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Abstract: The purpose of this paper is to discuss the variation of wellbore temperature and bottom-hole
pressure with key factors in the case of coupled temperature and pressure under multi-pressure
system during deep-water drilling circulation. According to the law of energy conservation and
momentum equation, the coupled temperature and pressure calculation model under multi-pressure
system is developed by using the comprehensive convective heat transfer coefficient. The model is
discretized and solved by finite difference method and Gauss Seidel iteration respectively. Then the
calculation results of this paper are compared and verified with previous research models and field
measured data. The results show that when the multi-pressure system is located in the middle
formation, the temperature of the annulus corresponding to location of the system is the most
affected, and the temperature of the other areas in annulus is hardly affected. However, when the
multi-pressure system is located at the bottom hole, the annulus temperature is greatly affected from
bottom hole to mudline. In addition, the thermo-physical parameters of the drilling fluid can be
changed by overflow and leakage. When only overflow occurs, the annulus temperature increases
the most, but the viscosity decreases the most. When only leakage occurs, the annulus temperature
decreases the most and the viscosity increases the most. However, when the overflow rate is greater
than the leakage rate, the mud density and bottom-hole pressure increase the most, and both increase
the least when only leakage occurs. Meanwhile, bottom-hole pressure increases with the increase
of pump rate but decreases with the increase of inlet temperature. The research results can provide
theoretical guidance for safe drilling in complex formations such as multi-pressure systems.

Keywords: wellbore temperature; bottom-hole pressure; multi-pressure system; comprehensive heat
transfer model; leakage and overflow

1. Introduction

Deep water drilling faces problems such as narrow formation pressure window and difficult
pressure control. The pressure in wellbore is affected not only by properties of drilling fluid but also by
formation and annulus temperature in deep water drilling. At the same time, the pressure variation
makes the drilling fluid density change, further affecting the annulus and formation temperature
distribution. Therefore, to ensure efficient and safe drilling, the study of coupled wellbore temperature
and pressure distribution is also very important in deep water drilling. In addition, the tectonic
steep, formation fracture, fault, fracture, and hole development are often encountered in deep water
drilling. Under the condition of multi-pressure system, it is easy for overflow and leakage to occur
simultaneously in the formation. Because the overflow and leakage exist at the same time, part of the
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fluid from the annulus goes into the formation, and the fluid from the formation enters the annulus.
Then, the corresponding thermo-physical property parameters of drilling fluid in annulus also change,
which affects the distribution of temperature and pressure in the wellbore. Therefore, in order to ensure
safe and efficient drilling operations, the research on coupled wellbore temperature and distribution
under multi-pressure system has highly practical significance.

In recent years, the research methods related to wellbore and formation temperature have been
mainly analytical and numerical methods [1]. Ekaterina Wiktorski [2] derived temperature-dependent
thermo-physical correlations, which were applied in a wellbore heat transfer model for oil production
scenario by considering a complex well architecture. Javad Abdollahi and Stevan Dubljevic [3]
simplified the heat transfer model of wellbore fluid into a set of hyperbolic partial differential equations.
Then the observability of temperature distribution was discussed by using the methods of characteristic
functions and Riemann invariants. R. Hasan and C. S. Kabir [4] discussed a unified approach for
modeling heat transfer in various situations that result in physically sound solutions. This modeling
approach depends on many common elements, such as temperature profiles surrounding the wellbore
and any series of resistances for the various elements in the wellbore. Based on the energy conservation
principle and the Modified Raymond, Yang M et al. [5] developed simplified and full-scale models,
and the results indicated that wellbore and formation temperatures were significantly influenced at the
connection points between the drill collar and drill pipe, as well as the casing shoe. Jia HJ, Meng YF,
Li G, Su G, et al. [6] established the thermal conductivity model of liquid-filled annulus, and the
influence of casing annulus fluid on temperature distribution was simulated numerically. Ramey [7]
established temperature calculation model under the condition that the formation and wellbore heat
transfer be considered as unsteady and steady respectively. The significant difference between Holmes
Swift’s [8] temperature prediction model and other models is that the accuracy of the model can only
be reflected under the condition of a long-circulation time. Hasan–Kabir [9,10] established a model
where variation of properties of drilling fluid with temperature and pressure was not considered,
nor was the heat generated by drilling fluid flow taken into account, so there will be obvious errors in
the calculation results. Raymond’s [11] model does not take into account the heat source generated by
friction during drilling fluid flow, so the final temperature calculation result is smaller than the actual
value. Marshall Bentsen [12] established the wellbore and formation temperature calculation model
by using the comprehensive convective heat transfer coefficient without considering the wellbore
structure. Li Mengbo et al. [13] established the coupled temperature and pressure calculation model
of wellbore in multiphase flow during normal circulation, and the effect of lost circulation or kick
on annulus temperature and pressure was not considered. García et al. [14] established the wellbore
temperature calculation model in geothermal wells and that during shut-in under the condition
of lost circulation. Espinosa et al. [15] obtained the wellbore temperature distribution prediction
model according to the law of energy conservation under the conditions of circulation and stopping
circulation. Yang Mou et al. [16] considered the axial and radial heat conduction of wellbore and
formation simultaneously; the results showed that the axial heat conduction exert almost no effect on
distribution of wellbore temperature compared with that of the radial temperature. Zhang Zheng et al.
established the wellbore and formation temperature calculation model when leakage was located in
different position of stratum, but without considering the comprehensive influence of leakage and
overflow and the coupled temperature and pressure [17].

Although there are many models for calculating wellbore and formation temperature under
different conditions, there are few models that the effects of multi-pressure systems and coupled
temperature and pressure are taken into account on wellbore temperature and pressure during
circulation in deep water drilling.

