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Abstract: Battery-powered electric vehicles (EVs) have a limited on-board energy storage and present
the problem of driving mileage anxiety. Moreover, battery energy storage density cannot be effectively
improved in a short time, which is a technical bottleneck of EVs. By considering the impact of traffic
information on energy consumption forecasting, an energy-saving path planning method for EVs
that takes traffic information into account is proposed. The modeling process of the EV model and
the construction process of the traffic simulation model are expounded. In addition, the long-term,
short-term memory neural network (LSTM) model is selected to predict the energy consumption of
EVs, and the sequence to sequence technology is used in the model to integrate the driving condition
data of EVs with traffic information. In order to apply the predicted energy consumption to travel
guidance, a road planning method with the optimal coupling of energy consumption and distance
is proposed. The experimental results show that the energy-based economic path uses 9.9% lower
energy consumption and 40.2% shorter travel time than the distance-based path, and a 1.5% lower
energy consumption and 18.6% longer travel time than the time-based path.

Keywords: energy consumption prediction; deep learning; path planning; energy-saving strategy;
battery electric vehicle

1. Introduction

The development of electric vehicles (EVs) can effectively solve environmental pollution, improve
urban air quality, and alleviate energy shortage pressure [1,2]. However, the drivers are often plagued by
EV mileage anxiety, which affects the driving experience due to the limitation of power battery capacity
and worrying about the unknown energy consumption on future road segments [3]. The driving range
of the remaining energy of the power battery is generally estimated based on the new european driving
cycle (NEDC) [4] and the path planning method commonly used in EVs in travel navigation is based
on the shortest travel route [5]. The disadvantage of this method is that NEDCs are different from the
actual traffic conditions [6] and the occupants cannot know whether the remaining energy is enough to
reach the destination. In daily travel, the shortest path may result in wasted energy consumption of
EVs due to traffic congestion and, therefore, the travel time will also increase [7,8].

To effectively reduce energy consumption and improve driving range, previous research on the
energy management of EVs have investigated nonlinear model predictive control [9], multi-objective
optimization [10], RBF-neural network [11], estimation of preceding vehicle future movements [12],
global optimization [13], and deep learning [14]; however, the above-mentioned papers neglect the
influence of the actual traffic conditions. To solve such problems, a new modal activity framework for
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vehicle energy/emissions estimation using sparse mobile sensor data is presented in reference [15] and
a data-driven model is built to estimate EV energy consumption on each roadway link considering
real-world traffic conditions in reference [16]. For the complicated energy system of a plug-in hybrid
electric vehicle, a generic framework of an online energy management system that is based on an
evolutionary algorithm is proposed and can achieve the best fuel economy improvement, which require
less trip information in reference [17]. It is possible to predict future energy consumption based on the
vehicle historical states and predict the remaining driving range more accurately based on the future
driving conditions under the help of traffic information.

In this paper, based on the information of a traffic network, the driving conditions of EVs are fully
considered to accurately predict the energy consumption and the problem of the energy-saving path
with optimal coupling of energy consumption and distance is discussed and the solution method is
explored with the aim being to effectively alleviate mileage anxiety. Finally, the travel time and travel
energy consumption are reasonably reduced, while the accuracy and effectiveness of the method are
verified by simulation experiments.

The article structure is arranged in seven sections. Section 2 builds the models of the
battery-powered electric car and then verifies the models with experimental data. Section 3 builds
the models of the traffic network. Section 4 puts forward an LSTM model to perform the prediction
of energy consumption and sequence to sequence technology is used in the model to integrate the
driving condition data of EVs with the traffic information based on the models built in Sections 2 and 3.
Section 5 gives a planning strategy for an optimal coupling path between energy consumption and
distance. Section 6 performs three kinds of experiments: distance-based, energy-based, and time-based
optimal simulations, and provides the results. Section 7 lists the main conclusions.

2. Battery-Powered Electric Vehicle Modeling

In order to accurately obtain the driving energy consumption, a battery-powered EV model is
built based on the EU260 electric car. The EV model includes a driver model, driving system model,
power battery model, and vehicle dynamics model [18–21].

2.1. Driver Model

A proportional-integral-derivative controller (PID) is used to model the driver to accurately follow
the actual vehicle speed with the desired speed as shown in Equation (1) [19].

