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Abstract: In this work, we proposed a Building Energy Simulation (BES) dynamic climatic model
of greenhouses by utilizing Transient System Simulation (TRNSYS 18) software to study the effect
of use of different thermal screen materials and control strategies of thermal screens on heat energy
requirement of greenhouses. Thermal properties of the most common greenhouse thermal screens were
measured and used in the BES model. Nash-Sutcliffe efficiency coefficients of 0.84 and 0.78 showed good
agreement between the computed and experimental results, thus the proposed model appears to be
appropriate for performing greenhouse thermal simulations. The proposed model was used to evaluate
the effects of different thermal screens including; Polyester, Luxous, Tempa, and Multi-layers, as well as
to evaluate control strategies of greenhouse thermal screens, subjected to Daegu city, (latitude 35.53◦ N,
longitude 128.36◦ E) South Korea winter season weather conditions. Obtained results show that the
heating requirement of greenhouses with multi-layer night thermal screens was 20%, 5.4%, and 13.5%,
less than the Polyester, Luxous, and Tempa screens respectively. Thus, our experiments confirm that
the use of multi-layered thermal screen can reduce greenhouse heat energy requirement. Furthermore,
screen-control with outside solar radiation at an optimum setpoint of 60 W·m−2 significantly influences
the greenhouse’s energy conservation capacity, as it exhibited 699.5 MJ·m−2, the least energy demand of
all strategies tested. Moreover, the proposed model allows dynamic simulation of greenhouse systems
and enables researchers and farmers to evaluate different screens and screen control strategies that suit
their investment capabilities and local weather conditions.

Keywords: greenhouse modeling; heating demand; greenhouse microclimate; greenhouse covering

1. Introduction

Different heating systems are typically used during winter to achieve the desired greenhouse
micro-climate. Use of such systems leads to significant increase in greenhouse energy consumption [1].
Currently, Various technologies, particularly renewable energy, are being utilized globally to fulfill energy
requirements in buildings in general, including in the agriculture sector. Beside applying appropriate
heating systems, energy saving measures requires careful consideration [2]. In greenhouse farming,
energy saving is one of the most significant challenges, as heating costs have increased to more than 40%
of the total production cost [3]. Among the passive heating modes, use of thermal screens is the most
influential means to reduce heating requirement. Improving energy performance of the buildings can
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positivity effect the energy consumption [4,5]. The use of thermal insulation in the building helps to
achieve the high energy performance [6]. Night thermal screens are widely used inside the greenhouses
during winter season in order to save energy by reducing the heat loss to the ambient environment.
While there are different kinds of thermal screens available in the market, unfortunately, farmers and
researchers have very little information about the performance of the thermal screens [7].

Previous studies have attempted to estimate performance of the thermal screens by using a
variety of different methods. Ghosal and Tiwari [2] and Shukla et al. [8] developed mathematical
models to study the greenhouse thermal environment by using thermal curtains and earth-to-air heat
exchanger. As part of the study, researchers divided the greenhouse into sections and calculated the
temperature above and below the thermal curtain. This study was conducted to check the feasibility of
the earth-to-air heat exchanger without analyzing the greenhouse thermal screen qualitative effect.
The studies [9–12] experimentally measured the internal temperature of the greenhouses with and
without thermal screen to calculate energy saving potential of the screen used. Taki et al. [13] modeled
different greenhouse shapes with thermal screen and calculated the temperature inside the greenhouse
and energy consumption. Kim et al. [14] calculated overall heat transfer coefficient (U-value) of
the greenhouse with and without night thermal screen. The screens’ performance was assessed by
measuring heat energy utilized to maintained desired temperature at night, which was further used to
calculate the U-value of the thermal screen. The studies [1,15–17] calculated the U-values of the different
thermal screens by using experimental hotbox. The discussed literature showed valuable information
about thermal screens, but these studies did the experimental work which was site specific and limited
to the use of one specific screen. One report [7] detailed the measuring method of greenhouse screens’
properties, which were further used in a KASPRO model to calculate the total energy saving of different
screens. The results of this study were under specific controlled and pre-defined weather conditions.