According to the law of energy conservation, when the multi-pressure system is located at
different positions of the formation, such as the middle open-hole formation or at the bottom hole,
the mathematically coupled temperature and pressure model of the wellbore and the formation is
established. Then, the first-order windward scheme is used for the first-order space, three-point
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central difference is used for the second-order space, and two-point backward difference is used for the
first-order time; finally, Gauss Seidel iteration is used for numerical calculation for the discrete model.
The distribution law of coupled wellbore temperature and pressure under multi-pressure system is
obtained, and the key factors affecting wellbore temperature and bottom-hole pressure are analyzed,
which provides theoretical support for adjusting drilling parameters and ensuring safe and efficient
drilling in deep water.

2. Mathematical Model of Each Heat Transfer Region

2.1. Physical Model of All Heat Transfer Regions

During the normal circulation in deep water drilling, drilling fluid first enters the pipe, then passes
through the drill bit into the annulus and finally returns to the surface ground. In this process,
the drilling fluid generates convection heat transfer with the interior wall and exterior wall of the
drill pipe as well as the borehole wall. Meanwhile, the interior wall and exterior wall of the drill
pipe, casing, cement sheath, seawater and inside of the formation generate radial heat conduction [18].
Hence all heat transfer regions can be divided into three major regions such as inside drill string,
in annulus (including formation segment annulus and seawater segment annulus), and inside of the
formation [19]. The physical model of all heat transfer regions is shown in Figure 1.

All areas were meshed and divided into layers at intervals of 50 m along the axis of the wellbore,
denoted by i, and each zone in the radial direction denoted by j. According to the layer of overflow and
leakage, the multi-pressure system is divided into several sub-layers in the axial direction, which are
represented by l and k respectively.
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2.2. Mathematical Model

2.2.1. Model Hypothesis

(1) All fluids in the model are incompressible, other thermo-physical parameters do not change with
temperature and pressure variation except viscosity and density.

(2) Radial gradient of the temperature, pressure, and flow rate inside the wellbore are neglected and
the radial heat conduction inside seawater and formation is considered.

(3) The layer of overflow and the leakage alternate with each other; the flow rate of the same type of
sublayer is the same, and the fluid entering the annulus is evenly mixed with the drilling fluid.
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2.2.2. Heat Transfer Mathematic Models for Each Region

According to the model hypothesis and the first law of thermodynamics, the mathematical model
of heat transfer in each region is established because the seawater flow is affected by multiple factors,
which cannot be listed simply by hypothesis conditions. In addition, the seawater flow has little
influence on wellbore temperature [20], so the flow of seawater is ignored in this model.

(1) Drill string, the casing, riser, and the cement sheath.

During the drilling circulation, drill string, casing, cement ring, and riser have the same type of
heat transfer [21]. The heat transfer physical model in control element is shown in Figure 2, therefore,
according to the convection heat transfer between the drilling fluid and the interior and exterior wall
of the drill string and the heat conduction between the two walls, the heat transfer Equation (1) of drill
string can be written as follows: According to the law of energy conservation, the first term of the
equation is the convection heat transfer between the annulus drilling fluid and the outer wall of the
drill string, the second term is the convection heat transfer between the drilling fluid and the inner
wall of the drill string, and the third term is the heat conduction between the inner wall of the drill
pipe and the outer wall.

hpoπdpo∆y∆t[Ta(y, t) − Tpo(y, t)]∆t = hpiπdpi∆y∆t(Tp(y, t) − Tpi((y, t)) = 2πλp∆y∆t
[Tpo(y,t)−Tpi(y,t)]

ln(
dpo
dpi

)
(1)

Energies 2019, 12, x FOR PEER REVIEW 4 of 25 

 

2.2.2. Heat Transfer Mathematic Models for Each Region 

According to the model hypothesis and the first law of thermodynamics, the mathematical 
model of heat transfer in each region is established because the seawater flow is affected by multiple 
factors, which cannot be listed simply by hypothesis conditions. In addition, the seawater flow has 
little influence on wellbore temperature [20], so the flow of seawater is ignored in this model. 

(1) Drill string, the casing, riser, and the cement sheath.  

During the drilling circulation, drill string, casing, cement ring, and riser have the same type of 
heat transfer [21]. The heat transfer physical model in control element is shown in Figure 2, therefore, 
according to the convection heat transfer between the drilling fluid and the interior and exterior wall 
of the drill string and the heat conduction between the two walls, the heat transfer Equation (1) of 
drill string can be written as follows: According to the law of energy conservation, the first term of 
the equation is the convection heat transfer between the annulus drilling fluid and the outer wall of 
the drill string, the second term is the convection heat transfer between the drilling fluid and the inner 
wall of the drill string, and the third term is the heat conduction between the inner wall of the drill 
pipe and the outer wall. 

 

Figure 2. Heat transfer physical model in control element. 

[ ( , ) ( , )]
π [ ( , ) ( , )] π ( ( , ) (( , )) 2π

ln( )

po pi
po po a po pi pi p pi p

po

pi

T y t T y t
h d y t T y t T y t t h d y t T y t T y t y t

d
d

−
Δ Δ − Δ = Δ Δ − = Δ Δλ  

(1) 

According to the above equation established by the Energy conservation relation, the total heat 
transferred between the region inside the drill string and in annulus can be obtained, and the 
relationship is as follows: 

π [ ( , ) ( , )]
1 ln( )

2

pi a p
ap

pi pi po

pi po po p pi

d T y t T y t
Q y t

d d d
h h d d

−
= Δ Δ

+ +
λ

, 1 1 ln( )
2

pi pi po

ap pi po po p pi

d d d
U h h d dλ

= + +  
(2) 

According to the heat transfer mechanism of drill string, the heat transfer relationship among 
casing (or wellbore wall), cement sheath, and formation can be obtained similarly: 

2π [ ( , ) ( , )] 2π [ ( , ) ( , )] π ( )
ln( ) ln( )

cemi f cemi w cemi w
w w w a

cemo cemi

cemi w

y t T y t T y t y t T y t T y t
h d y t T Td d

d d

Δ Δ − Δ Δ −
= = Δ Δ −

λ λ
 (3) 

According to the Equation (3), the comprehensive heat transfer from annulus to outside wall of 
cement sheath (or formation) can be obtained: 

Figure 2. Heat transfer physical model in control element.

