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Abstract: The present work proposes an integrated methodology for rule extraction in a vacuum
tank degasser (VTD) for decision-making purposes. An extreme learning machine (ELM) algorithm
is established for a three-class classification problem according to an end temperature of liquid
steel that is higher than its operating restriction, within the operation restriction and lower than the
operating restriction. Based on these black-box model results, an integrated three-step approach for
rule extraction is constructed to interpret the understandability of the proposed ELM classifier. First,
the irrelevant attributes are pruned without decreasing the classification accuracy. Second, fuzzy
rules are generated in the form of discrete input attributes and the target classification. Last but not
the least, the rules are refined by generating rules with continuous attributes. The novelty of the
proposed rule extraction approach lies in the generation of rules using the discrete and continuous
attributes at different stages. The proposed method is analyzed and validated on actual production
data derived from a No.2 steelmaking workshop in Baosteel. The experimental results revealed that
the extracted rules are effective for the VTD system in classifying the end temperature of liquid steel
into high, normal, and low ranges. In addition, much fewer input attributes are needed to implement
the rules for the manufacturing process of VTD. The extracted rules serve explicit instructions for
decision-making for the VTD operators.

Keywords: vacuum tank degasser; rule extraction; extreme learning machine; classification and
regression trees

1. Introduction

Over the past decades the new materials market has become rapidly competitive. In modern
steelmaking, which involves the refining of hot metal in ladles or furnaces and solidifying by continuous
casters (CC), clean steels with high quality have been steadily growing because of steel’s mechanical
properties have become more and more important for defending steel products against newer
competitive materials. In order to produce a satisfactory clean steel with low impurity contents, such
as sulfur, phosphorus, non-metallic inclusions, hydrogen, and nitrogen, it is necessary to accurately
control the composition and temperature of liquid steel. Steelmakers are urged to improve operating
conditions throughout the steelmaking processes to obtain high-purity steel. In practice, the vacuum
tank degasser (VTD) is widely used as a secondary steelmaking process to produce steel products with
low contents of carbon, hydrogen, and nitrogen. As is schematically illustrated in Figure 1, a refractory
lined ladle is installed in a chamber where the ascending gas is pumped out, leading to a very low

Energies 2019, 12, 3535; doi:10.3390/en12183535 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0001-8085-0598
https://orcid.org/0000-0002-7250-9637
http://dx.doi.org/10.3390/en12183535
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/18/3535?type=check_update&version=4


Energies 2019, 12, 3535 2 of 15

operating pressure inside the chamber (i.e., 67 Pa). The gas of argon (Ar) is blown into the ladle
through the special porous plug(s) or nozzle(s) installed at the bottom of the ladle, and fine bubbles
rise from the bottom and disperse into the molten metal. As the argon bubbles rise through the plume,
it picks up nitrogen and hydrogen dissolved in the molten metal and leaves the gases maintained
at low pressure at the top. In this VTD process, the dissolved impurities in the molten metal were
removed partially through two chemical reactions, 2[H] = H2 and 2[N] = N2 (cf. Figure 1).
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Figure 1. Schematic representation of a VTD.

The aim of VTD system is to obtain liquid steel with the desired composition and temperature.
An approach of accelerating the control level of liquid steel in VTD is to forecast the temperature
accurately. As the most critical step in the secondary steelmaking process, the VTD has been extensively
studied through using various approaches with the goal of better understanding the cause-effect
relationships of the vacuum degassing process. Several mathematical models of VTD refining have
been developed [1–3]. These models were formulated on the basis of differential equations to describe
chemical/physical reactions during the production process in the ladle. These mathematical models
are local models, dehydrogenation [2] or denitrogenation [3], which depict only part of the property, so
it is extremely hard to forecast the temperature of liquid steel using these kinds of white-box models.

