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Abstract: The basic and adaptive maximum power point tracking algorithms have been studied for
distributed photovoltaic systems to maximize the energy production of a photovoltaic (PV) module.
However, the basic maximum power point tracking algorithms using a fixed step size, such as
perturb and observe and incremental conductance, suffer from a trade-off between tracking accuracy
and tracking speed. Although the adaptive maximum power point tracking algorithms using a
variable step size improve the maximum power point tracking efficiency and dynamic response of the
basic algorithms, these algorithms still have the oscillations at the maximum power point, because
the variable step size is sensitive to external factors. Therefore, this paper proposes an enhanced
maximum power point tracking algorithm that can have fast dynamic response, low oscillations,
and high maximum power point tracking efficiency. To achieve these advantages, the proposed
maximum power point tracking algorithm uses two methods that can apply the optimal step size
to each operating range. In the operating range near the maximum power point, a small fixed step
size is used to minimize the oscillations at the maximum power point. In contrast, in the operating
range far from the maximum power point, a variable step size proportional to the slope of the
power-voltage curve of PV module is used to achieve fast tracking speed under dynamic weather
conditions. As a result, the proposed algorithm can achieve higher maximum power point tracking
efficiency, faster dynamic response, and lower oscillations than the basic and adaptive algorithms.
The theoretical analysis and performance of the proposed algorithm were verified by experimental
results. In addition, the comparative experimental results of the proposed algorithm with the other
maximum power point tracking algorithms show the superiority of the proposed algorithm.
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1. Introduction

The renewable energy resources including wind power, biomass, solar heating, solar photovoltaic
(PV), hydroelectric energy, and fuel cells have been widely used to reduce global warming effects
caused by greenhouse gas emission [1–4]. Among these energy resources, solar PV has attracted
attention as a promising renewable energy source due to the following reasons:

1. Diverse applications: PV system can be easily applied to microgrid, households, and buildings [5–7].
2. Low maintenance costs: Only PV module, inverter, and cable are required for maintenance and

the maintenance period is long [8–10].
3. Technology development: Various methods were constantly introduced to improve the technology

in the solar power industry [8–10].

PV systems consist of PV modules for converting sunlight into direct current (DC) electricity,
as well as PV inverters for converting DC into alternating current (AC). Based on the connection
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method between the PV module and the PV inverter, the PV inverter can be categorized as a central
inverter or as a module-level power electronic (MLPE). In the past, central inverters (Figure 1a)
connected with series-connected PV modules were widely used because they have the advantages of
simple structure and low cost [11]. However, central inverters suffered from significant performance
degradation under partial shading due to multiple maximum power points and mismatches in PV
modules. To solve the partial shading problem, MLPEs (Figure 1b), which include a DC-optimizer
and a micro-inverter, were introduced [12–16]. MLPEs are connected to one PV module and harvest
optimum power by performing module-level maximum power point tracking (MPPT); this is also
known as distributed MPPT (DMPPT) [17–19]. Thereby, MLPEs solve the partial shading problem and
improve the performance of an entire PV system.
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Figure 1. Block diagrams of (a) the central inverter and (b) the module-level power electronics.

Among many MPPT algorithms, hill-climbing, perturb and observe (P&O), and incremental
conductance (INC) have been widely used due to their simplicity and ease of implementation [20–24].

Hill-climbing and P&O algorithms operate on the same fundamental principle that the variation
(∆VPV) of PV voltage (VPV) and the variation (∆PPV) of PV power (PPV) become zero at the maximum
power point (MPP). The difference between the P&O and hill-climbing algorithms is that P&O uses a
PI controller. Operations in both hill-climbing and P&O algorithms can be classified into five modes
and are described in Figure 2 and Table 1 [20–23]. The INC algorithm tracks the MPP based on the
principle that the variation (∆IPV) of PV current (IPV) becomes zero and the slope of −∆IPV/∆VPV is the
same as IPV/VPV at the MPP. The INC algorithm also has five operating modes, and its principle of
operation is described in Figure 3 and Table 2 [24]. However, these basic MPPT algorithms have a
trade-off problem between tracking accuracy and speed because fixed step size is used for perturbation.
If small fixed step size is used, tracking accuracy increases, but speed is slower. In this case, the basic
MPPT algorithms can fail to track the MPP under dynamic weather conditions. At large fixed step size,
tracking speed is faster, but tracking accuracy decreases, which causes a low MPPT efficiency.
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using variable step sizes were introduced [25–28]. In each adaptive MPPT algorithm, a variable step 
size is automatically adjusted according to the slope formula consisting of the variations (ΔPPV and 
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Figure 2. Principle of operation for the hill-climbing and perturb and observe (P&O) algorithms.