Pacc =
1

Ped

(
Kpve + αiKi

∫ t

0
vedt

)
× 100% (1)

ve = vpre − vact (2)

αi =

 0,
∣∣∣∣Ki

∫ t
0 vedt

∣∣∣∣ > Ped

1,
∣∣∣∣Ki

∫ t
0 vedt

∣∣∣∣ ≤ Ped
(3)

where vpre is the expected speed, vact is the actual speed, ve is the difference between the actual
speed and the expected speed, αi is the integral anti-saturation parameter of the PID regulator, Kp is
the proportional parameter of PID, Ki is the integral parameter of PID, and Pacc is the depth of the
accelerator pedal or brake pedal, Ped is the full-scale depth of the accelerator pedal or brake pedal with
the value range of [−100%, 100%]. If Pacc is negative, it means that the EV is braking. If it is positive, it
means the EV is speeding up [22,23].
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2.2. Driving System Model

The vehicle driving model is built with Equations (4)–(7)

Ftra = Toutηwheel/r (4)

Tout = PaccTmax (5)

Tmotor = Tout/ηt (6)

Pmotor = Tmotorωmotor (7)

where Ftra is the driving force of the tire, r is the tire rolling radius of the driving wheel, Tout is the
output torque of the motor drive system, ηwheel is the transmission efficiency between the drive system
and the wheel, ηwheel = 98%, and Tmax is the maximum torque that the motor drive system can output,
the peak power of the driving motor is 100 kW and its maximum torque is 265 Nm. Tmotor is the output
torque of the driving motor, ηt is the efficiency of the motor drive system, Pmotor is the output power of
the driving motor, and ωmotor is the output speed of the driving motor.

2.3. Power Battery Model

The Rint circuit model is selected as the equivalent circuit model of the power battery [20]. The
Rint model consists of an ideal voltage source and a resistor [24].

Pbatt = Pmotor/ηm (8)

Pbatt = UocIL − IL
2R0 (9)

IL =
Uoc −

√
Uoc2 − 4R0Pbatt

2R0
(10)

SOCt = SOC0 −

∫ t
0 ηbattILdt

Qb
(11)

where Pbatt is the battery output power, ηm is the efficiency of the driving motor system including
motor and motor controller, which can be obtained by the look-up table method based on the efficiency
map shown as Figure 1; Uoc is the battery open-circuit voltage, IL is the battery operating current,
R0 is the battery internal resistance, and here Uoc and R0 can be measured with the experimental
method [25]. SOCt is the SOC to be solved, SOC0 is the initial value of the power battery SOC, Qb is
the total capacity of the power battery, which decreases with the decrease of a battery state of health
(SOH) [21], ηbatt is the power battery charge and discharge efficiency.

ηbatt =

{
98%, IL < 0
100%, IL ≥ 0

(12)

When the battery is charging (IL < 0), ηbatt = 98%, and when the battery in in discharging (IL ≥ 0),
ηbatt = 100%.

The SOC of the power battery can be solved according to the above Equation (10).
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Figure 1. Efficiency map of the electric vehicle (EV) driving motor system.

2.4. Vehicle Driving Dynamics Model

The vehicle driving dynamics model was built with Equations (13)–(16)

Ftra = Fg + Fr + Fa + δma (13)

Fg = mg sinθ (14)

Fr = mg cosθCr (15)

Fa =
1
2
ρaCaA f v2 (16)

where m is the total mass of the EV, δ is the equivalent coefficient of the EV moment inertia, a is the EV
acceleration rate, Ftra is the driving force, Fg is the gravity resistance along the road surface, Fr is the
rolling resistance, and Fa is the air resistance. g is the gravitational acceleration, θ is the road gradient,
and Cr is the tire rolling resistance coefficient. ρa is the air density, Ca is the air resistance coefficient, Af

is the windward area of the EV, and v is the EV speed.

2.5. Verification of the Accuracy of the EV Model

The accuracy of the vehicle model is verified through the energy consumption comparison between
the simulation and experiment, the driving cycle input is designed as the 3 continuous NEDC driving
cycles on the test bench [26] and an actual road driving cycle as shown in Figure 2a,b.Energies 2019, 12, x FOR PEER REVIEW 5 of 14 
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Figure 2. Two driving cycles to verify the accuracy of the EV model: (a) the 3 new energy driving
cycles (NEDCs) on the test bench; (b) the actual road driving cycle.