According to the above equation established by the Energy conservation relation, the total
heat transferred between the region inside the drill string and in annulus can be obtained, and the
relationship is as follows:

Qap =
πdpi[Ta(y, t) − Tp(y, t)]

1
hpi

+
dpi

hpodpo
+

dpi
2λp

ln(
dpo
dpi

)
∆y∆t,

1
Uap

=
1

hpi
+

dpi

hpodpo
+

dpi

2λp
ln(

dpo

dpi
) (2)

According to the heat transfer mechanism of drill string, the heat transfer relationship among
casing (or wellbore wall), cement sheath, and formation can be obtained similarly:

2πλcemi∆y∆t[T f (y, t) − Tcemi(y, t)]

ln( dcemo
dcemi

)
=

2πλw∆y∆t[Tcemi(y, t) − Tw(y, t)]

ln( dcemi
dw

)
= hwπdw∆y∆t(Tw − Ta) (3)
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According to the Equation (3), the comprehensive heat transfer from annulus to outside wall of
cement sheath (or formation) can be obtained:

Qa f =
πdw[T f (y, t) − Ta(y, t)]

1
hw

+ dw
2λw

ln( dcemi
dw

) + dw
2λcem

ln( dcemo
dcemi

)
∆y∆t,

1
Ua f

=
1

hw
+

dw

2λw
ln(

dcemi
dw

) +
dw

2λcem
ln(

dcemo

dcemi
) (4)

(2) Inside the drill string.

Heat transfer in these regions include heat convection between drilling fluid and interior wall of
drill string, heat gone into the control element during ∆t time and heat generated by drilling fluid flow
friction. According to the law of the energy conservation, the following Equation (5) can be obtained.
The first item of the equation is the change of internal energy in element during ∆t time, the second
item is the convection heat transfer ∆t, the third item is the heat entering the element during ∆t, and
the fourth item is the heat generated by friction.

π
4 dpi

2∆y∆t
∂[ρp(y,t)cp(y,t)Tp(y,t)]

∂t = hpiπdpi(Tp − Tpi)∆y∆t + Qm
∂[ρp(y,t)cp(y,t)Tp(y,t)]

∂y ∆y∆t
+Qcp∆y∆t

(5)

According to the comprehensive convective heat transfer coefficient of drilling fluid from drill string to
annulus, the Equation (5) can be modified as:

π

4
dpi

2 ∂[ρp(y, t)cp(y, t)Tp(y, t)]
∂t

= Uapπdpi(Ta(y, t)− Tp(y, t)) + Qm
∂[ρp(y, t)cp(y, t)Tp(y, t)]

∂y
+ Qcp (6)

(3) In annulus.

Heat transfer in annulus mainly includes convection heat transfer between drilling fluid and
exterior wall of drill string as well as wellbore wall, heat gone into the control element during ∆t time,
and heat generated by drilling fluid flow friction.

a. When the multi-pressure system is located in the middle open hole formation:

The lower annulus

When the multi-pressure system is located in the middle open-hole formation, the annulus
is divided into two parts by taking the multi-pressure system section as a marker. The first part
is the lower annulus below the multi-pressure system. The second part is the annulus where the
multi-pressure system and its upper segment formation as well as seawater segment. The physical
model is shown in Figure 3.
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The thermo-physical parameter of the drilling fluid in the lower annulus, which is located
upstream of the multi-pressure system, is not affected by overflow and leakage. The heat transfer in
this region is the same as that of the annulus during normal circulation. According to the law of energy
conservation, the following Equation (7) can be obtained in the control element: The first item of the
equation is the change of internal energy in element during ∆t time, the second and third items are the
convection heat transfer ∆t, the fourth item is the heat entering the element during ∆t, and the fifth
item is the heat generated by friction.

π
4 (dw − dpo

2)∆y∆t∂[ρa(y,t)ca(y,t)Ta(y,t)]
∂t = hpoπdpo[Ta(y, t) − Tpo(y, t)]∆y∆t

+hwπdw[Ta(y, t) − Tw(y, t)]∆y∆t

+Qm
∂[ρa(y,t)ca(y,t)Ta(y,t)]

∂y ∆y∆t + Qca∆y∆t
(7)

According to the comprehensive convective heat transfer coefficient from annulus to formation and its
counterpart from the drill string to the annulus, Equation (7) can be changed as:

π
4 (dw − dpo

2)
∂[ρa(y,t)ca(y,t)Ta(y,t)]

∂t = Uapπdpo[Ta(y, t) − Tp(y, t)] + Ua fπdw[Ta(y, t) − Tw(y, t)]

+Qm
∂[ρa(y,t)ca(y,t)Ta(y,t)]

∂y + Qca
(8)

The upper annulus

When the drilling fluid returns to the annulus segment where the multi-pressure system is located,
some drilling fluid enters the multi-pressure system formation, and the fluid from the multi-pressure
system formation also goes into the annulus because of simultaneous existence of leakage and overflow
in this multi-pressure system formation. When drilling fluid from the lower annulus is mixed with fluid
from the multi-pressure system formation, then the thermo-physical property of drilling fluid entering
the upper annulus is changed. It can be known from the assumed conditions that the formation
of leakage and overflow formation are staggered, and the fluid in annulus is evenly mixed. Now,
each layer of formation of overflow and leakage is divided into several sub-layers, so the heat transfer
equation of drilling fluid in the upper annulus can be described as follows. The physical meaning
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of terms in the equation is the same as that in Equation (7), except that the value of thermo-physical
parameters changes due to the influence of overflow and leakage.