TRNSYS stands for “Transient System Simulation program”. It is a versatile component-based
program that provides tools to simulate both simple and complex energy flows in buildings [18]. It was
developed by University of Wisconsin’s Solar Energy Lab and has been commercially available since
in 1975 for the simulation of thermal systems, but has since undergone continuous development to
become a hybrid simulator by including photovoltaic, thermal solar, and other energy systems [19].
This program is being used in many applications including energy building simulation, energy system
research, technology assessment, solar thermal process, solar applications, geothermal heat pumps
systems, ground-coupled heat transfer, air flow modeling, system calibration, wind and photovoltaic
(PV) systems, hydrogen fuel cell, and power plants [20].

For this specific study, we used TRNSYS, which is widely used for calculating energy load and
energy system performance of commercial and residential buildings. In agricultural greenhouses,
software demonstrates very high flexibility to improve various case studies to continue work for
structure and energy analysis of greenhouse systems [21]. It has been used in many studies for
greenhouse energy management and to analyze different energy systems for greenhouses. In one
of our previous studies [22] we presented a detailed literature review of TRNSYS software used for
greenhouse modeling. The summary of this research shows that the use of building energy simulation
(BES) program TRNSYS for agricultural greenhouses is continuously increasing. The study divided
the researchers work into the following four categories: solar heating, use of geothermal energy, closed
greenhouse concept, and energy management of different structural and environmental parameters.
After reviewing all the previous literature, the modeling thermal screens were found to be lacking.
Thermal properties of commonly used screens also could not correctly model the influence of these
screens on greenhouse thermal environment and energy savings.

The main objective of this study is to propose a more accurate, convenient, and reliable greenhouse
BES model by utilizing TRNSYS 18 software. Furthermore, this study considers the effect of thermal
screens on greenhouse dynamic micro-environment in winter season. The total energy savings of
selected screens are calculated and compared to a greenhouse without thermal screen. In addition,
different greenhouse screen opening-closing control strategies are examined, to find an optimal screen
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controlling strategy from the energy conservation point of view. This study will provide an opportunity
for growers and researchers to analyze the energy saving potential of different thermal screens under
their local weather conditions.

2. Materials and Methods

2.1. Experimental Greenhouse

The experimental greenhouse was located in Daegu (latitude 35.53◦ N, longitude 128.36◦ E,
elevation 48 m), South Korea. The geographic location of the site is shown in Figure 1. The experimental
greenhouse had a single-span, gambrel type roof structure. It was covered with double-layered
polyethylene (PE) material and single-layered thermal screen, as shown in Figure 2. The dimensions of
the greenhouse were 24 m × 7 m × 4 m, with a total volume and floor area of 553.1 m3 and 168 m2,
respectively; these specifications are shown in Figure 3. Necessary information and data from the
site were collected to use as input data in the building energy simulation (BES) model. Weather data
was recorded for one winter season between November 2017 and March 2018; monitored variables
are presented in Table 1. The temperature inside the greenhouse was measured at different locations
along the central line below and above the thermal screens. These measured temperatures were used
for comparison with the BES results for validation. During the experimental period, no crops were
grown inside the greenhouse. The weather parameters, air temperature, solar radiation, relative
outdoor humidity, air pressure, wind speed, and wind direction, were monitored by several mounted
sensors outside the greenhouse. In addition, ambient pressure data was obtained from the Korean
Meteorological Administration (KMA). The hourly mean ambient temperature and solar radiation for
the period of November 2017 to March 2018 is shown in Figure 4.

Table 1. Weather data variables used in the simulations.