After the three NEDCs shown in Figure 2a, the real vehicle consumes 11.8% of the total energy
and the model consumes 12.1% of the total energy with an error of 0.3% as listed in Table 1.
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Table 1. Comparison of energy consumption between the real vehicle and the model for 3 NEDCs.

Vehicle Type Driving Condition Energy Consumption

Real Vehicle 3 NEDCs on test bench 11.8%
Model 3 NEDCs input 12.1%

As listed in Table 2, after running 8939 s on an actual road as shown in Figure 2b, the real vehicle
runs for 18.01 km and consumes 7.0% of the total energy and the model consumes 7.2% of the total
energy with an error of 2.8%.

Table 2. Comparison of energy consumption between the real vehicle and the model for actual
road driving.

Vehicle Type Driving Condition Energy Consumption

Real Vehicle Actual road driving 7.0%
Model Actual road driving cycle input 7.2%

According to the above two conditions, it can be considered that the vehicle model has enough
accuracy when calculating energy consumption.

3. Modeling of the Traffic Network

The SUMO (Simulation of Urban Mobility) [27] high-precision urban traffic simulation software is
used to simulate the traffic network. The main task is to layout and plan the roads and intersections,
then use the actual observation data to design the traffic parameters. Based on the traffic network of
the Chaoyang District of Beijing, which is about 4 km long and about 5 km wide, a total of 20 km2

regions, the traffic network simulation model is established, as shown in Figure 3.
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Figure 3. Traffic network model based on the simulation of urban mobility (SUMO) software: (a) map
of the 20 km2 area; (b) local intersection model.

The traffic network parameters are set according to the observation data as listed in Table 3.
By continuously adjusting the traffic model parameters manually, the traffic flow data of the traffic
model is close to the observed data. Finally, we get the manually set origin-destination matrix (OD
Matrix) as listed in Matrix (17); the value (x, y) of the matrix represents vehicles per hour from the
starting point x to the end point y. The value of (x, y) is manually adjusted based on the observed data
in Table 3. 

0 40 . . . 4 21
100 0 . . . 110 30
. . . . . . 0 . . . . . .
200 220 . . . 0 150
190 460 . . . 260 0


(17)
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Table 3. Actual observed traffic data.

Data Observation Value

Number of roads 3
Observation period Monday to Friday 16:30–17:30
Average traffic flow 380 vehicles/min

Average traffic density 80 vehicles/km
Average speed 34 km/h

According to the proportion of the vehicles on the actual road, the proportion of each type of
vehicle is set as Table 4. In the traffic model, the vehicle-following model of each type of vehicle
is defined according to the vehicle-following model recommended by the SUMO software. Python
controls the SUMO run and sets the parameters in the SUMO simulation through the TraCI [28]
interface protocol and the traffic data generated by the SUMO simulation can also be accessed in
Python for the next step of data processing.

Table 4. The proportion of each vehicle type in the traffic simulation model.

Vehicle Type Value

Fuel family vehicle 50%
EV 10%
Bus 10%
Taxi 20%

Truck 8%
Cleaning vehicle 2%

The vehicle model is put into the road network of the traffic simulation model for joint simulation,
and the traffic information data and the driving condition data set of EVs are obtained. The data set
lays a foundation for the energy consumption prediction model.

4. A Prediction of EV Energy Consumption Integrating Traffic Information and Driving Data

For the traditional EV energy consumption prediction, they usually simulate the EV with the
driving condition of the NEDC cycle or the constant speed of 60 km/h based on the remaining energy
and estimate the remaining driving range. However, this method would result in an inaccurate
estimation due to the difference in actual driving. Therefore, an EV energy consumption prediction
method that considers traffic information is put forward. This method replaces the NEDC driving cycle
or the constant speed 60 km/h driving condition with the actual traffic environment and integrates
traffic information and vehicle driving condition information, which makes the prediction of the
driving energy consumption of EV more accurate. Because LSTM [29] has a special gating structure, it
largely overcomes the shortcomings of the traditional recurrent neural network (RNN) [30] that the
data memory of long-term sequences is not strong enough. While EV driving condition data and traffic
information data are just typical domain data, here, we use the LSTM, as shown in Figure 4 to establish
a deep learning-based EV energy consumption prediction model.