Table 1. Methodology of the hill-climbing and P&O algorithms.

Conditions Actions

(i) ∆PPV < 0 and ∆VPV < 0 Duty decrease
(ii) ∆PPV > 0 and ∆VPV > 0 Duty decrease
(iii) ∆PPV > 0 and ∆VPV < 0 Duty increase
(iv) ∆PPV < 0 and ∆VPV > 0 Duty increase
(v) ∆PPV = 0 and ∆VPV = 0 No action
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Figure 3. Principle of operation for the incremental conductance (INC) algorithm.

Table 2. Methodology of the INC algorithm.

Conditions Actions

(i) –∆IPV/∆VPV < IPV/VPV and ∆IPV > 0 Duty decrease
(ii) –∆IPV/∆VPV < IPV/VPV and ∆IPV < 0 Duty decrease
(iii) –∆IPV/∆VPV > IPV/VPV and ∆IPV > 0 Duty increase
(iv) –∆IPV/∆VPV > IPV/VPV and ∆IPV < 0 Duty increase
(v) –∆IPV/∆VPV = IPV/VPV and ∆IPV = 0 No action

To solve these problems, adaptive hill-climbing, adaptive P&O, and adaptive INC algorithms
using variable step sizes were introduced [25–28]. In each adaptive MPPT algorithm, a variable step
size is automatically adjusted according to the slope formula consisting of the variations (∆PPV and
∆VPV) and variable step coefficients (a, N, and M); a·∆PPV/∆VPV in [25,26], N·∆PPV/∆VPV in [27], and
M·∆PPV/∆VPV in [28]. The variable step size becomes high far from the MPP and low near the MPP.
Therefore, the adaptive MPPT algorithms can achieve fast tracking speed in the operating range far
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from the MPP and small oscillations in the operating range near the MPP. However, these algorithms
still have oscillations at the MPP because the variables (∆PPV and ∆VPV) in the slope formula are easily
affected by sensing and calculation errors, sensing noise, and ripples of VPV and IPV.

In [29–32], the MPPT algorithms with intelligent prediction were introduced. Some of the
algorithms used fuzzy logic to vary the step size [29–31]; the fuzzy logic method consists of fuzzification,
a fuzzy rule-based lookup table (Table 3), and defuzzification. First, the input variables (∆IPV and
∆PPV) are converted into fuzzy subsets such as negative big (NB), negative small (NS), zero (ZO),
positive small (PS), and positive big (PB) depending on ∆IPV and ∆PPV. Then, one fuzzy subset is
determined based on the rule-based lookup table and it provides a numeric step size. The MPPT
algorithm using fuzzy logic is effective in dealing with the nonlinear characteristics of the PV module
because the fuzzy logic divides the nonlinear system in the fuzzy subsets defined by the variables
(∆IPV and ∆PPV) and controls the nonlinearity of system using the rule base for each area (See Table 3).
Therefore, it can track the MPP well under dynamic weather conditions. However, compared to other
MPPT algorithms such as adaptive P&O and INC algorithms, it requires a digital signal processor
(DSP) with higher specification and also makes the user’s design more difficult because of its higher
complexity of algorithm and execution process [27,31]. This is a disadvantage for commercialization.
The other MPPT algorithm of [32] changed the step size by using a PID controller tuned by genetic
algorithm. First, the genetic algorithm evaluates a number of solutions known as chromosomes using a
fitness function, and later, genetic operators (selection, crossover, and mutation) are applied until a stop
criterion is satisfied (Figure 4). Based on this principle of the genetic algorithm, the PID coefficients
(Kp, Ki, and Kd) are determined to vary the step size. This MPPT algorithm also has good performance
under dynamic weather conditions, but it requires high computational capability and sophisticated
controllers due to its complexity.