Weather Parameter Unit Time
Interval Sensor Precision of

Sensor Data Recorded

Temperature ◦C 10 min TR-76Ui-H, TECPEL ±5 ◦C Field recorded
Relative humidity % 10 min TR-76Ui-H, TECPEL ±5% Field recorded

Solar radiation kJ h−1 10 min CMP3, Kipp & Zonen <5% Field recorded
Wind speed m s−1 10 min S-WDB-M003, ONSET ±4% Field recorded

Wind direction degree 10 min S-WDA-M003, ONSET ±4% Field recorded
Ambient pressure hPa 10 min PTB-220TS, VAISALA ±0.15 hPa KMA
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2.2. Thermal Conductivity Measurement

A thermal conductivity meter, Kemtherm (QTM-500), manufactured by Kyoto electronics, was
used to measure the thermal conductivity value of the thermal screen materials tested in this study.
Figure 5 shows the whole apparatus of thermal conductivity meter. The instrument can quickly measure
the thermal conductivity of all types of sample materials limited to the range of 0.023–12 W·m−1

·K−1,
and has a precision and reproducibility of ±5% and ±3% respectively.

The QTM-500 measuring apparatus consists of, main unit, references plates (shown in Figure 5),
cooling plate, power cord, and three different kinds of sensors for different types of materials are
available. For this specific purpose of measuring the thermal conductivities of thin sheet samples, we
used the following apparatus, QTM-500 with PD-11 prob sensor and an optional software Soft-QTM,
which is recommend for this type of material. The specification of these prob sensors is described in
Table 2. For thin materials (0.1–8mm) sample use of optional software (Soft-QTM) is recommended,
whereas, the thermal conductivity of the thick material can be determined directly through apparatus.
This software is specially designed for the measurement of the thin sheet sample using a computer
with QTM-500 thermal conductivity meter.Energies 2019, 08, x  6 of 22 
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Table 2. Specification of PD-11 prob.

Feature Unit Sensor (PD-11)

Measuring temperature range ◦C −10 to 200
Minimum sample size mm3 100 × 50 × 20

Measurement range W·m−1
·K−1 0.023 to 11.63

Thin sample thickness mm 0.03 to 10
Measuring time Sec 60

2.3. BES Modeling

To conduct this study, TRNSYS 18 software was utilized as a BES program. Simulations were run
on a desktop personal computer with an Intel core i7-5820k processor (3.30 Ghz), DDR3-RAM (32 GB),
and NVIDIA GeForce GTX 960 graphics card, using 64-bit Windows 7. The modeling process was
carried out in three parts: pre-processing, modeling, and simulation. The detail of each is discussed
below in the corresponding sub-sections. The modeling process is detailed in the flow diagram
presented in Figure 6.
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2.3.1. Pre-processing

