energy Structure

Based on China’s grid mix composition and ratio forecast for 2018, 2020, 2030 and 2050 and the
model we built, the carbon emission of electric vehicles and fuel vehicles under the current Grid mix
composition in China is shown in Figure 4. The unit “CO2-eq” of carbon emissions in the figure means
carbon dioxide equivalent. Figure 4 compares the greenhouse gas emissions of different vehicles over
their whole life cycle. The solid line on the left of Figure 4 represents the carbon emission of electric
vehicles, while the dotted line represents the carbon emission of fuel vehicles. The histogram shows
the carbon emission of electric vehicles at all stages of their life cycle, which shows the impact in the
production stage, use stage and treatment stage in a cumulative manner.

As can be seen from Figure 4, the carbon emission of the two kinds of cars is quite different
in different life cycle stages. No matter how electric vehicles are configured, their carbon emission
performance at the present stage is not as good as that of conventional fuel vehicles. In the production
stage, electric cars are not as environmentally friendly as traditional fuel cars, because the production
of battery system in the production stage produces more carbon emissions than the engine [43]. In the
use phase, electric vehicles do not offset the carbon emissions in the production phase by reducing the
carbon emissions in the use phase.

At the scrapping stage, the carbon emissions of electric cars are similar to those of electric cars.
Throughout its life cycle, electric cars have higher carbon emissions than conventional fuel cars.
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In addition, the bigger the electric car, the more carbon it produces. Whether it is a traditional fuel
car or an electric car, whether it is directly through fuel combustion or indirectly through electricity
production, the carbon emission in the use stage is the main carbon emission in the whole life cycle.
For the model adopted in this paper, the carbon emission of electric vehicles of any level is higher
than that of conventional fuel vehicles. Among them, the carbon emission of A-class electric vehicles,
C-class electric vehicles, D-class electric vehicles and F-class electric vehicles is 1.24 times, 1.26 times,
1.28 times and 1.31 times that of the fuel vehicles of the same grade. For the same model, the carbon
emission of F-class electric vehicles is 1.25 times that of A-class electric vehicles, C-class electric vehicles
and D-class electric vehicles are 1.16 times and 1.08 times, respectively. The carbon emission of A-class
electric vehicles in the production, use and scrapping stages accounts for 8.5%, 90.8% and 0.5% of the
whole life cycle, respectively. The carbon emission in the production, use and scrapping stages of
C-class electric vehicles accounts for 9.5%, 89.9% and 0.6% of the whole life cycle, respectively.
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Figure 4. Comparison of life cycle carbon emissions between electric vehicles and fuel vehicles under
the current grid mix composition.

4.2. Carbon Emission Comparison between Electric Vehicles and Fuel Vehicles under Different Grid
Mix Compositions

Based on China’s 2020, 2030 and 2050 electricity generation and its structure forecast, this paper
makes a comparative analysis of the carbon emissions of electric vehicles and fuel vehicles.

With the development of clean energy, more and more coal power will be replaced by clean energy
in the future. With the reduction of the proportion of coal power in the grid mix composition and
the increase of the proportion of clean energy, the carbon emission intensity generated by electricity
generation will be reduced, and the carbon emission caused by electricity generation will be reduced
in the electric energy consumed by electric vehicles in the use stage [44–50]. Carbon emissions of
electric vehicles and gasoline vehicles in the full life cycle under the predicted grid mix composition
in 2020, 2030 and 2050. Results show that in 2020, under the grid mix composition of the electric
car the whole life cycle of carbon emissions is still higher than fuel vehicles; in 2030, under the grid
mix composition of the lifecycle carbon emissions of electric cars will be lower than for fuel vehicles;
in 2050, under the grid mix composition of the lifecycle carbon emissions of electric cars will be much
lower than fuel vehicle emissions. In these three cases, the full life cycle carbon emission of electric
vehicles and gasoline vehicles of four levels is shown in Figure 5a–c.
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Figure 5. (a) Comparison of carbon emissions of two types of vehicles under the grid mix composition
in 2020; (b) Comparison of carbon emissions of two types of vehicles under the grid mix composition
in 2030; (c) Comparison of carbon emissions of two types of vehicles under the grid mix composition
in 2050.