Table 3. Rule-based lookup table based on the fuzzy logic.

∆IPV
∆PPV

NB NS ZO PS PB

NB NB NS NS ZO ZO
NS NS ZO ZO ZO PS
ZO ZO ZO ZO PS PS
PS ZO PS PS PS PB
PB PS PS PB PB PB
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In this paper, an advanced MPPT algorithm for DMPPT in the MLPEs is proposed, which improves
the tracking speed and accuracy under both steady and dynamic weather conditions. Similar to the
adaptive MPPT algorithms, the proposed MPPT algorithm automatically changes the variable step
size according to the slope of ∆PPV/∆VPV in the operating range far from the MPP. However, in the
operating range near the MPP, it accurately tracks the MPP using a small fixed step size. As a result,
the proposed MPPT algorithm achieves small oscillations at the MPP and a fast dynamic response.
In addition, compared with the MPPT algorithms with intelligent control such as fuzzy logic and PID,
the proposed MPPT algorithm can reduce the computational load of DSP because it is based on simple
P&O method. Therefore, it allows manufacturers to use cheap DSPs for the PV system.

The distributed PV system and proposed MPPT algorithm are described in Section 2, the
experimental results and discussion are presented in Section 3, and a conclusion is given in Section 4.

2. Distributed PV System and Proposed MPPT Algorithm

2.1. Distributed PV System

A distributed PV system with the MPPT algorithm is shown in Figure 5; the system consists of
one PV module and one MLPE. Due to the fact that the PV module converts sunlight into low DC
voltage, the MLPE requires a high voltage gain to convert low DC voltage into high AC voltage with
grid frequency. The MPPT algorithm controls the duty ratio (D) of the MLPE to operate at the MPP of
the PV module. To perform the MPPT algorithm, the voltage (VPV) and current (IPV) of the PV module
are used as input signals.
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2.1.1. PV Module

Based on the references [33,34], the equivalent circuit of the PV module can be derived as shown
in Figure 6. The PV module consists of several PV cells and two parasitic resistances (RS, RP), where
each PV cell has a combined structure of an ideal current source (IP) and a diode (DP). The current
(IPV) of the PV module can be derived as

IPV = IP − ID − IRp (1)

where IP = IP1 + IP2 · · · + IPn and ID = ID1 + ID2 · · · + IDn. Assuming all PV cells are the same, IP = nIP1

and ID = nID1 are obtained. Using the Shockley diode equation, ID is given by

ID = nI0
[
e(VPV+RSIPV)/(anSVt) − 1

]
(2)

where n is the number of PV cells connected in parallel, ns is the number of PV cells connected in series,
I0 is the saturation current of the diode, a is the diode ideality constant, and Vt = kT/q is the thermal
voltage of the diode with q = 1.602 × 10-19 C, k = 1.381 × 10−23 J/K, and T is an ambient temperature.
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Equation (6) shows that the characteristic curve of the PV module can be changed according to 
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Figure 6. Equivalent circuit of the PV module.

As the voltage across RP is given by VPV + RSIPV, the current of RP is obtained as

IRp =
VPV + RSIPV

RP
. (3)

Then, inserting (2) and (3) into (1) results in

IPV = IP − nI0
[
e(VPV+RSIPV)/(aVt) − 1

]
−

VPV + RSIPV

RP
. (4)

Using (4), the characteristic curves of the PV module are drawn as shown in Figure 7. Figure 7a
shows the current–voltage characteristic curve of the PV module and Figure 7b shows the power–voltage
characteristic curve. These curves have notable variables: short-circuit current (ISC), open-circuit
voltage (VOC), maximum power point (MPP), voltage at MPP (VMPP), current at MPP (IMPP), and
power at MPP (PMPP).
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The current of the PV cell depends on the solar irradiance and the temperature as follows;