The pre-processing was performed using the following programs and add-ons: Google SketchUp™,
Berkeley Lab Window 7.4 software, Transys3d, Tranflow, and SoilNoding program. Each of them
was used to provide the necessary input needed to run the greenhouse simulation on TRNSYS 18.
A detailed description of each employed program and add-on is described in Table 3. TRNBuild
(formally known as PREBID) is a building interface module of Trnsys program, which was used to
define the basic project data and output selection for the greenhouse model. It creates a .BUI file
containing all the information of the building (greenhouse) including, 3D design of the greenhouse,
orientation, heating, cooling, construction materials, output selection, and radiation mode. First of all,
a 3D model of greenhouse was designed in Trnsys3d, which is a plugin for the Google SketchUp™
program, the program creates an .idf file (readable by TRNBuild) of 3D geometry data. A gothic shaped
gambrel type roof vent greenhouse 3D model is shown in Figure 7. TRNSYS does not contain typically
used greenhouse covering and thermal screen material properties. To serve this purpose, we used
Berkeley Lab Windows 7.4 software to create a DOE-2 file (readable by TRNBuild) of thermal screens
material by using properties of each from Table 4. This program allows to define a new material
on the basis of physical and thermal properties of the corresponding material. It calculates overall
heat transfer coefficient (U-value), solar heat transfer coefficient, shading coefficient, solar and visible
transmittance, reflectance, for complete window system at different angles and creates DOE-2 file type.
These measured physical and thermal properties of different thermal screen materials are provided
in one of our studies [23]. The thermal screens selected for evaluation are typically used screens
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in greenhouses and are available in South Korea’s market. The physical and thermal properties of
polyethylene material were taken from a study conducted by Valera et al. [24]. In order to consider the
greenhouse soil, SoilNoding program, a plugin for Google SketchUp™ was used. It is a ruby scripted
plugin that writes the geometry file of the floor needed by Type-49. This program was used to prepare
a 2D model of the greenhouse floor, and create a .txt file of floor meshing data. This file is further used
in the simulation to calculate greenhouse floor temperature. TRNBuild simulates only the thermal
environment of the greenhouse, for natural ventilation, and requires air flows between the thermal
zone and outside environment. To account for this situation, air coupling between the thermal model
and the air flow model was done using TRNFLOW, a ventilation module of the TRNSYS 18 program.
TRNFLOW coupled the internal and surrounding greenhouse environments by incorporating wind
speed, direction, pressure, as well as internal and external temperatures. The airflow network in the
model was defined by linking the external node (ambient environment) to the thermal node (internal
greenhouse) through the open windows using the TRNFLOW interface within TRNBuild [18]. The data
for the air flow model was also incorporated in the .BUI file of TRNBuild.

Table 3. Description of TRNSYS 18 and other programs used in the simulation process.

Component Description

TRNBuild This module used in conjunction with TYPE-56 to input the basic structural
description of the greenhouse

TRNFlow This is an add-on to TRNSYS used to design air flow network of natural
ventilation of greenhouse

Soil noding program A plugin for Google SketchUp™ program used to create 2D model of greenhouse
floor which uses as an input by TYPE-49

Google SketchUp™ A program used to draw 3D model of greenhouse

Trnsys3d A plugin for Google SketchUp™ program which creat a non-geometric data
readable for TRNBuild about greenhouse structural design

Berkeley Lab Window 7.4

This software used to create a DOE-2 file (which is readable by TRNBuild) of the
greenhouse covering, and thermal screens using the following known properties
of materials: solar transmittance and reflectance, thermal radiation transmittance

and emission, visible radiation transmittance and reflectance, conductivity
(W·m−1

·K−1), and thickness (mm).
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Table 4. Physical and thermal properties of the thermal screens.

Screen Types Thickness
(mm)

Conductivity
(W·m−1·K−1)

Transmittance
(-)

Reflectance
(-)

Emittance
(-)

White polyester 0.4 0.0510 0.02 0.04 0.94
Luxous 1347 0.22 0.0463 0.38 0.18 0.44
Tempa 8672 0.25 0.2133 0.01 0.32 0.67
Multi-layers 3.5 0.0370 <0.001 0.10 0.90

2.3.2. Modeling

Simulation studio is the main interface of the TRNSYS program which connects all the components
together to develop the model and run the simulation. In simulation studio a variety of standard
components are available for energy simulation. Each component is represented by a Type, the
component’s input and outputs are connected with each other by a link tool. The simulation studio
allows the basic settings to start and stop the simulation. Figure 8 shows the greenhouse model
developed using simulation studio. Table 5 presents details for each component and specific type name
used in the greenhouse modeling. In simulation studio, the “Multi-zone” module known as Type-56
was used to describe greenhouse. Type-56 reads the .BUI file created by TRNBuild, which contains
all the inputs we prepared during pre-processing. In the next step, a weather data reader “Type-9”
was used to read the .text file of user-provided weather data of the specific site. All the simulations
were carried out by inputting the weather data for Daegu. The weather data was further processed
with the solar radiation processor “Type-16”. This type used total solar radiation of horizontal from
weather data reader and calculated total, beam, reflected, and diffused, solar radiation on tilt surface.
The Psychrometric chart “Type-33” uses dry bulk temperature and humidity ration and calculates dew
point temperature. A sky temperature calculator “Type 69” uses dew point temperature, beam and
diffuse radiation on horizontal to calculate sky temperature. Coupling of greenhouse ground with
internal thermal environment of greenhouse was carried out with a ground coupling module called
“Type-49”. It uses a greenhouse floor file created by SoilNoding program and convective heat transfer
coefficient by Type-56 as an input and gives greenhouse floor temperature as an output. To control
opening and closing of the side and roof vents for natural ventilation, a differential controller “Type-911”
was used. Finally, to display the selected outputs and get results, the online plotter “Type-65” and
printer “Type-25” were used, respectively.

