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Abstract: A proposal of the dynamic thermal rating (DTR) applied and optimized for low-loaded
power transformers equipped with on-line hot-spot (HS) measuring systems is presented in the paper.
The proposed method concerns the particular population of mid-voltage (MV) to high-voltage (HV)
transformers, a case study of the population of over 1500 units with low average load is analyzed.
Three representative real-life working units are selected for the method evaluation and verification.
Temperatures used for analysis were measured continuously within two years with 1 h steps. Data
from 2016 are used to train selected models based on various machine learning (ML) algorithms.
Data from 2017 are used to verify the trained models and to validate the method. Accuracy analysis
of all applied ML algorithms is discussed and compared to the conventional thermal model. As
a result, the best accuracy of the prediction of HS temperatures is yielded by a generalized linear
model (GLM) with mean prediction error below 0.71% for winding HS. The proposed method may
be implemented as a part of the technical assessment decision support systems and freely adopted
for other electrical power apparatus after relevant data are provided for the learning process and as
predictors for trained models.
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1. Introduction

Power transformers are one of the most important electric power devices in the electrical power
distribution system. To provide reliable and continuous power delivery, it is crucial to monitor and
analyze various parameters, that allow to indicate any abnormalities in operation of each transformer
unit, i.e., partial discharges [1–5], dissolved gas concentrations [6,7], vibrations [8], general insulation
condition [6,9], temperature [10–12] and a number of others [6]. In order to support a continuous
rating of transformers, various on-line monitoring systems (OMS) have been willingly implemented so
far. Those systems usually cooperate with technical assessment decision support systems (DSS) [13,14].
Artificial intelligent based algorithms, such as artificial neural networks, fuzzy logic, or machine
learning, have been willingly and successfully applied in DSS for the last decade [15–18]. Apart from
numerous other indicators, temperature is one of the fundamental parameters that deliver valuable
information about potential abnormalities in apparatus operation: Typically, if temperature is higher
than expected (or typical) it may be a symptom of some potential faults. Moreover, in the case of
transformers, raised temperature is also expected to be a serious threat for the condition of the insulation
system, as the aging process of the paper, as well as the oil, is mainly accelerated by the temperature.
The degradation rate of the celluloses mainly depends on the temperature and moisture, it is assumed
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that average temperature rise of transformer by each 6 ◦C results in doubling its relative aging rate,
in other words, its exploitation perspective is shortened twice [19,20]. There are various state-of-art
papers where that issue has been investigated [14,21,22]. The factors that most affect the transformer
HS temperature are generally its load and ambient temperature. The currently used diagnostic criteria
are based on the acceptable temperature rise of the HS and the top-oil: It is assumed that the average
temperature of the windings should not be higher than 65 ◦C above the ambient temperature, and the
HS temperature should not be higher than 78 ◦C from the ambient temperature, while the temperature
of the top-oil should not be more than 60 ◦C above the ambient temperature [23,24].

A number of methods for rating the temperature of transformers have been proposed so far, and
some of them are normalized, i.a., in [25,26]. Most of the methods are based on the thermodynamic
model of the transformer, where the HS temperature is calculated on the grounds of the numerical
model. Radakovic et al. presented in [27] a new method that allows to estimate the temperatures of
the active parts of the oil-filled transformers. The proposed method uses a detailed thermal-hydraulic
model that utilizes a number of parameters that characterize the analyzed unit, including unit design,
properties of the used materials, and temperatures in various points. As a result, the distribution of
temperatures within the transformer tank with relatively good accuracy and resolution is yielded by
the proposed method. In [11] Tenbohlen et al. evaluated the thermal behavior of the transformer
winding through the analysis of oil velocity in horizontal ducts of winding with direct oil cooling.
Susa et al. in [28] proposed a simple model for calculating the HS temperature, which uses the HS
to ambient gradient as the main input parameter. Various additional parameters, such as changes
of the oil viscosity, as well as winding losses due to temperature adjustments are investigated. The
results have been verified on real-life units and compared to models proposed by IEEE C57.91 annex
G. Feng et al. have noticed that the accuracy of modeling HS temperature significantly depends on
the HS factor, that, in most cases, is not known and need to be estimated experimentally. In [12], the
method for effective HS factor calculation, based on the International Electrotechnical Commission
(IEC) thermal model has been evaluated. Authors analyzed a number of scenarios including different
aging mechanisms and various paper samples with different rates of polymerization. An interesting
issue was also raised in [29], where a new model for prediction of the oil temperature in distribution
transformers was proposed. Authors included a solar radiation influence in their model and showed
that solar radiation may increase the oil temperature by almost 4 ◦C at rated power and should not be
omitted in calculations. Mikha-Beyranvand et al. in [30] proposed a novel model for prediction of the
temperature in transformers under unbalanced supply voltage. Authors noticed that conventional
models are not optimized for such scenarios and evaluated their own solution based on the numerical
simulations that considered selected galvanic parts of the transformer as heating sources with their
thermal power related to losses of each part.