IP = n[IP,STC + KI(T − Tn)]
G
Gn

(5)

where IP,STC is a light-generated current at the standard test condition (STC, 25◦C and 1000 W/m2),
KI is a temperature coefficient, Tn is a nominal temperature (25◦C), G is an irradiation level of the PV
module, and Gn is a nominal irradiance level (1000 W/m2). Using (5), Equation (4) can be represented as

IPV = n[IP,STC + KI(T − Tn)]
G
Gn
− nI0

[
e(VPV+RSIPV)/(aVt) − 1

]
−

VPV + RSIPV

RP
. (6)

Equation (6) shows that the characteristic curve of the PV module can be changed according to
the solar irradiance level and the temperature.

2.1.2. Module-Level Power Electronics (MLPE)

As shown in Figure 8, the MLPE is classified into a micro-inverter and a DC-optimizer.
The micro-inverter consists of a DC–DC converter with high voltage gain and a DC–AC inverter, and
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the DC-optimizer has only one DC–DC converter with high voltage gain. Therefore, the DC-optimizer
can cost less than the micro-inverter, but it needs a DC–AC inverter with high power capability. In the
micro-inverter and the DC-optimizer, one MPPT algorithm is applied to each DC–DC converter to
optimize each PV module. Therefore, the MPPT algorithms used in the MLPEs are called a module-level
MPPT, or DMPPT.
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2.2. Prospoed MPPT Algorithm

2.2.1. Principle of the Algorithm

The proposed MPPT algorithm uses two methods that can apply the optimal step size to each
operating range. In the operating range far from the MPP (non-MPP region), a variable step size
(=k1·S·Vstep) is automatically adjusted according to the slope of ∆PPV/∆VPV for fast dynamic response.
Here, k1 is a constant coefficient for variable step size, S is a slope coefficient calculated as |∆PPV/∆VPV|,
and Vstep is a fixed step size. In the operating range near the MPP (MPP region), a small fixed step size
(=k2·Vstep) is used to minimize the oscillations at the MPP, where k2 is a constant coefficient for small
fixed step size.

As shown in Figure 9, the proposed MPPT algorithm has two operating regions including the
MPP (PPV > β·PMPP) and non-MPP (PPV < β·PMPP) regions, where β is an MPP region coefficient.
The operating point starts at VPV = VOC and move with fast tracking speed toward the MPP
(VMPP, PMPP). The direction of the operating point is determined using ∆PPV and ∆VPV, where ∆
means the difference between the present and previous values. In addition, the present PPV is compared
with PMPP to search the MPP.
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2.2.2. Flow Chart

The flow chart of the proposed MPPT algorithm is shown in Figure 10, and it is described
as follows:

1. The present VPV and IPV of the PV module are used as the input signals for the proposed MPPT
algorithm. The variable “Flag_start” is preset to 1 for fast tracking speed at the starting point
of VPV = VOC, and the variable “Flag_reset” is preset to 1 for setting the PMPP and VMPP to the
present PPV and VPV, where PPV = VPV·IPV.

2. If Flag_start is 1, it is determined that the operating point is located at the starting point of
VPV = VOC. Therefore, the reference variable (Vref) is initially set to 1/VPV (=1/VOC) and the
operating point moves rapidly toward the MPP. After that, Flag_start is set to 0.

3. In this process, PPV is calculated as VPV·IPV, ∆PPV and ∆VPV are calculated using present
(PPV and VPV) and previous (PPV_b and VPV_b) values, and the slope coefficient (S) is calculated
as |∆PPV/∆VPV|.

4. If Flag_reset is 1, PMPP and VMPP are set to the present PPV and VPV, and then Flag_reset is set
to 0.

5. If the present PPV is higher than PMPP, it is determined that the MPP has not been found yet.
Therefore, the operating point is forced to keep moving toward the MPP, and PMPP and VMPP are
reset to the present PPV and VPV. To quickly find the MPP, the variable step size (=k1·S·Vstep) is
used in this process.

6. If the operating point is located in the MPP region, the small fixed step size (=k2·Vstep) is used to
track the MPP accurately.