π
4 (dw − dpo

2)
∂[ρa

′(y,t)ca
′(y,t)Ta(y,t)]
∂t ∆y∆t = hpo

′πdpo[Ta(y, t) − Tpo(y, t)]∆y∆t
+hw

′πdw[Ta(y, t) − Tw(y, t)]∆y∆t + Qca∆y∆t

+(va +
n∑

k=1
vkk −

n−1∑
l=2

vll)
∂[ρa

′(y,t)ca(y,t)′Ta(y,t)]
∂y ∆y∆t

(9)

Similarly, according to the comprehensive heat transfer coefficient, the Equation (9) can be changed
as Equation (10), but the comprehensive convective heat transfer coefficient of the mixed fluid is
different from the former in Equation (8):

π
4 (dw − dpo

2)
∂[ρa

′(y,t)ca
′(y,t)Ta(y,t)]
∂t = Uap

′πdpo[Ta(y, t) − Tpo(y, t)] + U f a
′πdw[T f (y, t) − Ta(y, t)]

+(va +
n∑

k=1
vkk −

n−1∑
l=2

vll)
∂[ρa

′(y,t)ca(y,t)′Ta(y,t)]
∂y + Qca

′

(10)
where, the k = 1, 3, 5, . . . , n, l = 2, 4, 6, . . . , n − 1.

b. The multi-pressure system is located at the bottom hole

When the multi-pressure system formation is located at bottom hole, as shown in Figure 4,
the drilling fluid in the whole annulus is mixed with the fluid from the multi-pressure system formation
because of the co-existence of overflow and leakage. According to the law of energy conservation,
the heat transfer equation of the annulus can be obtained as follows:

π
4 (dw − dpo

2)
∂[ρa

∗(y,t)ca
∗(y,t)Ta(y,t)]
∂t = Uap

∗πdpo[Ta(y, t) − Tpo(y, t)] + U f a
∗πdw[T f (y, t) − Ta(y, t)]

+(va +
n∑

k=1
v∗kk −

n−1∑
l=2

v∗ll)
∂[ρa

∗(y,t)ca(y,t)∗Ta(y,t)]
∂y + Qca

∗

(11)
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Due to the combined effects of overflow and leakage, the composition of drilling fluid in the
upper annulus was finally changed [22,23]. According to the literature, the formula for calculating the
density of mixed liquid is as follows:

ρm
(−2/3) = a + bw1 + cw1

2 (12)
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The thermal conductivity of the mixed liquid is a function of density, so according to the
mathematical function expansion theorem:

λ2
′ = k0 + kρm, making ρm → 0, λ2

′
→ 0, so λ2

′ = kρm (13)

where, k0, k is constant, in combination with Equations (12) and (13),

λ2
′(−2/3) = B1 + B2w1 + B3w1

2, (w1 + w2 = 1) (14)

According to the binary liquid mixture proportion relationship, binary mixed fluid thermal
conductivity is obtained and extended to multiple mixed fluid as follows:

λ2
′(−2/3) = (B1 + B2)w1 + (B1 + B3)w2 − B3w1w2 (15)

where B1, B2, B3 is the constant, Ai = λ1
(−2/3), Bi j = 0.0055− 0.011

∣∣∣ln(λi/λ j)
∣∣∣.

(4) Heat transfer model of formation

Whether the presence of fluid is in the formation or not leads to great difference in the heat transfer
of the formation. This paper only considers the condition of the presence of fluid, and the heat transfer
equation is as follows:

(ρc)e f f
∂Ti(x, y, t)

∂t
= λe f f

∂2T f (x, y, t)

∂2x
+
λe f f

x

∂T f (x, y, t)

2x
(16)

According to the equilibrium volume method and energy balance equation, the thermal and
physical parameters and the fluid in the formation can be calculated [24]. Where, λ′ = λl

φ + λ f
(1−φ),

(ρc)′ = φ(ρc)l + (1−φ)(ρc) f .
The fluid flow in the formation can be regarded as unidirectional incompressible plane radial

steady seepage [25]. According to its corresponding differential equation and Darcy’s law, the seepage
velocity can be obtained as follows [26]:

vr = −
K
µ
∂P
∂r

,
K1

µ
(
∂2P
∂r2 +

1
r
∂P
∂r

) +
q
ρ
= 0 (17)

(5) Heat transfer model of seawater

(ρscs)
∂Ti(x, y, t)

∂t
= λs

∂2T f (x, y, t)

∂2x
+
λs

x

∂T f (x, y, t)

2x
(18)

2.2.3. Momentum Equation and the Relationship between Pressure and Density

∂(ρiviAi)

∂t
+
∂(ρivi

2Ai)

∂z
=
∂(ρiAi)

∂z
+ Ai

∂P f i

∂z
+ ρigAi (19)

∂P
∂y

= ρ0geχp(P−P0)+χpp(P−P0)
2+χT(T−T0)+χTT(T−T0)

2+χPT(P−P0)(T−T0) (20)

2.3. Initial and Boundary Conditions

2.3.1. Initial Conditions

Since the temperature of seawater is affected by multiple factors such as season, current, depth,
and so on, Locarnini described the distribution of seawater temperature in the vertical direction as
follows, in consideration of coupling factors [27]:
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T3 = (y, t = 0) = Tsur f (200− y) + 13.68y/200, y < 200, (21)

T3 = (y, t = 0) = m2 + (m1 −m2)/(1 + e(y−m0)/m3), 200 < y < yml (22)

The temperature of the formation is mainly related to the temperature gradient and depth, so the
temperature distribution model along the vertical direction can be expressed as [28]:

T f (y, t = 0) = T3(y = yml, t = 0) + Gh, yml < y < h (23)

2.3.2. Boundary Conditions

Wellhead temperature can be regarded as the initial temperature inside drill string, so its boundary
condition can be expressed as:

T0(y = 0, t = 0) = Tin (24)

According to the continuity of drilling fluid flow at bottom hole, the bottom hole temperatures of
the drilling fluid inside the drill string, the wall of drill string, and drilling fluid in the annulus are
equal [29]. The boundary condition can be expressed as:

T0(y = H, t) = T1(y = H, t) = T2(y = H, t) (25)

The boundary condition of ambient temperature distribution far from the wellbore is as follows:

T(x→∞, y, t) = Tsur f + Gh (26)

For the meshing of the physical model, the discrete process of the mathematical model and the
overall calculation flow chart, all of them are shown in Appendix A.