Some papers that deal with the dynamic thermal ratings (DTR) for other devices should also be
mentioned here. In [31] authors propose an adaptive model of soil for DTR of underground cables.
Many papers deal with DTR for overhead power lines. Kim et al. in [32] proposed a method for
dynamic rating of the old transmission lines that allows to increase its ampacity rate without the
necessity of modernization or adjusting voltage of the line. Greenwood et al. in [33] compared DTR for
overhead lines used in the USA and UK. In [34] authors introduced methods for estimating probabilistic
DTR dedicated for overhead lines that are based on the weather data. The methods may be used by a
system operator within a selected risk policy with respect to the probability of a rating being exceeded.

As it has been presented above, most of the methods for thermal rating of transformers assume
that the HS temperature is unknown. Such an attitude is redundant when temperature OMS is
installed on the unit, the HS temperature is then directly measured (known). Furthermore, most of the
research deals with relatively high load profiles (usually around 100% and above), where expected
HS temperatures are in the range of the highest allowed values proposed by the contemporary load
guides [28,35,36]. Most of the current models are optimized for maximum loads, where the highest HS
temperature is expected. Thus, the open issue is how (and if) to assess the temperature in low-loaded
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units, where expected HS temperatures are far below the commonly allowed values, and probably
never reach them. Thus, it is possible that temperature is not proper but it is still below any of the
allowed boundaries, and as a result, symptoms of a potential fault may be omitted? The aim of
the paper is to propose the method for DTR of the low-loaded power transformers equipped with
temperature OMS, where expected HS temperatures are relatively low. The proposed method has been
already implemented in the DSS designed for the analyzed fleet.

2. Case Study

In this research, a characteristic population of mid-power HV/MV transformers is analyzed. The
fleet consists of over 1500 units. The age structure of the population (Figure 1) shows that approx. 60%
of the units are older than 30 years. Typical rated voltage levels are 115/16.5 kV and rated power span
is from 10 to 30 MVA. Depending on the rated power, typical load losses span between approx. 60 and
130 kW, while no-load losses span between approx. 10 and 25 kW. What is the most significant, typical
relative load of the units during normal exploitation conditions usually is not higher than 40%. It is
mostly because a common substation configuration is a parallel setup of the transformers and each unit
is designed to temporally take the load from both transformers. All units are filled with mineral oil and
generally equipped with oil-natural air-natural (ON-AN) or oil-natural air-forced (ON-AF) cooling
systems. Three representative units were selected from the analyzed fleet for further investigation: 25
MVA 2-winding unit with one of the highest loads in the population, 115/16.5 kV, 108.7 kW of load
losses and 10.8 kW of no-load losses and ON-AN cooling system (Tr1); 25 MVA 2-winding unit with an
average load in the population, 115/16.5 kV, 126.4 kW of load losses and 16.7 kW of no-load losses and
ON-AN cooling system (Tr2); 25 MVA 3-winding unit which represents an average load in population,
115/16.5/6.6 kV, 128.7 kW of load losses and 21.1 kW of no-load losses and ON-AF cooling system,
working in an indoor substation (Tr3).

Figure 1. Age structure of the analyzed transformers population (status as of the end of 2015).