7. If PPV is lower than the boundary value (β·PMPP) between the MPP and non-MPP regions, it is
determined that the operating point is located in non-MPP region. This process is usually
performed under dynamic weather conditions because the MPP changes under these conditions.
Therefore, Flag_reset is set to 1 to find a new MPP, and the variable step size (=k1·S·Vstep) is
automatically adjusted according to the slope of ∆PPV/∆VPV for a fast dynamic response.

8. Vref is limited by the maximum and minimum values (Vref,max and Vref,min) of Vref to prevent
malfunction of the DC–DC converter in the MLPEs.

9. Through the above processes, a new Vref is obtained. Vref is compared with the carrier signal
(Vcarrier) in the digital signal processor (DSP), and a new duty ratio (D) is generated to control the
DC–DC converter in the MLPE (Figure 11). In addition, the previous values (PPV_b and VPV_b)
are obtained at this time.

The above processes from (1) to (9) are repeated to operate the DC–DC converter at the MPP of
the PV module.
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2.2.3. Design Considerations

(1) aximum (Vref,max) and minimum (Vref,min) of Vref

The DC–DC converter in the MLPEs has an input voltage range of VPV,min ≤ VPV ≤ VPV,max due to
its limited voltage gain. Since Vref is calculated as 1/VPV, Vref,max and Vref,min can be defined as 1/VPV,min
and 1/VPV,max, respectively.

(2) Coefficient (k1) for variable step size and coefficient (k2) for small fixed step size
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The proposed MPPT algorithm uses a variable step size (=k1·S·Vstep) for fast dynamic response
in operating range far from the MPP and a small fixed step size (=k2·Vstep) for small oscillations in
operating range near the MPP, where k1, k2, and Vstep have constant values. Due to the fact that the
slope coefficient (S) is calculated as |∆PPV/∆VPV|, the variation of the reference variable (Vref) is given by

∣∣∣∆Vre f
∣∣∣ = k1

∣∣∣∣∣ ∆PPV

∆VPV

∣∣∣∣∣Vstep (7)

where ∆ means a difference between the present and previous values. The operating point of the
proposed MPPT algorithm reaches the MPP (VPV = VMPP, PPV = PMPP) after starting at the point
(VPV = VOC, PPV = 0), where VOC is an open-circuit voltage of the PV module. Considering only the
starting point and the MPP at the STC (25 ◦C and 1000 W/m2), the above equation can be represented
using Vref = 1/VPV as

1
VMPP,STC

−
1

VOC
= k1

PMPP,STC

VOC −VMPP,STC
Vstep (8)

where VMPP,STC and PMPP,STC are the voltage and power at the MPP under the STC (25 ◦C and
1000 W/m2).

Therefore, k1 can be obtained as

k1 =
(VOC −VMPP,STC)

2

VOCVMPP,STCVstepPMPP,STC
. (9)

The small step coefficient (k2) can be determined by considering the resolution of VPV in the
operating range near the MPP. If accuracy of the third decimal point of VPV is required in operating
range near the MPP, |∆Vref| = k2·Vstep can be represented using Vref = 1/VPV as

1
VMPP,STC

−
1

VMPP,STC + 0.001
= k2Vstep. (10)

Therefore, k2 is calculated as

k2 =
0.001

VMPP,STC(VMPP,STC + 0.001)Vstep
. (11)

(3) MPP region coefficient (β)

β·PMPP is a boundary value between the MPP and non-MPP regions. For fast dynamic response,
β should be close to one; however, if it is too close to one, oscillations can occur at the boundary of
PPV = β·PMPP. Therefore, β = 0.9~0.95 is recommended.

(4) Fixed step size (Vstep)

To optimize the proposed MPPT algorithm in a given DC–DC converter topology and operating
conditions, Vstep is determined after several experiments. Therefore, Vstep has a user-defined value,
and Vstep = 10 was used for the experiments in this paper.