Where in Figure 4, Xt is the input of the current time, ht−1 is the output of the previous LSTM
unit, Ct−1 is the memory of the previous unit, the output of the current network is ht, and Ct is the
memory of the current unit. LSTM’s forgotten gate is responsible for forgetting part of the content
and the selective input gate selects part of ht−1 and Xt in order to avoid over-fitting of the model. The
selective output gate implements the selective output of the internal data of the LSTM model.
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Based on LSTM, an EV energy consumption prediction model based on traffic information
and vehicle driving condition information as listed in Table 5 is established, as shown in Figure 5.
The sequence to sequence technology is used to realize the fusion of multi-dimensional data from
transportation and electric vehicles and the result of data fusion serves as an input to LSTM. Sequence
to sequence is a technique for implementing data mapping from one-dimensional sequence to another
that is not the same as the original data dimension. The model takes the data as a sequence node every
five minutes, takes the historical data of the first fifty-five minutes as input, and outputs the driving
energy consumption of each electric vehicle in the traffic network in the next five minutes.

Table 5. Training data for the LSTM model.

Traffic Information Data Electric Vehicle Driving Condition Data

Link length SOC0
Average speed Road energy consumption

Average traffic flow Battery voltage
Average traffic density Battery current
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After finishing the LSTM model training, the model error is verified using the mean absolute error
(MAE) and mean square error (MSE), respectively. Using experiments, the comparison variable is the
number of roads in the training data, the simulation duration, and the results are listed in Tables 6
and 7 and shown in Figures 6–11.
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Table 6. The influence of the number of roads in the model input data on the prediction results.

Road Number Road Share Simulation Time MAE MSE

33 25% 6 h 0.1159 0.0217
65 50% 6 h 0.1133 0.0196

130 100% 6 h 0.1042 0.0177

Table 7. The influence of different simulation durations in the model input data on the prediction results.

Road Number Simulation Time Simulation Time Ratio MAE MSE

130 2 h 33.3% 0.1091 0.0208
130 4 h 66.7% 0.1048 0.0184
130 6 h 100% 0.1042 0.0177
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From the experimental results, the error of the LSTM model decreases with the increase of the
data duration or the number of roads. When the model input is 6 h and the number of roads is 130,
the error is the smallest. In the actual situation, if the training data contains more roads and longer
data lengths, the model error will be much smaller. The energy consumption of the electric vehicle on
each road can be updated every five minutes according to the changes of traffic conditions and the
state of the electric vehicle.
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5. The Planning Strategy of the Optimal Coupling Path between Energy Consumption
and Distance

After finishing the energy consumption prediction of the electric vehicle, it is also necessary to
construct a road resistance cost function to couple the energy consumption with the distance as shown
in Equations (18)–(20). In the road resistance function, the weight of the energy consumption and the
distance are both set to 50%.

f (x1, x2, t) = a×mx1,x2,t + b× nx1,x2 (18)

mx1,x2,t = g(x1, x2, t) (19)

t = 5× q(min), q = 1, 2, . . . , N (20)

where mx1,x2,t is the energy consumption of road x1 to road x2 at time t, nx1,x2 is the distance of road x1

to road x2, and a and b are the weighting factors, a = b = 50%. Since the energy consumption of road x1

to road x2 changes with time, and the road traffic information changes little in the 5 min time interval,
this paper uses 5 min to calculate the energy consumption in one time unit, so q is the number of five
minutes after departure. So the energy consumption m is a function of the starting point, the end point
and the time. f (x1,x2,t) is the road resistance cost function for energy consumption and distance.

The road resistance cost function matrix for this condition can be built as Equation (21)
∞ f (x1, x2, t) . . . f (x1, x129, t) f (x1, x130, t)

f (x2, x1, t) ∞ . . . f (x2, x129, t) f (x2, x130, t)
. . . . . . ∞ . . . . . .

f (x129, x1, t) f (x129, x2, t) . . . ∞ f (x129, x130, t)
f (x130, x1, t) f (x130, x2, t) . . . f (x130, x129, t) ∞


(21)

We also set the path of optimal energy consumption and time relative to the path with the shortest
energy consumption and distance. The road resistance cost function is shown in Equations (22)–(25).

z(x1, x2, t) = c×mx1,x2,t + d× Tx1,x2,t (22)

Tx1,x2,t = nx1,x2 /v_avgx1,x2,t (23)

where Tx1,x2,t is the traveling time needed from x1 to x2 at time t. The weighting factors c, d here we set
c = 20%, d = 80%, because usually, people need less travel time than energy consumption. The time t
and energy consumption mx1,x2,t are defined in Equations (19) and (20). z(x1, x2, t) is the road resistance
cost function for energy consumption and travel time.