All of the selected units were equipped with fiber optic sensors for on-line temperature monitoring:
One sensor per HS of each coil and one for core HS (as a result: 10 sensors in 3-winding units and
7 sensors in 2-winding units) and then data were stored within a two-year period (2016–2017) in
1 h steps for further analysis. Additionally, top oil temperature was registered as well as external
ambient temperature and the relative load of each phase of the transformers, also in 1 h steps. In
Figures 2–4 some representative temperature runs that illustrate the dependencies between load,
ambient temperature, and HS temperatures in the selected units have been showed. Generally, a quite
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constant load may be noted regarding all units, with characteristic 24-hour fluctuations. Furthermore,
significant, tight relation between HS temperatures and ambient temperature is also observed, more
detailed correlation analysis of the HS temperatures of those units has been presented in [10].

Figure 2. Exemplary temperature and load variability of the Tr1.

Figure 3. Exemplary temperature and load variability of the Tr2.
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Figure 4. Exemplary temperature and load variability of the Tr3.

Moreover, representative runs of the temperature and load regarding the Tr3 are shown in Figure 4.
An interesting period may be observed between approx. November 2016 and February 2017, where
the average load was around 10%. This is because the transformer works in a substation that powers
the heating plant equipped with a gas turbine, thus in the winter period, when a high heat generation
is needed, the turbine generates power that covers almost all electrical power needs of the plant.

3. Overview of the Proposed Method

In general, the proposed method for interpreting the results of the temperature measurement of
winding HS is based on modeling the expected temperature of each from measured HS and comparing
the expected temperature of the modeled point with the value coming from a particular sensor
(measured), relative temperature criterion. The idea is shown schematically in Figure 5. Therefore, the
assumption of the method is that rated transformer is equipped with the HS temperature OMS. The
crucial issue is that, in the proposed method, temperature value being the model’s response is treated
as a reference value, while the value coming from the actual measurement is validated by the reference
one. Such “inversed” situation is possible due to almost perfect prediction accuracy of the applied
model, which is discussed more-in-depth in Section 4. On the grounds of the analysis of the historical
data and specification of the particular unit (or population), some relative range that is to indicate
if the HS measured temperature is normal or abnormal needs to be proposed. In the analyzed case,
±10% of the reference value is proposed as a boundary of the normal thermal state. It means that if the
measured temperature τn from the given sensor n is different from the modeled value Tn by not more
than 10%, then the thermal state of the transformer will be considered as normal, and otherwise, as
abnormal and requiring more detailed analysis (e.g., comparison to other diagnostic measurements by
the external technical condition assessment system). According to the proposed approach, it is possible
not only to identify overheating (temperature above expected) but also other anomalies related to the
operation of the cooling system, as well as the temperature measurement system itself.
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Figure 5. Block diagram of the proposed method for dynamic temperature rating for power transformers.

Machine learning algorithms have been used for modeling the HS temperatures, detailed analysis
of the applied algorithms is introduced in Section 4. Learning process of each of the models was the
initial stage, for which historical data were used. At the learning process of the models, both the
predictor values and the output values were known. The predictors were all of the measurement data
(hotspot temperatures, load, ambient temperature, top oil temperature) aside from the one particular
modeled temperature, which was the output value of the model. Hence, for the 2-winding transformer,
six models were created: three for LV coils HS, three for HV coils HS, and for the 3-winding transformer
three more models were applied for the MV coils HS, that is, there were nine of them.

The proposed method does not constrict the conventional thermal rating based on the maximum
allowed HS temperature (Tmax), absolute temperature criterion. It is possible and highly recommended
to apply them simultaneously. Thus, it is proposed to use the second criterion, the criterion of
cumulative minimum time t0 of the impact of Tmax within a selected time interval ∆t (Figure 6). Both
Tmax and t0 should be specified with particular consideration of the working conditions of the analyzed
unit or population of the transformers. In the analyzed case, proposed values are Tmax = 85 ◦C, t0 =

200 h and ∆t = 1 year, chosen on the grounds of the historical data analysis and population load profile
and age. The criterion of the minimum cumulative time t0 allows to eliminate the situation in which
the thermal state of a given unit would be considered as abnormal when a single, short-term exceeding
of the temperature limit Tmax appears. It also allows to store the whole historical data of the exceeded
temperatures which may be recalled and analyzed at any time. According to this criterion, an absolute
temperature Tmax may also be freely replaced with temperature raise ∆Tmax above the ambient, which
is more often used according to the current load guides. The only thing that needs to be also adjusted
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in the algorithm is the allowed temperature raise limit (it should be fitted to the particular fleet on the
grounds of the historical data analysis).