3. Model Validation

3.1. Comparison and Verification with Theoretical Calculation Model

According to drilling data from Tables 1–3, which comes from a well in the South China Sea [30],
the calculated results of this paper are obtained and then compared with other scholar’s models;
the obtained comparison result is shown in Figure 5a. The model of Zhang Zheng is the closest to
the model in this paper, while Yang Mou’s model has a large gap. Marshall’s model also used the
comprehensive convective heat transfer coefficient and considered the heat generated by drilling fluid
flow friction during circulation. However, the influence of wellbore structure, pressure, and other
factors on the temperature distribution was not considered [12]. Because the well structure has a great
influence on wellbore heat transfer [12], the temperature in deep formation is generally higher than
that in the annulus, while the temperature in shallow formation (including seawater) is lower than that
in the annulus.

Table 1. The Basic parameters of the well.

Parameters Value Parameters Value

Well depth, m 5094 Drilling fluid flow rate, m3/s 0.02
Water depth, m 1521 ROP, m/h 3.05

Open hole diameter, mm 215.9 Surface temperature, ◦C 20
Inlet temperature, ◦C 15 Geothermal gradient, ◦C 0.024

Drilling fluid viscosity, mPa·s 10 Fluid density in formation, kg/m3 1100
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Table 2. Thermo-physical parameters of different materials or fluid.

Medium Density, kg/m3 Specific Heat, J/(kg·K) Coefficient of Heat Conduction
W/(m·K)

Drilling fluid 1180 3935 1.75
Drill string 7850 400 43.7
Drill collars 8910 400 43.7

Fluid in formation 1150 4200 0.8
Seawater 1050 4128 0.6
Casing 8300 400 43.7
Cement 2140 900 0.85

Rock 2640 853 2.3

Table 3. Inner diameter and outer diameter of drill string and casing.

Parameters Inside Diameters (mm) Outside Diameters (mm)

Drill pipe 108 127
Drill collar 80 171
First casing 486 508

Second casing 317 339
Third casing 221 245
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Therefore, compared with Marshall model, the well structure and pressure was taken into
account, and the comprehensive convective heat transfer coefficient was used to solve the temperature
distribution in this paper. On the one hand, the deep formation transfers less heat to the lower annulus
during same circulation time, so the formation temperature cools more slowly and the temperature
of the lower annulus is higher. On the other hand, the drilling fluid from the lower annulus carries
less heat into the upper annulus, so the temperature in upper annulus is cooler. Yang Mou’s model is
mainly aimed at traditional land drilling [31]. Compared with Yang’s model, the model in this paper
is about deep-water drilling and has different assumptions, so there are some errors in the solution.
Zhang Zheng’s temperature calculation model is the closest to the solution results of the model in
this paper. In the entire annulus temperature distribution, the maximum calculated temperature
difference between two models is not more than 3.31 ◦C, which has little impact on the whole wellbore
temperature distribution, thus basically proving the reliability of the temperature calculation model.
In addition, compared with Zhang Zheng’s model, the temperature prediction model in this paper
not only considers overflow but also considers overflow and leakage occurring simultaneously under
multi-pressure system. This temperature prediction model in this paper is more consistent with the
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actual temperature distribution in deep water drilling and provides a better reference for managed
pressure drilling in deep water.

3.2. Verification by Comparison with Measured Data

The wellhead temperature calculated by using the data from Tables 1–3 is compared with its
counterpart measured in a well in the South China Sea over a period of circulation time. As Figure 5b
shows, wellhead temperature drops in calculated results, firstly, because the wellhead temperature is
higher than that of the seawater. Therefore, there is heat transfer between drilling fluid near wellhead
and seawater, which can lead to wellhead temperature decreases. After circulation for a period of
time, the heat absorption of seawater increases and the temperature of seawater increases gradually,
while the wellhead temperature decreases gradually and finally tends to stabilize. During the period
when the wellhead temperature is stable, although the measured data have some deviation from the
theoretical calculation at some time, the overall results are basically consistent, and the calculation and
measurement error is less than 5%, so the validity of the model is verified.

4. Analysis of Key Factors Influencing Wellbore Temperature Distribution

The calculation data of this part comes from Tables 1–3. If the multi-pressure system is located in
the middle open-hole formation from 2500 m to 3500 m, or located at the bottom hole, it is divided
into multiple sub-layers, one per 50 m. Then the total number of sub-layers is 20, and the number of
the sub-layers of overflow or leakage is 10, respectively, and distributed alternately. According to the
assumptions of the model, the overflow rate or leakage rate in each sub-layer is the same. Therefore,
on the one hand, if the flow rate of overflow is greater than that of the leakage, take the flow rate of each
sub-layer of overflow as 0.6 L/s and the flow rate of sub-layer of each leakage as 0.2 L/s for calculation,
then overflow and leakage rates are 6 L/s and 2 L/s, respectively. On the other hand, the flow rate of
sub-layer of each leakage is 0.6 L/s, and the flow rate of each sub-layer of overflow is 0.2 L/s, so the
total leakage and overflow rates are 6 L/s and 2 L/s, respectively, when the overflow rate is greater than
the leakage rate.