From Figure 5a–c, it can be concluded that under the power structure of 2020, 2030 and 2050,
the carbon emission ratios of Electric Vehicles and fuel vehicles at various phases of the life cycle are
shown in Table 3.

Table 3. Values of share for production phase, use phase and end of life phase of different vehicles.

Year 2020 2030 2050

Vehicle Type
Phase

PP (%) UP (%) EOLP (%) PP (%) UP (%) EOLP (%) PP (%) UP (%) EOLP (%)

A segment EV 7.95 92.05 0.62 3.92 96.08 0.39 2.98 97.02 1.19
C segment EV 9.20 90.80 0.66 6.02 93.98 0.96 4.18 95.82 1.39
D segment EV 10.94 89.06 0.69 6.75 93.25 0.79 5.99 94.01 1.30
F segment EV 11.63 88.37 0.78 7.38 92.62 0.63 6.54 93.46 1.64

A segment ICEV 3.19 96.81 0.54 3.19 96.81 0.54 3.19 96.81 0.54
C segment ICEV 5.02 94.98 0.60 5.02 94.98 0.60 5.02 94.98 0.60
D segment ICEV 7.57 92.43 0.66 7.57 92.43 0.66 7.57 92.43 0.66
F segment ICEV 8.94 91.06 0.72 8.94 91.06 0.72 8.94 91.06 0.72

Note: PP means Production Phase, UP means Use Phase, EOLP means End of Life Phase.

According to the results, the carbon emissions of Electric Vehicles and fuel vehicles are mainly
concentrated in the use phase. The use phase accounts for more than 90% of the life cycle carbon
emissions for all types of vehicles.
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5. Conclusions

This paper collected the highest sales on the Chinese market by electric vehicle weight and
hundreds of km of energy consumption data, and then modeling the relationship between the two
variables, four levels of the electric car model, and based on vehicle weight to find the corresponding
level of gasoline vehicles, and then the full Life Cycle Assessment model based on the analysis of the
four different levels of the electric vehicle and fuel vehicle emissions, and based on the simulation
analysis of the full life cycle carbon emission of electric vehicles and fuel vehicles in the electric grid
mix composition in 2020, 2030 and 2050. The following conclusions are drawn:

1. Through the data collection and analysis of 34 electric models in China, it is found that there is a
linear relationship between the whole weight of electric vehicles and the energy consumption of
100 km. The larger the vehicle weight, the greater the energy consumption for 100 km, and the
greater the corresponding battery capacity and range. In the same life cycle, electric vehicles
with large vehicle weight will consume more electricity and generate more carbon emissions
than electric vehicles with small vehicle weight. The comparison of the carbon emission of
electric vehicles and fuel vehicles shows that the full life cycle carbon emission of electric vehicles
of any level is higher than that of fuel vehicles of the same level under the current energy
structure. In addition, the lifetime carbon emissions of electric vehicles increase with the increase
of vehicle weight.

2. It can be seen from the calculations that the energy consumption and pollutant emissions of
the whole life cycle of the automobile mainly come from the use stage. Due to China’s current
grid mix composition still being dominated by coal, the electricity consumed during the electric
vehicle use phase contains a large amount of carbon emissions, so the electric car relative to the
fuel vehicle emission reduction effect is not obvious, and may even result in lifecycle carbon
emissions that are more than those of fuel vehicles, which is consistent with the conclusions of
Feng Chao [14] and Global Electric Vehicle Prospect 2018 [3]. There is some difference between
the research results and those of Ou Xunmin et al. [9], who believe that the carbon emission of
electric vehicles is less than that of fuel vehicles in their whole life cycle. The main reason is
that the PLCA method selected by Ou Xunmin et al. may have truncation errors when selecting
system boundaries.