Figure 6. Schema of the idea of cumulative minimum time of the temperature impact.

4. Applied Models

The analyzed problem was a typical nonlinear regression. In this section, results of application
and testing of four different algorithms of ML for prediction of the HS temperatures are presented:
Binary regression tree (BRT), generalized linear model (GLM), Gaussian process regression (GPR),
and support vector machine (SVM). These are typical models that are freely available in almost every
simulation software library, thus the presented experiments may be easily reproduced. The short
descriptions of each algorithm are provided in the relevant sections, additionally, some key parameters
of each model are described, and finally, exemplary results of the prediction of HS temperatures on the
example of the selected real-life transformer are also presented. Moreover, the conventional model for
HS estimation proposed by [26] has also been evaluated and optimized for the selected unit.

4.1. Binary Regression Tree

One of the key aspects of the BRT is the procedure of splitting node t. Weighed mean-square error
(MSE) of the responses in node t is calculated by BRT using (1)

εt =
∑
j∈T

w j ·
(
y j − yt

)2
, (1)

where wj is the weight of observation j, and T is the set of all observation indices in node t. Pruning
was applied only to the leaves and was based on the MSE. This procedure involves combining leaves
from the same parent node whose MSE is not higher than the sum of MSE of its two leaves. In the
presented case of the prediction process, a minimum number of branch node observations was set to 10.
In order to achieve the best split predictor at particular nodes, a standard classification and regression
trees (CART) algorithm was applied. Fold value in a cross-validation process was set to 10 [37].

4.2. Generalized Linear Model

GLM solves a nonlinear problem using linear methods. It may be explained that the nonlinear
problem is divided into some small linear problems that are solved using linear models. Some general
properties of the linear models are: For every set of input values, the output comes from a normal
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distribution with the mean µ, a vector of coefficients b determines a linear combination Xb of the
input values X, the model may be defined as µ = Xb. GLM uses a generalization procedure on
those characteristics, and finally, they may be described as: For every set of input values, the output
distribution may be one of the following: Normal, gamma, Poisson, binomial, or inverse Gaussian,
with parameters such as a mean µ, a coefficient vector b that describes a linear combination Xb of the
input values X, a link function f that describes the model as f (µ) = Xb. Regarding the GLM model in
the presented research, the distribution of the output variable was set to normal. The next predefined
parameter was a link function. This function, as mentioned above, shows the dependency f (µ) =

Xb between the mean output value µ and the linear combination of input values X·b. In that case, a
canonical link function in the form presented below was selected: f (µ) = µ, and its relevant inverse
function: µ = Xb, [38].

4.3. Gaussian Process Regression

GPR models are nonparametric kernel-based probabilistic models. GPR is based on the estimation
of several parameters that describe the data: A covariance function k(xi,xj|θ) that is parameterized
regarding the kernel parameters defined in vector θ, noise variance σ2, coefficient vector β that contains
fixed fundamental functions. Kernel parameters are defined as a vector that contains starting values
regarding the standard deviation σf of the input data and the relevant length scales σl. A vector of
unbounded starting parameter values η0is created by GPR within the optimization process, on the
grounds of the starting values regarding the noise standard deviation and the kernel parameters. GPR
model analytically computes the explicit fundamental coefficients β, using approximated values of
θ and σ2. As a result, β is not presented in the η0 vector during the initialization of the numerical
optimization by GPR. In the presented application, subset of data points approximation was set as a
method for estimation of parameters for the GPR model. Explicit basis in the GPR model was set to
constant, which is H = 1 (n-by-1 vector of ones, where n is the number of observations). As n is the
number of samples, the expression H,·β is supplemented to the model by the fundamental function,
where H is the fundamental matrix and β is a p-by-1 vector of fundamental coefficients. Starting value
regarding the noise standard deviation σ of the GPR model was set to (2)

σ = STD(y)/
√

2, (2)

where STD is a standard deviation of the response data y. Quadratic exponential function was set as a
kernel covariance function. The method for computing inter-point distances DST (between x and y) to
evaluate built-in kernel functions has been defined as (3)

DST = x2 + y2
− 2 · x · y. (3)

The method used to make predictions from a GPR was set as an exact Gaussian process regression
method. The maximum number of block coordinate descent method iterations was limited to 106.
Dense, symmetric, and based on the first rank, quasi-Newton estimation to the Hessian was assigned
as an optimizer to use for parameter estimation. Fold value in cross-validation was set to 10, as in
other models [39].