3. Experimental Results and Discussion

3.1. Experimental Results

Figure 12 shows the equipment settings to evaluate the performances of the MPPT algorithms.
The output cable of the PV simulator (ETS60 from AMETEK Inc.) is connected to the input of the
DC–DC converter (boost half-bridge topology), and the LAN cable of the PV simulator is connected to
the notebook computer to set the characteristic curve (Figure 13) of the commercial 300-W PV module
(Q.PEAK-G4.1 300 from Hanwha Inc.). Here, according to the irradiance level (E) and the module
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temperature (T), the electrical characteristics of the PV module “Q.PEAK-G4.1 300” are listed in Table 4.
The output of the DC–DC converter is connected to the electronic load (DL1000H from NF Corp.) to
consume the energy, and the notebook computer is connected to the DSP (TMS320F28335 from Texas
Instruments Inc.) in the DC–DC converter by USB cable. The power meter (PW3336, from HIOKI Inc.)
is used to measure the voltage (VPV), current (IPV), and power (PPV) of the PV simulator. Based on the
sensed VPV and IPV, the DSP runs the MPPT algorithm and generates the gate signals (vgs1, vgs2) for
operating the DC–DC converter. To compare the dynamic and energy utilization performances of the
MPPT algorithms, four experiments were performed as follows.Energies 2019, 12, x FOR PEER REVIEW 11 of 18 
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Figure 13. Electrical characteristic curve of a 300 W PV module “Q.PEAK-G4.1 300” under the standard
test conditions (STC) of irradiance level of 1000 W/m2 and module temperature of 25 ◦C.

Table 4. Electrical characteristics of the PV module “Q.PEAK-G4.1 300” at different irradiance levels (E)
and module temperatures (T).

Conditions Open-Circuit
Voltage (VOC)

Short-Circuit
Current (ISC)

Voltage at
MPP (VMPP)

Current at
MPP (IMPP)

Power at
MPP (PMPP)

E = 1000 W/m2 and T = 25 ◦C 39.76 V 9.77 A 33.11 V 9.082 A 300.71 W

E = 100 W/m2 and T = 25 ◦C 35.78 V 1.086 A 29.8 V 1.009 A 30.07 W

E = 700 W/m2 and T = 15 ◦C 40.24 V 7.021 A 33.51 V 6.527 A 218.72 W

E = 700 W/m2 and T = 75 ◦C 33.66 V 6.502 A 28.04 V 6.044 A 169.47 W

First, the proposed MPPT algorithm and the conventional MPPT algorithms including a basic P&O
of [21], an adaptive P&O of [26], and an adaptive INC of [27] were tested at the STC of E = 1000 W/m2