The road resistance cost function matrix for this condition can be built as Equation (24).
∞ z(x1, x2, t) . . . z(x1, x129, t) z(x1, x130, t)

z(x2, x1, t) ∞ . . . z(x2, x129, t) z(x2, x130, t)
. . . . . . ∞ . . . . . .

z(x129, x1, t) z(x129, x2, t) . . . ∞ z(x129, x130, t)
z(x130, x1, t) z(x130, x2, t) . . . z(x130, x129, t) ∞


(24)

A-Star algorithm is a heuristic algorithm, as shown in Figure 12, which can determine the search
scope based on the estimated value of the current point-to-end road resistance, making the search point
closer and closer to the optimal point. A-Star algorithm is widely used in the scenarios of autonomous
driving path planning and vehicle navigation [31]. Here we select the A-Star algorithm as the main
solver, the road resistance and the traffic network obtained by the above equations are taken as inputs
like matrix (21) and matrix (24), and the A-Star algorithm can output the best driving path. Take the
energy consumption and driving distance as optimization goals, or take energy consumption and
driving time as optimization goals to plan the economic driving path.
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6. Results and Discussion

In this paper, three groups of experiments are set up, that is, distance-based, energy-based, and
time-based optimal simulation experiments. The optimal distance path is used as the comparison base.
The experiment of coupling the optimization of energy consumption and distance and the experiment
of time optimization and energy consumption optimization are used to prove the application value of
energy consumption prediction considering the traffic information in path planning.

According to the experiment results as shown in Figure 13 and Table 8, the shortest distance-based
optimization path from the starting point to the end point is 3515.3 m, the EV consumes 0.731 kWh
electricity with the equivalent energy consumption rate of 20.79 kWh/100 km and the average speed is
16.17 km/h, indicating that the road is relatively congested and the energy consumption is relatively
high. For the coupling optimal energy consumption and distance path, here named as the energy
saving-based optimization path, the total electricity consumption is 0.686 kWh with an equivalent
energy consumption rate of 18.73 kWh/100 km, 9.9% less than the shortest distance-based optimization
path and is the lowest energy consumption among the three paths. For the coupling optimal energy
consumption and time path, here named as the time saving-based optimization path, its driving
time is 5.9 min and is the shortest time consumption path, while its total electricity consumption is
0.705 kWh with the equivalent energy consumption rate of 19.03 kWh/100 km, 8.4% less than the shortest
distance-based optimization path and 1.6% more than the energy saving-based optimization path.Energies 2019, 12, x FOR PEER REVIEW 12 of 14 
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Table 8. The optimal results for different optimization conditions.

Path Type Drive Distance Energy Consumption Equivalent Energy
Consumption Rate Traveling Time Average Speed

Shortest
Distance-based 3515.3 m 0.731 kWh 20.79 kWh/100 km 11.7 min 16.17 km/h

Energy saving-based 3661.8 m 0.686 kWh 18.73 kWh/100 km 7.0 min 31.39 km/h
Time saving-based 3705.6 m 0.705 kWh 19.03 kWh/100 km 5.9 min 37.68 km/h

7. Conclusions

(1) The EV energy consumption model is built and verified through a test bench experiment of 3
NEDC driving cycles and actual road driving cycles. The actual traffic network is modeled with
the software SUMO updated with actual traffic data. In order to predict the energy consumption
accurately, a deep learning-based energy consumption prediction model with LSTM is proposed,
which can fuse multi-dimensional data from different sources including traffic information.
The sequence to sequence technology is used to realize the fusion of multi-dimensional data from
transportation and electric vehicles. The dimensions and influence of the model training input
data are also discussed with the result of 6 h long and 130 roads minimum.

(2) A path planning map and the road resistance function are established, and the energy-saving
path planning strategy with the optimal coupling of energy consumption and distance or energy
consumption and driving time is proposed by the usage of the A-star algorithm. As a comparison,
the shortest distance-based optimal path is also performed. The comparison results show that for
the coupling optimal energy consumption and distance path, its equivalent energy consumption
rate is 9.9% less than the shortest distance-based optimization path, while for the coupling
optimal energy consumption and time path, it is 8.4% less than the shortest distance-based
optimization path.
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