4.4. Support Vector Machine

The applied algorithm uses a low or moderate dimensional input data set to learn or cross-validate
an SVM regression model. SVM allows to trace the input data applying kernel functions and uses
sequential minimal optimization (SMO), iterative single data algorithm (ISDA), or L1 soft-margin
minimization by using nonlinear computation for optimization. The applied SVM regression model
used 10-fold cross-validation and was specified to standardize the predictors. For example, if G(xj,xk)
is an element (j,k) of the Gram matrix, where xj and xk are p-dimensional vectors referring to the
observations j and k in X, then training kernel may be specified as the linear kernel (4)
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G
(
x j, xk

)
= x′jxk. (4)

The algorithm centers and scales every column of the input data by using the weighted mean
of each column and standard deviation, respectively. The model was trained using the standardized
predictor matrix, but unstandardized data were stored in the model data X. The maximal number of
numerical optimization iterations was set to 106. The SMO was set as an optimization routine for the
SVM model [40].

4.5. IEC 60076-7 Model

The simple conventional model for calculating the expected HS temperature, proposed by [26]
and used in the current study is defined by Equation (5)

THS = Tamb + TOR ·

(
1 + RK2

1 + R

)x

+ h · g ·Ky, (5)

where: THS is modeled HS temperature, Tamb is temporary ambient temperature, TOR is top of winding
oil temperature rise when K = 1, K is temporary relative load, R is the loss ratio of the unit, h is the HS
ratio, g is the mean winding to top oil temperature gradient, while x and y are model parameters (the x
exponent is related to oil temperature rise due to total losses, and y exponent is related to winding
temperature rise due to load currents).

As one may notice, only two inputs of the model are time-dependent: Tamb and K, and they need
to be measured. The rest of the inputs are constant and come either from the heat-run tests (TOR, g, R),
are defined experimentally, or are proposed by [26] (x, y, h). In this case, all of the parameters were
personalized: It means that they come from the heat-run test of the particular unit (TOR, g, R) and
the rest of them (x, y, h) were optimized for the minimum of the mean prediction error of the model.
Moreover, all of the model input parameters were also distinguished between HV and LV windings
for better prediction results. The applied simple objective function that was used for optimization is
defined in (6)

OF = min(MPE), (6)

where MPE = f (h,x,y) and is defined by Equation (7). Initial values of H, x and y were assigned as
1.3, 0.8, and 1.3, respectively, according to [26] recommendation for medium and large units with ON
cooling system. The applied optimization method uses the Nelder–Mead simplex algorithm described
in [41]. Table 1 presents some selected final parameters of the IEC model applied for Tr1.

Table 1. Input parameters of the IEC model for the exemplary unit (Tr1).

Winding h, (-) x, (-) y, (-) TOR, (K) g, (K) R, (-)