An artificial neural network (ANN) is an information process mechanism and can be applied to
define the cause-effect relationships between process input parameters and outputs that ‘learn’ directly
from historical data. ANNs have been widely applied in the steelmaking process. Gajic et al. [4],
for example, have developed the energy consumption model of an electric arc furnace (EAF) based
on the feedforward ANNs. Temperature prediction models [5,6] for EAF were established using the
neural networks. Rajesh et al. [7] employed feedforward neural networks to predict the intermediate
stopping temperature and end blow oxygen in the LD converter steel making process. Wang et al. [8]
constructed a molten steel temperature prediction model in a ladle furnace by taking the general
regression neural networks as a predictor in their ensemble method. The main feature that makes
the neural nets a suitable approach for predicting the temperature drop of liquid steel in VTD is that
they are non-linear regression algorithms and can model high dimensional systems. These black-box
models offer alternatives to conventional concepts of knowledge representation to solve the prediction
problem for an industrial production process system. Volterra polynomial kernel regression (VPKR) is
a method to approximate a broad range of input-output maps from sparse and noisy data, which is a
central theme in machine learning. The classic Frechét work [9] made contributions to the research
topic due to their solid mathematical theory. Moreover, data-driven models based on the VPKR have
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been found to be useful for nonlinear dynamic systems in industrial applications [10,11]. To address
the control problem, the issue could be reduced to solve the nonlinear Volterra integral equations,
which have been well studied in heat and power engineering (readers may refer to monograph [12]).

However, in practical manufacturing process applications, black-box prediction is no longer
satisfactory. Rule extraction is of vital importance to interpret the understandability of black-box
models [13–16]. The main advantage of rule extraction is that operating decisions can be made for
the industry process to promote the controlling level and further improve energy efficiency. Various
rule extraction methods have been studied in different application issues. Gao et al. [17], for instance,
constructed the rules extraction from a fuzzy-based SVM model for the blast furnace system which
used classification and regression trees (CART). Chakraborty et al. [18] proposed a reverse engineering
recursive rule extraction (Re-RX) algorithm, which suits for both discrete and continuous attributes
in the application issues. Zhou et al. [19] developed a rule extraction mechanism by clustering the
process instance data for the manufacturing process design.

In the present work, we propose an integrated method for rule extraction from the VTD black-box
model. First is checking the data and eliminating the irrelevant attributes, so not to decrease the
model’s expected classification accuracy. Second, fuzzy rules are generated in the form of discrete
input attributes (if present) and the target classification. Last but not the least, the rules are refined by
generating rules with the continuous attributes (if present). The novelty of the proposed rule extraction
approach lies in the generation of rules using the discrete and continuous attributes at different stages.
The paper is organized as follows: The extreme learning machine (ELM) network and CART algorithm
are briefly presented in the second section. In the third section, the ELM based VTD multiclassifier is
established for the end temperature of liquid steel. Section 4 provides the proposed rule extraction
method based on the ELM classifier and the rule extraction is shown for the manufacturing process.
Finally, conclusions are drawn in the last section.

2. Brief of Related Soft Computing Algorithms

2.1. Extreme Learning Machine

ELM [20] is an efficient learning algorithm for single-hidden layer feedforward neural networks
(SLFNs). Based on the least squares method, the ELM algorithm could take place without iterative
tuning and reach the globally optimum solution. The output weights between hidden layer and output
layer are determined analytically during the learning process [21].

Given a training data set comprising N observations, {xn}, where n = 1, . . . N, together with
corresponding target values, {yn}, the purpose is to predict the value of y for a new value of x. The
output function of ELM with L hidden nodes is mathematically represented as:

L∑
i=1

βigi
(
x j

)
=

L∑
i=1

βiG
(
ai, bi, x j

)
= ŷ j, j = 1, 2, . . . N (1)

where βi is the weight vector between the hidden and output layers, ai is the weight vector between
the input and hidden layers, bi is the bias of the ith hidden node, G(ai, bi, xj) is the output function of
the ith hidden node, and ŷj is the output predictive value.

According to the ELM theory, the main idea of ELM is to predict the training set with zero error,
i.e.,

∑N
j=1 ‖ŷ j − y j‖ = 0, which implies that there exists (ai, bi) and βi satisfies the following:

L∑
i=1

βiG
(
ai, bi, x j

)
= y j. (2)
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Equation (2) can be rewritten as
Hβ = Y, (3)

where

H =


h(x1)

...
h(xN)

 =


G(a1, b1, x1) · · · G(aL, bL, x1)
...

...
...

G(a1, b1, xN) · · · G(aL, bL, xN)


N×L

, (4)

β =


β1
...
βL

 and Y =


y1
...

yN

. (5)

As defined in ELM, H is the output matrix of hidden layer. The aim is to calculate the output
weights β in minimizing the norm of β, as well as the training errors. The mathematical issue can be
represented as follows:

Minimize : LPELM =
1
2
‖β‖2 +

C
2

N∑
i=1

ξ2
i .