4.1. Annulus Temperature Distribution When Overflow and Leakage Rates Are Different under the
Multi-Pressure System

In deep water drilling, the deep formation temperature is higher than that in lower annulus
during normal circulation, while the upper formation temperature (including seawater) is lower than
that in upper annulus. Before the temperature reaches equilibrium, heat from the deep formation is
transferred to lower annulus, the temperature of which increases gradually. Then some heat from the
drilling fluid in the lower annulus is transferred to the drilling fluid in the upper annulus. The heat
from the upper annulus is transferred to the formation or seawater, and the drilling fluid temperature
starts to decrease. The temperature gradually increases as it approaches the wellhead; the temperature
reaches an equilibrium state after a period of circulation. Under the multi-pressure system, the fluid
carrying formation heat goes into the annulus when overflow occurs, and the temperature of the
annulus increases. Some drilling fluid enters the formation when leakage occurs, and temperature of
the annulus drilling fluid decreases. When the mixed fluid is uniformly mixed in the annulus where
the multi-pressure system is located, the thermo-physical properties and the temperature of drilling
fluid in the annulus change.

As shown in Figure 6a, the multi-pressure system is located from 2500 m to 3500 m. If the overflow
rate is less than that of leakage, the annulus temperature is less than that during the normal circulation.
On the contrary, the annulus temperature is higher. Regardless of whether the overflow rate or leakage
rate is greater, the area indicating the largest temperature variation is between 2500 m and 3500 m
in the annulus. However, the temperature in the annulus deeper than 3500 m changes slightly and
is almost unaffected. Moreover, the temperature in the upper part of the annulus, shallower than
2500 m, is affected and gradually decreases as well-depth decreases. Temperature distribution is
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almost no longer affected in the upper part of the annulus shallower than 1500 m. Therefore, when the
multi-pressure system is located in the formation from 2500 m to 3500 m, the annulus temperature is
mainly affected from 1500 m to 3500 m.
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Figure 6. Annulus temperature distribution when overflow and leakage rates are different under the
multi-pressure system; (a,b) show conditions when the multi-pressure system is located in middle
formation and at bottom hole, respectively.

As shown in Figure 6b, the multi-pressure system is located at bottom hole; because the leakage
and overflow occur near the bottom hole, the thermo-physical property of drilling fluid returning
from the bottom hole is affected. As drilling fluid returns from the bottom hole to the surface,
then the thermo-physical property of drilling fluid in the entire annulus is also changed. However,
the influence on the temperature in annulus shallower than 1500 m gradually decreases. Similarly,
when the multi-pressure system is located in the middle open-hole formation, the annulus drilling
fluid temperature is higher compared with that during the normal circulation when the overflow rate
is greater than leakage rate. On the contrary, the annulus temperature is lower than that during normal
circulation when the overflow rate is less than leakage rate.

4.2. Annulus Temperature Distribution during Different Circulation Time under Multi-Pressure System When
Overflow Rate Is Greater Than Leakage Rate

When the multi-pressure system is located in the middle open formation from 2500 m to 3500 m,
the annulus temperature distribution during the circulation for 0 h, 1 h, 2 h, 4 h, and 8 h is shown
in Figure 7a. Since the deeper annulus temperature is lower than that of the corresponding deeper
formation, the longer the circulation time of drilling fluid is, the more heat in the deeper formation is
taken away by the drilling fluid. Then the formation temperature is gradually cooled down, so the
annulus temperature gradually decreases at the same depth. The heat in the deeper annulus then is
transferred to the shallower annulus, and the longer time the drilling fluid circulates, the higher the
upper annulus temperature is.

As shown in Figure 7b, when the multi-pressure system is located at the bottom hole, the annulus
temperature distribution during circulation for 0 h, 1 h, 2 h, and 4 h. The trend is basically consistent
with the temperature distribution law shown in Figure 8a.
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Figure 8. Annulus temperature distribution under multi-pressure system, only overflow or only
leakage; (a,b) show conditions when the multi-pressure system is located in middle formation and at
bottom hole, respectively.

4.3. Annulus Temperature Distribution under Multi-Pressure System, Only Overflow or Only Leakage

As shown in Figure 8a, the multi-pressure system is located in open-hole formation from 2500 m
to 3500 m. As the Figure 9a shows, the annulus temperature increases when the overflow rate is greater
than leakage rate under the multi-pressure system compared with that during normal circulation.
On the contrary, it is smaller than that during normal circulation. The temperature variation is most
significant in the annulus where the multi-pressure system is located; however, the temperature in
the deeper part of the annulus is almost unaffected, and the temperature in the shallower part of
the annulus decreases as the well depth decreases. Figure 8b shows annulus temperature when the
multi-pressure system is located at the bottom hole. Since drilling fluid from the lower annulus
circulates into the upper annulus gradually, so the thermo-physical properties of the whole annulus
drilling fluid is changed. Therefore, compared with the annulus temperature during the normal
circulation, the counterpart of the entire annulus is affected. Moreover, the annulus drilling fluid
temperature changes more in this case than when the multi-pressure system is located in the middle
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open-hole formation. In both cases (a) and (b), only leakage or only overflow creates greater influence
on the annulus temperature than that when leakage and overflow occur synchronously.
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Figure 9. The temperature difference between in annulus and inside drill string when multi-pressure
system, only leakage or only overflow occurs; (a,b) show conditions when the multi-pressure system is
located in middle formation and at bottom hole, respectively.