Table 5. Components of the greenhouse model in TRNSYS 18.

Component Type Description

Weather data reader 9 Reads the user-provided weather file

Solar radiation
processor 16e uses the total direct solar radiation on horizontal surface as an input and

gives output of total, beam, reflected, and diffuse radiation of tilt surfaces.

Sky temperature
calculator 69b Input: dew point temperature, beam and diffuse radiation on horizontal to

calculate sky temperature

Psychrometric chart 33 Input is dry bulk temperature and humidity ration and calculate dew
point temperature

Equation editor This type was used to insert equation.

Greenhouse building
model 56-TRNFlow This type uses TRNBuild to process greenhouse geometry data and

TRNFlow to calculate natural ventilation air flow

Ground coupling 49 Input for this type is heat transfer from greenhouse to floor and calculates
floor temperature

Controller 911 This type was used to control opening and closing of the side and roof
vents for natural ventilation

Printer 25d This type was used to print results on the external user-provided file

Plotter 65c This type was used to plot the results in an online plotter
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2.3.3. Simulation

After successful modeling of the greenhouse thermal model, two simulations were run to validate
our model using the same conditions as experimental greenhouse. The detailed conditions are given in
the “validation section”. After validation of our proposed model, further simulations were performed to
investigate the effect of different thermal screens including: Multi-layer, Polyester, Luxous, and Tempa,
on heat energy demand of the greenhouse. Furthermore, the sensitivity analysis was conducted by
using the material’s different thermal conductivity and thickness values in the simulations. In addition,
different greenhouse screen opening-closing control strategies were examined by running simulation
for three different screen control strategies including: time dependent, outside solar radiation, and
outside temperature control strategies.

2.4. Validation

In one of our previous studies, greenhouse thermal model was calibrated—we used the same
setting to develop the BES mode. The detail of the calibration process can be seen in the cited
paper [18]. Further, to validate our model, the computed results, which were obtained using the same
conditions as the experimental greenhouse, were compared to the greenhouse internal temperature
obtained experimentally. Tables 6 and 7 present the detail of the operating conditions of both reference
greenhouses, respectively. The experiments for validation were conducted in Daegu over two different
periods in 2017, from January 1 to January 13 and November 7 to November 12 respectively.

Table 6. Summary of reference greenhouse with temperature-controlled vents and heating setpoint.

Parameter Operating Condition

Roof type Gambrel
Glazing PE

Glazing operation Single-layer (9:00 AM to 5:00 PM)
Double-layer (5:00 PM to 9:00 AM)

Orientation East-West
Period 01-Jan-2018 to 13-Jan-2018
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Table 6. Cont.

Parameter Operating Condition

Natural ventilation Side vents
Natural vents control set point temp 25 ◦C

Thermal Screens Yes
Thermal screens control Open (8:00 AM), close (5:30 PM)

Dimension 24 m × 7 m × 4 m
Floor area 168 m2

Volume 532 m3

Heating 10 ◦C

Table 7. Summary of reference greenhouse with temperature controlled natural ventilation and
thermal screen.