Subject to : h(xi)β = yi − ξi i = 1, 2, . . . , N,
(6)

where C is a user-specified parameter and ξi is the training error.
Based on the Karush-Kuhn-Tucker (KKT) theorem, to train the ELM is equal to solving the

following optimization problem:

LDELM =
1
2
‖β‖2 +

C
2

N∑
i=1

ξ2
i −

N∑
i=1

αi(h(xi)β− yi + ξi), (7)

where αi is the Lagrange multiplier.
Two different solutions to the dual optimization problem can be achieved with different sizes of

the training data set.
1. The training set is not huge:

β = HT
( I

C
+ HHT

)−1
Y. (8)

The corresponding output function of ELM is

f (x) = h(x)HT
( I

C
+ HHT

)−1
H. (9)

2. The training set is huge:

β =
( I

C
+ HTH

)−1
HTY. (10)

The corresponding output function of ELM is

f (x) = h(x)
( I

C
+ HTH

)−1
HTY. (11)

These two solutions have different computational costs in the implementation of ELM. In the
application of the small training data set (N<<L), Equation (9) can increase the learning speed. However,
if the size of training data is huge (N>>L), one may prefer to use the Equation (11) instead.
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For multiclass cases, the predicted class label of a given test sample is the index number of the
highest output node. Let fi(x) denote the output function of the ith output function of the ith output
node, i.e., f (x) = [f 1(x), . . . , fm(x)]T, then the predicted class label of input vector x is

label(x) = arg max
i∈{1,∆,m}

fi(x). (12)

2.2. Classification and Regression Trees

The CART decision tree proposed by Breiman et al. [22] is a binary tree structure to construct
classification or regression models from data. In this study, we want to search the IF-THEN rules using
the classification case of CART. In the CART algorithm, the maximal binary tree is constructed by
partitioning the training data space recursively. Then, the maximal binary tree is pruned based on the
Occam’s razor principle. To grow the binary tree, the Gini index is used to find the root node with the
minimized value of the feature. The procedure of the CART algorithm is presented as follows.

Step 1: Given a training data set, S, comprising N observations, {xi}, where i = 1, 2, . . . , N,
together with corresponding target m classes, {yi

k}, where k = 1, 2, . . . , m, set pj (j = 1, 2, . . . , m) as the
probabilities of each class and satisfy

∑m
j=1 p j = 1. The Gini index Gi(S) is defined as

Gi(S) = 1−
m∑

j=1

p2
j . (13)

Step 2: Calculate the Gini indexes of all partition nodes as

Gi(S)|C =
N1

N
Gi(S1) +

N2

N
Gi(S2), (14)

where S1 and S2 are the subsets of S divided by a certain condition C and N1 and N2 are the numbers of
the patterns in S1 and S2, respectively. For the continuous input variable, the average of two adjacent
values is thought as a candidate partition node. Thus, there are total (N − 1) × n possible partition
nodes in the data set with n continuous variables.

Step 3: Find the optimal partition node from all the possible partition nodes with the lowest Gini
index. The corresponding variable is the root node and the threshold is the branch condition under the
root node. Two subsets are produced after the root node. The same procedure is applied recursively to
the two subsets to generate the maximal binary tree.

Step 4: Prune the maximal binary tree by cutting off some branches without increasing the
cost-complexity, which produces a sequence of subtrees consisting of the root node.

Step 5: Select the optimal subtree from the candidate subtrees using the cross-validation method.

3. ELM-Based Classification for VTD

3.1. Production Data

In the present work, the experimental data were collected from a No.2 steelmaking workshop in
Baosteel. A total of 4000 observations during normal operations in VTD were collected for modelling
purposes. Each observation contained discrete attributes (ladle material, refractory life, and heat status)
and 16 continuous process parameters. Of the data, 2400 observations (60%) were used for training,
800 observations (20%) were used for validating, and the remaining 800 observations (20%) were used
for testing. Figure 2 shows the evolution of the end temperature in the VTD.
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Table 1 tabulates the attribute information from the VTD system, in which the discrete attributes
are converted into binary inputs with the use of the one-hot encoding method. The continuous
attributes are labeled as C1, C2, . . . , C16 and the discrete attributes are labeled as D1, D2, . . . , D9.

Table 1. List of candidate input attributes from VTD.