HV 2.47 1

1.3 2
0.93 1

0.8 2
0.75 1

1.3 2 51 3 11.8 3

20 2 10.1 3

6 2

LV 1.43 1

1.3 2
0.90 1

0.8 2
0.74 1

1.3 2 45 3 17.6 3

20 2

1 After optimization; 2 Recommended by IEC 60076-7; 3 Data from heat-run test.

5. Results and Discussion

5.1. Results of the Prediction Process

Based on the learning data from 2016, all models were used to predict the HS temperatures in
the selected unit in 2017. As results, if presented in the form of the plots for the whole year period,
are not legible, only selected one-week periods are presented in this section. In order to provide an
adequate assessment of the results, four scenarios are presented: Modeling of the HS temperature
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of HV and LV winding in the winter season (the lowest ambient temperatures) and in the summer
season (the highest ambient temperatures), respectively. Exemplary results of HS modeling in winter
season for all of the evaluated models are presented in Figure 7. Relatively good fit may be observed
according to all of the applied models. It is characteristic that all of the ML-based models and HS
measured curves overlap each other, due to almost perfect fit. In order to better identification of the
curves and models, accuracy error plots have been additionally presented (Figure 7b,d). ML-based
algorithms yielded almost perfect fit, while in the case of the IEC model, some slight shift may be
observed, especially around the local maximums. What is characteristic, a narrow local peak that
occurs at the end of 26 January is also reproduced in a relevant way not only by ML models but also by
the IEC model. The peak was related to a temporary raise of load, while the unit took load from a
twin unit (some maintenance works on the second unit). Relative load in the peak was 0.78, while
two hours before and after the load was about 0.35, so the load raised twice. At the very same time,
the ambient temperature was almost constant, around –1 ◦C ± 1 ◦C. This is an important observation
because it confirms that analyzed ML-based models may predict HS temperatures with good accuracy,
not only in quite low load conditions but also in case of some temporary high load conditions, which is
usually the most complicated scenario for modeling.

Figure 7. Cont.
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Figure 7. Exemplary results of HS modeling in Tr1 for all models. Winter: (a) temperature runs of HV
winding, (b) errors of models for HV winding, (c) temperature runs of LV winding, (d) errors of models
for LV winding.

Next, scenarios describing the effectiveness of the applied models are illustrated in Figure 8, where
the results of HS prediction in the summer season are presented. All of the models delivered more
accurate results than in wintertime (which may be easily traced in error plots), and again, it is only the
IEC model that some significant imperfections of fit are related to.
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Figure 8. Cont.
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Figure 8. Exemplary results of HS modeling in Tr1 for all models. Summer: (a) temperature runs of
HV winding, (b) errors of models for HV winding, (c) temperature runs of LV winding, (d) errors of
models for LV winding.

5.2. Optimal Model Selection

As analyzed in the previous sections, all applied algorithms gave relatively good prediction
results in terms of the fit of the predicted to expected curves. However, it is essential to point the best
one, that is optimal for winding HS temperature modeling. Table 1 shows accuracy analysis results
based on the error analysis. Since the expected values were known (they were measured directly for
further model verification) the proposed method for model validation was based on the evaluation of
the relative deviation of the predicted values from the expected values. That parameter was called
relative mean prediction error (MPE) and was described by (5)

MPE =

∑n
i=1

(
|y′i−yi|

yi

)
n

· 100% (7)

where yi is a i-th expected (measured) temperature, y’i is the i-th predicted (modeled) temperature,
and n is the number of the prediction points. MPE gives a good survey of the accuracy of the model
within the whole analyzed period, but it does not deliver information about particular deviations of
the predicted values against the expected. Therefore, the MPE is to be complemented by two other
parameters that inform about the max underestimation relative error (MUE) and max overestimation
relative error (MOE) within the whole period, defined as (6) and (7) respectively:

MUE = max
(
−(y′i − yi)

yi

)
· 100% (8)

and

MOE = max
(

y′i − yi)

yi

)
· 100%. (9)

A comparison of quantitative accuracy of all of the applied models is presented in Table 2.
Analyzing the results, it is characteristic that winding HS temperatures in the case of ML-based models
were predicted with much higher accuracy than regarding the IEC model. MPE of the winding
temperature prediction is, in all cases, based on ML not higher than 0.71%, when in the case of IEC, it
is 4.8%. Such results may be interpreted as very good, since, e.g., for the average HS temperature of 80
◦C, the absolute mean error does not exceed 0.6 ◦C, regarding the ML models, and 3.8 ◦C, regarding
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the IEC model. However, some particular errors of the temporary temperature prediction that may
appear within the whole analyzed period should be indicated.

Table 2. Accuracy analysis of the applied models.