Parameter Operating Condition

Roof type Gambrel
Glazing PE

Glazing operation Single-layer (9:00 AM to 5:00 PM)
Double-layer (5:00 PM to 9:00 AM)

Orientation East-West
Period 07-Nov-2018 to 12-Nov-2018

Natural ventilation Side vents
Natural vents control set point temp 23 ◦C

Thermal Screens Yes
Thermal screens control Open (8:00 AM), close (5:30 PM)

Dimension 24 m × 7 m × 4 m
Floor area 168 m2

Volume 532 m3

Heating No

2.5. Statistical Analysis of BES Model

Statistical analyses were performed to predict the performance of the BES model by using the
Nash-Sutcliffe efficiency coefficient (NSE) and to compare the experimentally observed data with
the output of the BES. This coefficient quantitatively describes the accuracy of the model results—it
indicates how well the plot of observed versus simulated data fits the 1:1. Its value ranges from -∞ to
1, and values closer to 1 indicate better predictive power of the model. The NSE is mathematically
expressed as follows:

NSE = 1−


∑n

i=0

(
Texp

i − Tsim
i

)2

∑n
i=0

(
Texp

i − Tmean
i

)2

 (1)

where Texp
i is the experimentally obtained internal temperature of the greenhouse, Tsim

i is the simulated
internal temperature of the greenhouse, Tmean

i is the mean of the experimental temperature, n is the
total number of observations.

2.6. Sensitivity Analysis

Sensitivity analyses were performed for thermal conductance and thickness of thermal screens on
energy demand of greenhouse. A sensitivity coefficient is often used in control engineering. Among
different forms of sensitivity coefficients, it is most suitable for thermal systems and building energy
simulation in the following form expressed in Equation (2) [25].

Sensitivity coefficient =
[

∆OP/OP
∆IP/IP

]
(2)
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where ∆OP and ∆IP are change in the output and input, respectively. OP and IP are base output and
input. A high value of sensitivity coefficient indicates that the model output is highly sensitive to that
input, so that value must be chosen very carefully [26].

3. Results and Discussion

Validation analysis was done for the greenhouse-controlled system. The computed internal
temperatures of greenhouses were compared with those experimentally obtained with temperature
controlled natural ventilation, with night heating set point and with thermal curtain separately.
The greenhouse operating conditions for both cases are detailed in Tables 6 and 7, respectively.
The predicted and experimentally obtained greenhouse internal temperature with the condition of
temperature controlled natural ventilation and heating set point is shown in Figure 9. The second
condition temperature controlled natural ventilation without heating set point only application of night
thermal screen was validated and the result for which is shown in Figure 10. The NSE values, 0.84
and 0.79, for both validation results indicate the goodness-of-fit between experimental and simulation
results. The agreement between the experimental and computed results under both conditions
encourages adoption of the proposed BES model.Energies 2019, 08, x  13 of 22 
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After successfully creating and validating the BES model, simulations were performed to obtain
results for all the selected thermal screens. The BES greenhouse model was used to calculate the
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yearly heating demand of the greenhouse using selected night thermal screens. Figure 11 depicts
the heat energy demand of the selected thermal screens. The results show the heating demand of
greenhouse with multi-layer night thermal screens was 20%, 5.4%, and 13.5%, less than the Polyester,
Luxous, Tempa, respectively; multi-layers thermal screen shows the least energy demand of the other
selected thermal screens. Furthermore, Figure 12 shows monthly energy saving potential of the selected
thermal screens when compared with the without thermal screens greenhouse energy demand. Some
studies [8,12,14,27] also confirmed the energy saving potential of the thermal screens. In these studies,
investigation was carried out by calculating overall heat transfer coefficient of thermal screen with
greenhouse internal temperature. Further, comparison was made between with and without thermal
screen greenhouse, without considering different kinds of screens. In our study we made a comparison
between different screens by taking into account their thermal properties. As a variety of different
screens are available in the market, compression of the screens was necessary to select the most suitable
one according to our specific needs.
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Table 8 presents the heating demand for all the tested single-layer thermal screens sorted in
ascending order. The heating demand calculation considered the thickness, thermal conductivity, and
emissivity of all the thermal screens. The results showed that multi-layer exhibits the lowest heating
demand. Thus, it can be concluded that the thickness and thermal conductivity of the materials have a
greater influence on their heating demand; higher thickness and lower thermal conductivity caused
less heat loss from the material. The heating demand of Tempa is less than polyester even though its
thickness is less than that of Tempa, the reason being that the thermal conductivity of Tempa is higher
than that of polyester. Moreover, thermal screens Luxous and Tempa have less thickness than that of
the polyester, but their heating demands are less than that of the polyester because their emissivities are
less. Here, from the results in Table 8, we can conclude that emissivity of the material has a significant
effect on heating demand—more emissivity causes more heat loss from the material.