Attribute Name Unit Input Attributes

Liquid steel weight t
::
C1

1

Tap temperature ◦C
::

C2
Tap to vacuum time min

::
C3

Arrive high vacuum time min
::

C4
Keep vacuum time min

::
C5

Soft stirring time min
::

C6
Refining time min

::
C7

Argon consumption m3
::

C8
Wire feed consumption kg

::
C9,

:::
C10,

:::
C11, C12

Alloy consumption kg
::
C13, C14,

:::
C15,

::
C16

Ladle material - D1,
:::
D2,

::
D3

Refractory life -
:::
D4, D5,

::
D6

Heat status -
:::
D7, D8,

::
D9

1 Attributes with wave line are the input attributes after feature selection.

3.2. Three-Class of the End Temperature

To construct the three-class classifier for the end temperature of liquid steel in the VTD system,
the controlled bound of the temperature needs to be determined. In the statistics, a large amount of
the individual samples were located within the range [µ − σ, µ + σ], where µ stands for the expected
value and σ stands for the standard deviation. To capture the main property of the end temperature
in VTD, we formed the normal end temperature bound as [µ − σ, µ + σ], i.e., [1535.6 ◦C, 1574.3 ◦C]
for the VTD. The experimental data are classified to three classes, as follows: Low end temperature
(<1535.6 ◦C) labeled as class 1, normal end temperature ([1535.6 ◦C, 1574.3 ◦C]) labeled as class 2, and
high-end temperature (>1574.3 ◦C) labeled as class 3. Figure 3 shows the sample distributions on the
three classes. Class 1 and class 3 represent 19.175% (767 observations) and 13.825% (553 observations)
of the data set, respectively, and the remaining 67% (2680 observations) are classified as class 2.
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Figure 3. Distribution of the temperature points in terms of low, normal, and high. The numbers on
the top of each column denote the values of the ordinates, for example 475 indicates that there are
475 points that fall into the low temperature range for the training data set. The meaning of the other
numbers is analogous.

3.3. ELM-Based Three-Class Classification of the End Temperature

To design a three-class classifier for the end temperature of VTD, a three-class ELM classifier
was established in this study. For the ELM network, the sigmoid function g(x) = 1/(1 + exp(−x)) was
selected as the activation function. The cost parameter C was selected from {2−24, 2−23, . . . , 224, 225}
and the number of hidden nodes L was selected from {10, 20, . . . , 1000}. In our simulations, all the
input attributes were normalized into [0, 1]. The optimal parameter combination (C, L) was determined
by the prediction accuracy on validation set. The parameter combination (C, L) was selected with the
highest validation set accuracy (VSA). Here, the VSA is defined as the ratio of the number of the correct
classifications to the validation set size. With the optimal parameter combination, the ELM-based
three-class classifier was used to perform the classification task on the testing data set and the results
are tabulated in Table 2. As shown in Table 2, we can get the following information: (1) The training
accuracy (TRA) is satisfactory, reaching 80.33% for the VTD; (2) the testing accuracy (TEA) is 71.88%
and is encouraging for the end temperature prediction in the VTD system; (3) the predictions for the
end temperature in the normal bound are credible for the correct rate, attaining 472/544 = 86.76%,
while the predictions for outside the normal bound are unreliable; and (4) overfitting exists due to the
large difference between the TRA and the VSA; therefore, methods should be developed to reduce the
overfitting. From these results, the three-class classification method for the end temperature is effective
in the VTD system.

Table 2. Evaluation of the predictive performance of the proposed model.

Inputs Distribution
End Temperature (◦C) TRA VSA TEA

Low Normal High (%) (%) (%)

25
true 141 544 115

80.33 63.75 71.88prediction 154 622 24
correct 95 472 8

19
prediction 152 627 21

79.54 66.13 72.75correct 97 478 7
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To reduce the overfitting of the model, feature selection is conducted on the VTD input sets to
establish the robust classifier. In this study, a feature pruning method was proposed to remove the
irrelevant features from the original attributes set if the classification accuracy increases after pruning.
The method first validates the accuracy, A0, of the initial accuracy, Fj, with the input feature set. It than
calculates accuracy Anew by removing each feature from Fj. The approach removes the feature ni from
Fj if Anew ≥ A0. The mechanism for feature pruning is given below.