Model MPE, (%) MUE, (%) MOE, (%)

IEC 4.8
(1.95 ◦C) 1

35
(16.5 ◦C) 1 62

(19.6 ◦C) 1

SVM 0.71
(0.37 ◦C) 1

4.5
(0.7 ◦C) 1 10.5

(1.57 ◦C) 1

GPR 0.48
(0.37 ◦C) 1

3.18
(0.43 ◦C) 1 8.76

(1.44 ◦C) 1

GLM 0.44
(0.39 ◦C) 1

5.4
(0.45 ◦C) 1 5.6

(1,05 ◦C) 1

BRT 0.68
(0.51 ◦C) 1

17.5
(2.9 ◦C) 1 40.5

(12.5 ◦C) 1

1 Absolute values of particular errors.

When looking at the MUE results, it is clear that in the case of some ML algorithms, the max error
(of one particular temperature prediction, not averaged over the whole period) has reached over 17%
regarding the GPR. It means that, in the worst case, the predicted temperature was 17% below the real
measured one. A much worse situation is in the case of the IEC model, where MUE has reached 35%.
MOE results have shown that all of the investigated ML algorithms are rather prone to overestimation
than underestimation of the predicted values, the maximum value of MOE has reached 40% for BRT.
Again, in the case of the IEC model, the results of MOE (62%) are worse than in the case of ML models.

The explanation of such results is that ML-based models are strictly optimized for this particular
unit thanks to the learning process that used complete representative (real) data from a wide (one year)
period. On the other hand, in the case of the IEC model, it is characteristic that it is rather designed
for full-load (or even over-load) applications than for low-loaded units. The accuracy of the heat-run
test data is also a crucial issue. Since measured data are valid during the factory tests, they may
significantly vary during the exploitation process, which may result in evident errors in temperature
modeling using those parameters. Thus, in order to minimize the IEC model error, all of its inputs
should be validated (also those from the heat-run tests) in relevant time steps. Taking into account all
of the results, the GLM model is proposed to be the most accurate and optimal.

6. Conclusions

In this paper, a method for dynamic thermal rating of power transformers based on the ML
algorithms has been proposed. The method is dedicated to low-loaded units equipped with temperature
OMS and has been already implemented in the DSS designed for the analyzed fleet. An exemplary
case study of the low-loaded transformer fleet has been investigated and used for simulations and
verification of the announced method, on an example of a particular unit. Furthermore, four different
ML models based on different algorithms have been trained on the historical data and tested on the
prediction of the relevant HS temperatures. The achieved results have been compared to conventional
IEC 60076-7 model, that was optimized for the analyzed unit. As a result, high accuracy of the applied
ML models has been confirmed and GLM model has been selected as an optimal solution. The most
significant contributions of the presented paper are, i.e.,

• High accuracy of the HS temperature prediction using the proposed method has been confirmed,
• All ML algorithms have yielded significantly higher accuracy than the IEC model, as IEC model is

basically designed for full load profiles rather than low ones,
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• All of the ML-based models have not missed a temporary rise of the HS temperature due to rapid
load raise, thus the utility of the method has been confirmed,

• The method delivers personalized rating criteria for each transformer unit or group of units (if
similar construction and working conditions),

• It allows detection not only of the overheating but also of the cooling system failures or temperature
OMS failures,

• Easy to apply in DSS (condition assessment systems) as an additional indicator in the transformer
condition rating process,

• Supports an open architecture: It is possible to add some other predictors if they are crucial
regarding the thermal condition of the particular unit or fleet (e.g., harmonic content, some
information from the cooling system, pumps, other environmental data),

• May be easily adopted for other apparatus than transformers, only the relevant learning data set
as well as the predictor data set need to be provided,

• Self-learning may be applied if needed (either automatic or manual): After the new data are added
to the learning database (historical data), a learning process may be initialized, and a new model
replaces the old one.

Some weaknesses of the proposed method should be mentioned as well. Temperature itself does
not bring any crucial information about the overall technical condition of the apparatus. Thus, it should
be used as one of the various parameters that are analyzed together in order to complete technical
condition assessment of the transformer. Another crucial issue related to the proposed method is the
quality of the learning data set, the method is very prone to the incomplete or invalid data used in the
learning process. Therefore, before each learning process, data should be validated and rejected if some
abnormalities are detected. Nevertheless, the proposed method gives an alternative solution for other
contemporary thermal ratings and may be valuable complementation of the condition assessment
process of the power transformers as well as other apparatus.
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