4.4. The Temperature Difference between inside the Drill String and in Annulus When Multi-Pressure System,
Only Leakage or Only Overflow Occurs

As shown in Figure 9a,b, the drilling fluid temperature difference distribution was obtained after
2-hour circulation when the multi-pressure system was located in the formation from 2500 m to 3500 m
and at bottom hole, respectively. Because the annulus temperature is the same as that inside the drill
string at the bottom hole, the temperature difference is 0. When the well depth is from bottom hole to
1500 m, the temperature difference is positive, indicating that the annulus temperature is higher than
that inside the drill string. When the well depth is less than 1500 m, the temperature difference is less
than 0, indicating that the annulus drilling fluid temperature is lower than that inside the drill string.
If overflow rate is greater than leakage rate under multi-pressure system, the temperature difference in
this case is higher than that during the normal circulation at the same well depth. On the contrary,
the temperature difference is smaller. Obviously, the temperature difference is the largest when only
overflow or only leakage occurs. As shown in Figure 9a,b, the obvious temperature difference variation,
compared with that during the normal circulation, is mainly in annulus from 1500 to 3500 meters.
However, the temperature difference in other parts of the annulus is basically the same when the
multi-pressure system is located in the middle formation. As shown in Figure 10b, temperature
difference when multi-pressure system is located at bottom hole changes significantly from the bottom
hole to the vicinity of the wellhead compared with that during normal circulation.
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4.5. Bottom Hole Temperature Distribution When Multi-Pressure System, Only Overflow or Only Loss
Circulation Occurs

As shown in Figure 10a,b, the bottom-hole temperature decreases firstly and then gradually tends
to stabilize as the circulation time increases. Because the deep formation temperature is higher than
that at the bottom hole, the drilling fluid absorbs heat from the deep formation. As the circulation
time increases, the formation temperature is cooled gradually and the bottom hole temperature
decreases. When the drilling fluid temperature at the bottom hole reaches an equilibrium state with
formation temperature, the former basically remains unchanged. For the same circulation time,
only overflow increases the bottom hole temperature the most, and only leakage decreases the bottom
hole temperature the most the influence on bottom-hole temperature when multi-pressure system
occurs is between them.

4.6. Annulus Temperature Distribution at Different Overflow and Leakage Rates When Multi-Pressure System
Exists

Figure 11a–d shows the annulus temperature distribution at different overflow and leakage rates
after 2 hours of circulation. As shown in Figure 11a,b, it is annulus temperature distribution when
overflow rate is 6 L/s and leakage rate is 1 L/s, 2 L/s and 4 L/s, respectively. Some drilling fluid is lost
into the formation because of leakage; then, the heat from the drilling fluid is carried away during the
process. As the leakage rate increases, so does the heat loss, then the annulus temperature decreases
lower than that in normal condition at the same depth. When the leakage rate continues to increase,
the abrupt change point occurs at 2500 m and 3500 m, and the annulus temperature in this region
is more affected than that in other annulus regions. Figure 11b also shows the annulus temperature
distribution when the overflow rate is 6 L/s, the leakage rates are 1 L/s, 2 L/s, and 4 L/s respectively.
As the overflow rate increases, the flow carries heat from the formation into the annulus, which leads
to temperature increase in the annulus at the same depth. As shown in Figure 11c, when flow rate of
overflow is 6 L/s and the flow rate of leakage gradually increases from 1 L/s, 2 L/s, and 4 L/s, the annulus
temperature gradually decreases at the same well depth. As the leakage rate increases, the more heat
the drilling fluid carries into the formation, the lower the annulus temperature is at the same depth.
Figure 11d shows the annulus temperature distribution when the leakage rate is 6 L/s and overflow
rate gradually increases from 1 L/s, 2 L/s, and 4 L/s. The annulus temperature increases gradually at
the same depth because the fluid from the formation carries heat into the annulus and circulates with
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the drilling fluid into the shallower part of the annulus from the bottom hole, then the temperature
throughout the annulus increases.
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Figure 11. Annulus temperature distribution at different overflow and leakage rates when multi-system
occurs. (a) The flow rate of overflow is greater than that of leakage when the multi-pressure system is
located in the middle open hole formation; (b) The flow rate of overflow is less than that of leakage
when the multi pressure system is located in middle open hole formation; (c) The overflow rate is
greater than leakage rate when the multi pressure system is located at bottom hole; (d) The flow rate of
overflow is less than that of leakage when the multi pressure system is located at bottom hole.

5. Analysis of the Influence of Coupled Temperature and Pressure on Viscosity and Density of
Drilling Fluid

5.1. Normal Circulation

Density and viscosity of drilling fluid are positively correlated with temperature and negatively
correlated with pressure. As shown in Figure 12a,b, During normal circulation, with the increase of
circulation time, the pressure variation is not obvious for the same well depth, but the temperature of
annulus near borehole gradually decreases, so the density and viscosity increase gradually, especially
the annulus drilling fluid near the bottom hole. But from the bottom hole up, the density and viscosity
vary less and less. Because, the temperature of the shallower annulus has a tendency to increase
gradually with the increase of circulation time, so the density and viscosity gradually decrease.
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5.2. Under Multi-Pressure System

After circulating for 3 h, when the multi-pressure system is located in the middle formation or
at the bottom hole, the variation of density and viscosity at different overflow and leakage rates is
shown in Figure 13a–d, respectively. No matter where the multi-pressure system is located, the density
increases with the different overflow and leakage rates. When only leakage occurs, the density variation
is the smallest. In other cases, the density variation is more obvious than that in the former case.
However, when the overflow rate is greater than the leakage rate, the density variation is the largest.
When the density of formation fluid is higher than that of drilling fluid, the density of mixed fluid in
this part of the annulus is reduced because of leakage and is increased because of overflow. So the
density variation is greatest when the overflow rate is greater than the leakage rate; the condition that
only leakage occurs hardly affects the density of the drilling fluid, and the influencing degree of other
cases is between them.
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Figure 13. Variation of density and viscosity at different overflow and leakage rates. (a) Variation of
density when the multi-pressure system is located in the middle formation; (b) Variation of viscosity
when the multi-pressure system is located in the middle formation; (c) Variation of density when the
multi-pressure system is located at bottom hole; (d) Variation of viscosity when the multi-pressure
system is located at bottom hole.