3. Under the current grid mix composition, the carbon emissions of electric vehicles of the same
level are higher than those of fuel vehicles over the whole life cycle. As clean energy increasingly
replaces coal power, the relative carbon intensity of electric vehicles will be reduced. In the
predicted electricity structure of 2020, the carbon emission of electric vehicles of the same level is
higher than that of fuel cars, while in the electricity structure of 2030 and 2050, the carbon emission
of electric vehicles of the same level is lower than that of fuel cars. This is mainly due to the lower
production carbon emissions of the electricity consumed during the use of electric vehicles.
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Appendix A

Table A1. The parameters of the 34 electric vehicles.

Vehicle
Parameter Energy Consumption

(kWh/100km)
Vehicle Weight

(kg)
Drive Type Vehicle Model

Beiqi EC 13 1050 Pure electric Mini car
Beiqi EX3 12.17 1600 Pure electric SUV
Beiqi EX5 11.88 1770 Pure electric SUV
Beiqi EV 15 1295 Pure electric Small car
Beiqi EU 14.8 1680 Pure electric Compact car

BYD Yuan 13.6 1495 Pure electric SUV
BYD Tang 17.3 2200 Pure electric SUV

BYD e5 14.57 1900 Pure electric Compact car
BYD e6 20.5 2380 Pure electric MPV

Jianghuai IEV 6E 11.26 1230 Pure electric Mini car
Jianghuai IEV 7 11.65 1340 Pure electric Small car

Jianghuai IEV S4 14.04 1710 Pure electric SUV
Jianghuai IEV A50 14.6 1800 Pure electric Compact car

Jiangling E100 10.1 830 Pure electric Mini car
Jiangling E200 11.58 975 Pure electric Mini car
Jiangling E160 7.93 1050 Pure electric Small car
Jiangling E400 13.8 1510 Pure electric SUV
Jiangling Yizhi 10.56 1115 Pure electric Small car
Chery Ayers5e 14.6 1580 Pure electric Compact car

Chery eQ 11.8 1128 Pure electric Mini car
Chery eQ1 12 995 Pure electric Mini car

Chery Tiggo3xe 15 1515 Pure electric SUV
Roewe Ei5 13.2 1555 Pure electric Compact car
Roewe RX5 15.49 1710 Pure electric SUV

Roewe MARVEL X 14.2 1870 Pure electric SUV
Huatai EV160B 13.5 1040 Pure electric Mini car
Huatai EV160R 12.3 910 Pure electric Mini car
Huatai XEV260 18.7 1764 Pure electric SUV
Huatai IEV230 16.1 1735 Pure electric Compact car

Geely New Energy 14.24 1575 Pure electric Compact car
Changcheng C30 13.32 1390 Pure electric Compact car

Guangqi New energy 12.9 1575 Pure electric Compact car
Yundu π3 12.71 1470 Pure electric SUV
Yundu π1 11.97 1410 Pure electric SUV

Data Source: Pacific Auto Network.

Table A2. China’s power structure data in 2018, 2020, 2030, and 2050.

Power Generation Type
Year

2018 2020 2030 2050

Coal power (trillion kWh) 4.45 4.506 3.789 1.59
Hydropower (trillion kWh) 1.23 1.428 1.71 1.71

Nuclear power (trillion kWh) 0.29 0.377 0.78 1.5
Gas power generation (trillion kWh) 0.22 0.275 0.749 1.04

Wind power (trillion kWh) 0.37 0.581 0.86 2.589
Solar power (trillion kWh) 0.18 0.166 0.86 3.256

Biomass power (trillion kWh) 0.0906 0.068 0.191 0.647
Other thermal power (trillion kWh) 0.16 - - -

Total (trillion kWh) 6.994 7.401 8.939 12.332

Data Source: National Energy Administration “Introduction to the Operation of Renewable Energy Grid-Connected
in 2018”, “2018 National Electric Power Process Statistics Express List” issued by China Electricity Council, “National
Economic and Social Development of the People’s Republic of China 2018” issued by the National Bureau of
Statistics Development Bulletin and Power Structure Estimation Based on National Energy and Power Development
Strategic Objectives.
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