F j =

F j − ni Anew ≥ A0

F j otherwise
. (15)

The VSA in Table 2, with the 25 inputs, was used as the initial accuracy. If the removal of a
feature can make the VSA higher than the previous one, the feature is removed. Finally, 19 features
were selected out and are presented in Table 1. Furthermore, to make a comparison, the results with
these new features are tabulated in Table 2. It is clear that the feature selection helps to improve the
performance of the ELM classifier. The overfitting is reduced and there is a little increase of TEA,
which implies that the classification model can be promoted by feature pruning. In addition, the
predictions for the end temperature in the normal bound kept reliability for the correct rate, attaining
478/544 = 87.87%.

4. Rules Extraction for VTD

The ELM-based three-class classifier can effectively classify the end temperature into low, normal,
and high regions. However, the mechanism in this black-box model is still unknown to the operators
for the decision-making propose in a VTD system. To this end, rule extraction is further important for
the practical manufacturing process. The correct classified samples by the ELM model after feature
selection in the training set were used as the current training set. Thus, the training samples come
to 1909 (79.54% of the original training set) in the current training set, while the current testing set
was still the original one. As there are continuous and discrete attributes in classification of the end
temperature of the VTD system, different approaches should be made in this setting. For the binary
discrete attributes, a binary tree is generated using the CART algorithm, as shown in Figure 4.
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discrete attributes.

The following set of rules is obtained after embodying the binary tree rules:

Rule R1: IF D2 = 0, THEN the predict class = 2;
Rule R2: IF D2 = 1 and D9 = 0, THEN the predict class = 1;
Rule R3: IF D2 = 1 and D9 = 1 and D4 = 0, THEN the predict class = 1;
Rule R4: IF D2 = 1 and D9 = 1 and D4 = 1, THEN the predict class = 2.

The classification results on the current training dataset by application of the CART algorithm
using only the binary attributes are summarized in Table 3. The support denotes the percentage of
samples that are covered by the rule. The error is the misclassified percentage in a rule.
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Table 3. Support level and error rate of the rules generated using CART with only discrete attributes.

Rules #Samples
Correct Wrong Support Error

Classification Classification (%) (%)

R1 1510 1412 98 79.10 6.49
R2 322 266 56 16.87 17.39
R3 8 6 2 0.42 25.00
R4 69 63 6 3.61 8.70

All rules 1909 1747 162 100 8.49

The support threshold δ1 and error threshold δ2 were set to 0.05. From Table 3, it can be seen that
the rule R1 and R2 should be refined to improve the classification accuracy. So, rules are generated
for the unclassified samples by using the continuous attributes. The binary classification tree can be
created by applying the CART algorithm using the continuous attributes. Four rules are obtained for
classification of the unclassified samples in rule R1. Similarly for rule R2, three rules are generated for
classification of the unclassified samples. The two sub binary trees are depicted in Figure 5.
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Figure 5. Tree structure for rule extraction on the dataset of rule R1 (a) and R2 (b).

The ultimate binary tree is obtained after embedding the two sub binary trees with continuous
attributes into the first binary tree with discrete attributes, which is depicted in Figure 6. The ultimate
rules are exhibited as follows:

Rule R1: IF D2= 0, follows:

Rule R1a: IF C6 < 25.0917 and C4 < 23.05, THEN predict class = 2;
Rule R1b: IF C6 < 25.0917 and C4 ≥ 23.05, THEN predict class = 3;
Rule R1c: IF C6 ≥ 25.0917 and C5 < 20.0417, THEN predict class = 2;
Rule R1d: IF C6 ≥ 25.0917 and C5 ≥ 20.0417, THEN predict class = 1;

Rule R2: IF D2 = 1 and D9 = 0, follows:

Rule R2a: IF C10 < 5.5, THEN predict class = 1;
Rule R2b: IF C10 ≥ 5.5 and C9 < 56.5, THEN predict class = 2;
Rule R2c: IF C10 ≥ 5.5 and C9 ≥ 56.5, THEN predict class = 3;