and T = 25 ◦C. Figure 14 shows the measured VPV, IPV, and PPV waveforms of the PV module when
each MPPT algorithm is applied to a DC–DC converter. The basic P&O algorithm with a small fixed
step size tracked the maximum power point (MPP) slowly, but it had small oscillations after reaching
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the MPP (Figure 14a). When the fixed step size increased, the tracking speed of the basic P&O algorithm
increased as well, but the oscillations also increased (Figure 14b). To solve the problem of the fixed
step size, the adaptive P&O and adaptive INC algorithms used a variable step size proportional to
k1·∆PPV/∆VPV. However, these algorithms still had the oscillations at the MPP because the ∆PPV/∆VPV
is easily affected by sensing and calculation errors, sensing noise, and the ripples of VPV and IPV
(Figure 14c–f). If the coefficient k1 is smaller, the oscillations at the MPP decreases, but the tracking
speed is slower. To improve the problems of the previous MPPT algorithms mentioned above, the
proposed MPPT algorithm uses two methods that can apply the optimal step size to each operating
range. In the operating range near the MPP, a small fixed step size is used to minimize the oscillations at
the MPP, but in the operating range far from the MPP, a variable step size proportional to k1·∆PPV/∆VPV
is used to achieve fast tracking speed. The proposed MPPT algorithm can adjust the tracking speed
using k1 so that it can track the MPP quickly. As a result, the proposed MPPT algorithm tracked the
MPP with faster tracking speed and had smaller oscillations at the MPP when compared with the
conventional algorithms (Figure 14g,h).Energies 2019, 12, x FOR PEER REVIEW 12 of 18 
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Figure 14. Voltage (VPV), current (IPV), and power (PPV) waveforms of the PV module measured using
the basic P&O algorithm with (a) small fixed step size or (b) large fixed step size, using the adaptive
P&O algorithm with (c) low k1(=0.00002) or (d) high k1(=0.0001), using the adaptive INC algorithm
with (e) low k1(=0.00002) or (f) high k1(=0.0001), and using the proposed MPPT algorithm with (g) low
k1(=0.00002) and small fixed step size or (h) high k1(=0.0001) and small fixed step size.
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The MPPT efficiencies of the proposed and conventional MPPT algorithms were measured for two
minutes after reaching the MPP under the same conditions as in Figure 14 (Figure 15). When a large
fixed step size was applied, the basic P&O algorithm had the lowest average MPPT efficiency of 97.8%
due to the largest oscillations at the MPP (Figure 15a). The adaptive P&O and adaptive INC algorithms
with high k1(=0.0001) had higher average MPPT efficiencies of 98.5% and 98.7% than that of the basic
P&O algorithm because they used variable step sizes (Figure 15b,c). In addition, the adaptive P&O
and adaptive INC algorithms had higher average MPPT efficiencies of 99.1% and 98.9% than 98.7% of
the basic P&O algorithm when small fixed step size and low k1(=0.00002) were applied. The proposed
MPPT algorithm had the highest average MPPT efficiencies of 99.4% and 99.7% at low k1(=0.00002)
and high k1(=0.0001) because it had the smallest oscillations at the MPP (Figure 15d).
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high k1(=0.0001), and (d) the proposed MPPT algorithms with low k1(=0.00002) or high k1(=0.0001). 
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to 1000 W/m2, the basic P&O algorithm tracked the MPP within 20 s but had large oscillations (Figure 
16a). The adaptive P&O and adaptive INC algorithms also tracked the MPP within 20 s, but they still 
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Figure 15. Measured MPPT efficiencies of (a) the basic P&O with small or large fixe step sizes, (b) the
adaptive P&O with low k1(=0.00002) or high k1(=0.0001), (c) the adaptive INC with low k1(=0.00002) or
high k1(=0.0001), and (d) the proposed MPPT algorithms with low k1(=0.00002) or high k1(=0.0001).

The PPV waveforms were measured to compare the performances of the proposed and conventional
MPPT algorithms when irradiance level changed abruptly from 1000 W/m2 to 100 W/m2 or from
100 W/m2 to 1000 W/m2 at a constant temperature of 25 ◦C (Figure 16). In each MPPT algorithm,
the fixed step size and k1 were optimized by considering the trade-off between the tracking speed
and the oscillations under the given conditions. When irradiance level changed from 100 W/m2 to
1000 W/m2, the basic P&O algorithm tracked the MPP within 20 s but had large oscillations (Figure 16a).
The adaptive P&O and adaptive INC algorithms also tracked the MPP within 20 s, but they still had
oscillations (Figure 16b,c). As shown in Figure 14c–f, these algorithms could reduce the oscillations
using a small fixed step size or k1, but the tracking was slower. The proposed MPPT algorithm
had no trade-off between the tracking speed and the oscillations because it uses a variable step size
proportional to k1·∆PPV/∆VPV in the operating range far from the MPP and a small fixed step size in
the operating range near the MPP. Therefore, when the irradiance level changed from 100 W/m2 to
1000 W/m2, the proposed MPPT algorithm showed smaller oscillations and faster tracking speed than
other algorithms (Figure 16d).
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Figure 17 shows the PPV waveforms measured to compare the performances of the proposed and
conventional MPPT algorithms when the temperature changed abruptly from 15 ◦C to 75 ◦C or from
75 ◦C to 15 ◦C at a constant irradiance of 700 W/m2. In each MPPT algorithm, the fixed step size and k1

were optimized by considering the trade-off between the tracking speed and the oscillations under
the given conditions. The basic P&O algorithm slowly tracked the MPP due to the fixed step size
when the temperature changed from 75 ◦C to 15 ◦C (Figure 17a). The adaptive P&O and adaptive INC
algorithms tracked the MPP faster than the basic P&O, but they still had oscillations after reaching the
MPP (Figure 17b,c). The proposed MPPT algorithm not only had the fastest tracking speed but also had
the smallest oscillations after reaching the MPP because it had no trade-off between the tracking speed
and the oscillations (Figure 17d). The above results of the comparison experiments are summarized in
Table 5.