Figure 13a shows the sensitivity analysis results performed on the thermal conductance. The testing
was conducted in the range of 0.01 to 0.2 W·m−2

·K−1. The outcomes demonstrate that the heating
demand increased when thermal conductivity was changed from 0.01 to 0.05 but then stabilized and
did not show any more change in heat demand with increasing thermal conductivity. Figure 13b
demonstrates that the sensitivity coefficient decreased with the increase of thermal conductivity of the
screens. The results also show that the heating demand is more sensitive to the low thermal conductivity
value than the higher value. The heating demand increment caused by increasing thermal conductivity
was higher for thick screens, like the multi-layer, than for that of the less thick materials. Moreover,
the heating demand difference after the thermal conductivity value 0.2 W·m−2

·K−1 was because of
different emissivity and reflectivity values. The radiative heat loss in the material is dependent on
emissivity and reflectivity. Higher emissivity increases the heating demand and higher reflectivity
lowers the heating demand which is in agreement with the results of the previous study conducted
on energy saving screen materials [7]. Figure 14a shows that the heating demand is very sensitive
to screen thickness, as screen thickness increases, heating demand continuously decreases indicating
the reduction in heat loss from the screen. In Figure 14b the high values of the sensitivity coefficients
demonstrate that the thickness of the thermal screen is highly sensitive to the heating demand of
the greenhouse. A study [28] conducted on sensitivity of the heating requirement of the greenhouse
also confirmed that the heating requirement is highly sensitive to the greenhouse material’s thermal
properties. This study investigated the sensitivity of the greenhouse covers, only excluding thermal
screens. The study uses only U-value of the greenhouse screens, because thermal properties of the
screens were lacking in the literature.
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Table 8. Calculated heating demand with the material’s properties.

Screen U-Value
(W·m−2·K−1)

Thickness
(mm)

Conductivity
(W·m−1·K−1)

Emissivity (-)

Multi-layers 700.3 3.5 0.0370 0.900
Luxous 739.8 0.22 0.0463 0.440
Tempa 802.7 0.25 0.2133 0.670

Polyester 858.1 0.40 0.0510 0.940
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Thermal screens are used to reduce the energy requirement of the greenhouse. In winter, the
screens are opened inside the greenhouse during the nighttime to reduce heat loss and closed during
the daytime to get solar radiation inside the greenhouse. Table 9 shows the results of different screen
control strategies for energy conservation. The results show yearly (01-Nov-2017 to 31-Mar-2018) heat
energy demand of three thermal screen control strategies considering the fixed setpoint value for
the whole winter season. Using the first conventional time control strategy the greenhouse heating
demand was 705.5 MJ·m−2. Moreover, the heating demand for two of the proposed screen control
strategies (outside global radiation and outside global radiation along with outside temperature) was
700.3 MJ·m−2. It can be seen from the results that, when the screen was opened at 1 W·m−2 heating
demand was higher at 707.3 MJ·m−2, but as the solar radiation set point value increased, energy
requirement started decreasing up to 60 W·m−2—the same phenomenon was seen when the screens
were controlled by outside solar radiation at 60 W·m−2, and the outside temperature was −20 and
−15 ◦C. The heating requirement was least at lower temperatures but as temperature increased heating
requirement started increasing as well. Moreover, when controlling thermal screen with outside solar
radiation, as setpoint value increases number of screens closed hours also increases. Figure 15 shows
the thermal screens opening and closing time by using different screen opening criteria. From the
outcomes of these thermal screen control strategies it can be concluded that a significant amount
of heat energy can be saved by controlling thermal screen with outside solar radiation rather than
using the conventional time control method. The amount of energy saved by using solar radiation
control strategy was found to be 5 MJ·m−2. This energy savings translates to a conservation of more or
less~ 2000 liters of fuel for 1 hectare of greenhouse during a complete winter season. Two numerical
studies [29,30] conducted to investigate the best time to open and close the thermal curtain also confirm
our trend of results. The studies suggested 33 W·m−2 and 40 W·m−2 of the setpoint, the specific values
are different because these studies were conducted with the weather data of central New York, USA
and Bedfordshire, England.