Rule R3: IF D2 = 1 and D9 = 1 and D4 = 0, THEN the predict class = 1;
Rule R4: IF D2 = 1 and D9 = 1 and D4 = 1, THEN the predict class = 2.
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From the above rules, only eight attributes are needed (three discrete features and five continuous
features) to judge the end temperature as being low, normal, or high. The discrete attributes describe
the ladle conditions and are of vital importance to the end temperature of liquid steel in a VTD. The
property of heat transfer through the ladle is different due to the different ladle materials. The refractory
life of the ladle represents the thickness of the interior thermal insulation material, which is the main
heat absorbing media during the transportation of the liquid steel. The heat status indicates the
temperature of the interior thermal insulation material. In the practical manufacturing process, the
tap temperature is adjusted according to the heat status of the ladle furnace. This is the temperature
correction stage in the VTD system. The five continuous attributes are soft stirring time C6, arrive high
vacuum time C4, keep vacuum time C5, wire feed consumption type 2 C10, and wire feed consumption
type 1 C9. These features are the key operating parameters in the VTD system and control the vacuum
degassing process. All these results reveal that the rules extracted from the ELM-based classification
model are reasonable and convenient for use in decision-making in the VTD system.

From the previous discussion, the rule extraction methodology from the ELM-based classification
for the VTD system can be summarized as follows (Algorithm 1):

Algorithm 1: Rule extraction from ELM classification

Input: Training data set S = {(xi, ti)}, i = 1, 2, . . . , N, xi∈Rn, ti∈R, with discrete attributes D and continuous
attributes C.

Output: A set of classification rules.
1: Calculate the expected value µ and the standard deviation σ of the target series
2: for i = 1 to N do
3: if ti < µ − σ, then, yi = 1.
4: if µ − σ ≤ ti ≤ µ + σ, then, yi = 2.
5: if ti > µ + σ, then, yi = 3.
6: end for
7: Switch the discrete attributes D into binary inputs with the use of the one-hot encoding method.
8: Normalize the continuous attributes C into [0, 1].
9: Train an ELM using the data set S with all its attributes D and C.
10: Prune the ELM classifier to obtain the new D’ and C’. Let S’ be the set of samples that are correctly

classified by the pruned ELM network.
11: If D’ = φ, then generate a binary tree using the continuous attributes C’ and stop.
12: Otherwise, generate binary tree rules R using only the D’ with the data set S’.
13: for each rule Ri do
14: if support(Ri) > δ1 and error(Ri) > δ2, then
15: Generate binary tree rules using continuous attributes C’ with the data set Si’ that satisfy the condition of

rule Ri.
16: end for
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Further apply the proposed method to predict the end temperature of VTD; the extracted rules
are verified by the testing data set. The results are evaluated based on the values of accuracy (the ratio
of the correct predictions on the testing data set) and fidelity (the ability of the extracted rules that
mimic the black-box model).

Accuracy =
TP + FN

TP + TN + FP + FN
× 100%, (16)

Fidelity =
TP

TP + FP
× 100%, (17)

where TP, TN, FP, and FN represent the abbreviation of true positives, true negatives, false positives,
and false negatives, respectively.

Table 4 shows the classification results using the extracted rules. The accuracy reached 75%, higher
than the ELM classifier, which is 72.75% on the testing data set after feature selection. In addition,
a large amount of the corrected predictions by the ELM classifiers can also be correctly classified
by the extracted rules. That is to say, the extracted rules can accurately mimic the black-box ELM
model. Moreover, the extracted rules only need eight features, far less than the 19 features in the ELM
classification model. Another notable point is that the extracted rules are explicit information items for
classifying the end temperature into low, normal, or high range. Therefore, the extracted rules can be
directly used in the VTD system for decision-making with desirable accuracy.

Table 4. Results of rule extraction for VTD system.

Method Attributes Rules Accuracy (%) Fidelity (%)

Proposed 8 9 75 89.75
CART 6 7 74 88.50

To explain the feasibility and effectiveness of our proposed method, a comparison with the ELM
regression model was conducted. It should be noted that the ELM regression model can only predict
the numerical values of the end temperature and cannot give the direct three-class classification
results. Therefore, the numerical predictions were converted into the classification result according to
the temperature divisions. As discussed above, there are eight features reserved in the hybrid rule
extraction model. The five continuous attributes are arrive high vacuum time C4, keep vacuum time
C5, soft stirring time C6, wire feed consumption type 1 C9, and wire feed consumption type 2 C10.
The 3 discrete attributes are ladle material type 2 D2, refractory life type 1 D4 and heat status type 3 D9.
Thus, a fair comparison can be conducted if these attributes are fed into the ELM regression model.
Figure 7 depicts the prediction results of the end temperature on the testing set. Further switching these
numerical prediction values into the three-class classification results can obtain a TEA of 74.12%. From
the viewpoint of TEAs, the ELM regression model is weaker than the proposed integrated classification
model with the same input attributes. In addition, the ELM regression model trained the non-liner
function in the black-box and the rules generated are unclear in this black-box model.
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Figure 7. Numerical predictions of the end temperature through the ELM regression model, based on
the testing set.