3.2. Discussion

Among many MPPT algorithms, the P&O method was widely used due to its simple principle and
ease of implementation. However, the basic P&O algorithm of [21] had a trade-off between tracking
speed and oscillations due to a fixed step size (Figure 14a,b). To solve this problem, the adaptive
P&O and adaptive INC algorithms using a variable step size were introduced [26,27]. These adaptive
MPPT algorithms can reduce the oscillations at the MPP because the variable step size is automatically
adjusted according to the slope (∆PPV/∆VPV) of the P–V curve (Figure 14c–f). However, the adaptive
MPPT algorithms still had oscillations after reaching the MPP because the calculated ∆PPV/∆VPV
is easily affected by sensing and calculation errors, sensing noise, and the ripples of VPV and IPV.
To improve the performances of the conventional MPPT algorithms mentioned above, the proposed
MPPT algorithm used a small fixed step size in operating range near the MPP and a variable step size
proportional to k1·∆PPV/∆VPV in operating range far from the MPP. As a result, the proposed MPPT
algorithm had higher MPPT efficiency than the conventional MPPT algorithms (Figure 15) and showed
faster tracking speed and smaller oscillations under dynamic weather conditions (Figures 16 and 17).
These advantages of the proposed MPPT algorithm enable the distributed PV system to operate at its
maximum performance, regardless of weather conditions.
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Table 5. Comparisons between the proposed and conventional MPPT algorithms.

Performance
Parameters

Basic P&O
Algorithm of [21]

Adaptive P&O
Algorithm of [26]

Adaptive INC
Algorithm of [27]

Proposed
Algorithm

Implementation
complexity simple medium medium medium

MPPT method
fixed step size

(k2Vstep) in whole
operating range

variable step size
(k1Vstep∆PPV/∆VPV)

in whole
operating range

variable step size
(k1Vstep∆PPV/∆VPV)

in whole
operating range

small fixed step
size (k2Vstep) near

the MPP,
variable step size

(k1Vstep∆PPV/∆VPV)
far from the MPP

MPPT efficiency 97.8% 98.5% 98.7% 99.7%

Performance at
rapid change
of irradiance

poor medium medium good

Performance at
rapid change

of temperature
poor medium medium good

Speed fast fast fast fast

Accuracy low medium medium high

4. Conclusions

In this paper, an advanced MPPT algorithm for distributed PV systems was proposed.
The proposed MPPT algorithm improved the MPPT accuracy and dynamic response of the conventional
MPPT algorithms by using two methods that can apply the optimal step size to each operating range.
In the operating range near the MPP, a small fixed step size is used to minimize the oscillations at the
MPP, but in the operating range far from the MPP, a variable step size proportional to k1·∆PPV/∆VPV is
used to achieve fast tracking speed. These advantages of the proposed MPPT algorithm were verified
by comparison with the conventional MPPT algorithms: a basic P&O algorithm with fixed step size,
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an adaptive P&O algorithm with variable step size, and an adaptive INC algorithm with a variable
step size. In the experimental results, the proposed MPPT algorithm had the highest MPPT efficiency
of 99.7% compared with the conventional MPPT algorithms. In addition, it showed the fastest tracking
speed and smallest oscillations under abruptly changing irradiance levels and temperature conditions.
Due to these advantages of the proposed MPPT algorithm, the PV systems using the proposed MPPT
algorithm can produce more electrical energy than that using the conventional MPPT algorithms.
Moreover, the proposed MPPT algorithm requires low computational load of DSP because the formulas
used for step size are simple, which is a good advantage in terms of user convenience and cost that
are important for commercialization. As a result, the proposed MPPT algorithm is well-suited for
distributed PV systems requiring high MPPT efficiency and fast dynamic response.
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