The screen controlling strategy was further optimized by calculating monthly heating demand of
the greenhouse at different outside solar radiation setpoints, results for which are shown in Figure 16.
The outcomes indicate that the solar radiation setpoint value was different each month. In accordance
with these results, the optimum monthly outside solar radiation setpoints are shown in Figure 17;
energy demand by using these setpoints is 699.5 MJ·m−2.
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Table 9. Results for different screen opening strategies.

Value Screen Closed (hours) Energy Consumption (MJ·m−2)

Without thermal screens

0 1015.6

Time control

8:00 AM – 5:30 PM 2100 705.5

Outside global radiation

1 (W·m−2) 2063.5 707.3

10 (W·m−2) 2098.8 705.7

20 (W·m−2) 2145.8 704.1

30 (W·m−2) 2192.7 702.4

40 (W·m−2) 2233.2 701.3

50 (W·m−2) 2273.3 700.5

60 (W·m−2) 2307.3 700.3

70 (W·m−2) 2340.8 700.3

80 (W·m−2) 2372.2 700.9

90 (W·m−2) 2403.2 701.8

100 (W·m−2) 2432.2 702.5

110 (W·m−2) 2462.2 703.7

120 (W·m−2) 2488.2 704.9

Outside global radiation and temperature

60 (W·m−2)/−20 ◦C 2332.7 700.3

60 (W·m−2)/−15 ◦C 2332.7 700.3

60 (W·m−2)/−10 ◦C 2346.0 700.5

60 (W·m−2)/−5 ◦C 2391.7 707.6

60 (W·m−2)/0 ◦C 2555.7 734.7
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4. Conclusions

This study proposed a Building Energy Simulation (BES) model of greenhouse by using TRNSYS 18
program, which is capable of simulating transient thermal environment of a greenhouse. We calculated
the energy requirement of the greenhouse influenced by different thermal screens and their control
strategies of the greenhouse. The study also investigated different energy saving measures in the
greenhouse. It was discovered that the most energy efficient night thermal screen is multi-layered. The
results showed that the heating demand of greenhouses with multi-layer night thermal screens was
20%, 5.4%, and 13.5%, less than the Polyester, Luxous, Tempa, respectively. Moreover, the best strategy
to control the opening and closing of thermal screen was found outside global radiation with optimum
set-point of 60 W·m−2, as it showed least energy demand of 699.5 MJ·m−2.

TRNSYS 18 showed a high flexibility. The results encourage the adoption of the model when
investigating greenhouse structural design with an underlying aim to reducing the energy costs of
greenhouse agriculture, taking local environment and specific needs into consideration. The proposed
model allows dynamic simulation of greenhouse systems as well as the ability to apply and analyze
different control strategies, which can help to reduce operational cost with pre-design decisions.
Growers can select the best thermal screen and controlling strategy based on the total energy saving
potential. Screen producers can choose the energy efficient thermal screen on the basis of screen
properties and provide information to the growers. All over the world, numerous kinds of thermal
screens are available in the market; researchers can use the proposed model to analyze different thermal
screens available in their local market.
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