As a rule extraction approach, the CART algorithm can work independently of the trained ELM
model. Figure 8 depicts the binary tree built by the CART algorithm using the original training data
set with all 25 of the attributes. The testing results are shown in Table 4. Although fewer features are
used in the CART model, the extracted rules, as shown in Figure 8, were a little one-sided, with no
high-end temperature rule. At this point, they cannot cover all cases reflecting the end temperature
range. Thus, the rules extracted directly from the original training data set with all the features have
difficulty in capturing the characteristics of the VTD system. This undesirable performance indicates
that the combination of the ELM and the CART algorithm is an essential method to extract rules for the
VTD system.

1 
 

 

Figure 8. Tree structure for rule extraction on the original training set.

From the viewpoint of addressing the end temperature control problem in the VTD system, the
proposed strategy provides a novel modeling thought that makes the black-box model transparent to
the operators. It integrates the advantages of the ELM classification model and the CART algorithm.
The novelty of the current work is to develop a rule extraction method for controlling the end
temperature within a certain range. Since process control would be the ultimate purpose and the VTD
system control often means controlling the temperature and composition of liquid steel within desirable
bounds, the extracted rules can play a role in making transparent decisions versus the black-box model.
Compared with the direct numerical prediction methods, such as ELM, the current work can mimic
the black-box model with enhanced transparency. Another important contribution made in this work
is using CART to improve ELM classification for rule extraction. The direct CART applications [23–25]
have been widely studied for different technological issues. These developments are probably due to
that the CART algorithm is essentially a kind of white-box modelling approach. The CART method
can be used to extract rules from data with mixed attributes. However, the one-sided rules obtained
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using the original training data set in our study cannot be applied to the practical manufacturing
process. Therefore, we propose a hybrid method that uses the CART to extract rules from the trained
ELM black-box model, through which all-sided rules have been obtained and the advantage of ELM
black-box model for the VTD system can be fully mined. Of course, the proposed methodology
can be applied to address other industry manufacturing process control issues. Additionally, the
classification method and rule extraction algorithm is not limited to ELM and CART algorithms. Other
classification algorithms, like ANNs [26] and SVMs [27], and other rule extraction approaches, like
C4.5 [28] and the Re-RX algorithm [29], can work as well within the proposed hybrid strategy. For
further research, it could be interesting to extend the proposed framework for dealing with other
manufacturing problems by testing other combinations, such as ANNs and C4.5, SVMs and Re-RX
algorithm, etc.

The main motivation to pursue the current research is that the operation of VTD systems is still
a serious problem in practice. The all-sided rules have been extracted from the production data by
combining the ELM and CART algorithms. The most important reason is that the features are pruned
according to the prediction results of ELM model and the patterns are well confirmed to capture the
dynamic properties. Another more important reason is that the CART algorithm is essentially a kind
of white-box modeling method to extract process control strategies. Hence, the proposed method
presents a novel strategy to obtain a solution for the VTD control issue.

5. Conclusions

In this paper, a method of rules extraction from the trained ELM classification model for the
decision-making purposes has been presented. Firstly, a three-class classification problem of the end
temperature in the VTD system has been constructed according to the practical control mechanism.
Secondly, an ELM multiclassifier has been developed to instruct the end temperature in low, normal,
or high ranges. Finally, based on the pruned and correctly classified training data set, rules are extracted
with discrete and continuous features utilizing the CART algorithm. The proposed method has the
ability to successfully classify the end temperature, which demonstrates the potential for reliable
prediction of the end temperature in a VTD system. The extracted rules can act as a potential tool for
predicting the end temperature in advance, which will be helpful in precisely controlling the process of
VTD systems.

In the future, the proposed model will be further developed. More data sources from different
industrial fields and more factors will be applied to this model in order to verify the feasibility and
further optimal model parameters to obtain higher predicting accuracies. If the above-mentioned
method is proved to be practical, other similar refining processes will be considered to develop a new
model based on an integrated methodology for rule extraction from an ELM-Based multi-classifier,
and this model is expected to be used as a what-if tool to provide a practical guide in the future.
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