Regardless of where the multi-pressure system is located in the middle formation or at the bottom
hole or how the leakage rate and overflow rate change according to the four cases, the viscosity of
the drilling fluid decreases. In addition, at the same depth, the viscosity of the drilling fluid is the
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maximum when only leakage occurs, and the minimum when only overflow occurs. Otherwise,
the viscosity is between them. Since the viscosity of formation fluid is smaller than that of drilling
fluid, the only leakage increases the solid phase ratio and significantly increases the viscosity of the
drilling fluid, while the only overflow dilutes the drilling fluid directly in this part of the annulus
resulting in a significant decrease in the viscosity.

6. Analysis of Key Factors Influencing Bottom-Hole Pressure under Multi-Pressure System

6.1. Normal Circulation

As shown in Figure 14a, when the pump rate remains unchanged, the bottom-hole pressure
increases rapidly with the increase of circulation time; then, the bottom-hole pressure tends to be
constant after circulation for 3 h. When the circulation time is the same, if the pump rate continues to
increase, the bottom-hole pressure starts to increase significantly and then increases slowly when the
pump rate increases from 25 L/s to 30 L/s. As the circulation time increases, the temperature and density
of the deep annulus gradually decrease, so the bottom-hole pressure gradually increases. When the
annulus temperature reaches equilibrium, the bottom-hole pressure basically stays constant. For the
same circulation time, if the pump rate is higher, the more heat is taken away from the annulus near the
bottom hole, the greater the temperature drop is, so the bottom-hole pressure is higher. As shown in
Figure 14b, the variation of bottom-hole pressure over time is the same as that in Figure 14a. When the
circulation time is the same, but the inlet temperature increases, the bottom-hole pressure decreases
gradually. This is because when the inlet temperature remains the same, the longer the circulation
time is, the annulus temperature near the bottom hole gradually decreases, then the density gradually
increases, so the bottom-hole pressure is higher. For the same circulation time, the higher the inlet
temperature is, the lower the density of the annulus near the bottom hole is, so the bottom-hole pressure
at the bottom of the well is higher.
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Figure 14. Variation of bottom-hole pressure at different pump rate and inlet temperature. (a) Variation
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6.2. Under Multi-Pressure System

As shown in Figure 15a,b, when the multi-pressure system is located in the middle formation
or at the bottom hole, the bottom-hole pressure increases with the circulation time under different
overflow and leakage rates. The impact on bottom-hole pressure is greatest when the overflow rate is
greater than the leakage rate, because the overflow significantly increases the density of the mixed
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fluid, resulting in increased bottom-hole pressure. Several other conditions affect bottom-hole pressure
to a degree between the only leakage and the overflow rate being greater than the leakage rate.Energies 2019, 12, x FOR PEER REVIEW 19 of 25 
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Figure 15. Variation of bottom-hole pressure at different overflow and leakage rates. (a) Variation of
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bottom-hole pressure when multi-pressure system is located at bottom hole.

7. Conclusions

According to the law of energy conservation, the coupled temperature distribution prediction
model of wellbore and formation is established. Meanwhile, the key factors affecting annulus
temperature distribution and bottom-hole pressure are analyzed, and the following conclusions are
obtained:

(1) As the circulation time increases, annulus temperature decreases gradually in the deeper part and
increases gradually in the shallower part, no matter where the multi-pressure system is located.

(2) When the multi-pressure system is located in the middle formation from 2500 m to 3500 m,
annulus temperature in this area is most affected; however, the annulus temperature above 2000 m
and below 4000 m is almost unaffected. If the multi-pressure system is located at the bottom hole,
the annulus temperature from the bottom hole to the mud line is affected, and the temperature
above the mud line is basically unchanged.

(3) Whenever overflow occurs, the annulus temperature increases, or leakage occurs, the annulus
temperature decreases. However, the annulus temperature increases the most when only overflow
occurs and decreases the most when only leakage occurs.

(4) Compared with the normal circulation, the temperature difference between inside drill string and
in annulus in the middle well depth is more affected than in other areas along the borehole no
matter where the multi-pressure system is located. What is more, only overflow or only leakage
has the largest influence on temperature difference.

(5) If the overflow rate is constant and leakage rate keeps increasing, then the annulus temperature
gradually decreases; otherwise, it keeps rising at the same depth.

(6) During normal circulation, bottom-hole pressure increases with increase of pump rate and
decreases with the increase of inlet temperature. When the overflow rate is greater than leakage
rate, the density of drilling fluid and bottom-hole pressure increases the most, and the only
leakage has the least increase; the effect of the other cases listed on bottom-hole pressure is
between them.
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Nomenclature

hpi convective heat transfer coefficient of drill string inside wall, W/(m2
·
◦C)

hpo convective heat transfer coefficient of drill string outside wall, W/(m2
·
◦C)

hw convective heat transfer coefficient of the borehole, W/(m2
·
◦C)

Uap
the comprehensive convective heat transfer coefficient between drilling fluid in the drill
string and drilling fluid in the annulus, W/(m2

·
◦C)

Uaf
the comprehensive convective heat transfer coefficient between drilling fluid in the
annulus and the formation, W/(m2

·
◦C)

λw heat conductivity coefficient of borehole, W/(m·◦C)
λp heat conductivity coefficient of drill string, W/(m·◦C)
λf heat conductivity coefficient of formation, W/(m·◦C)
λcem heat conductivity coefficient of cement sheath, W/(m·◦C)
λeff effective heat conductivity coefficient of formation, W/(m·◦C)
λl heat conductivity coefficient of fluid in the formation, W/(m·◦C)
λ2 heat conductivity coefficient of mixed fluid in annulus, W/(m·◦C)
dpi inside diameter of drill string, mm
dcemi inside diameter of cement sheath, mm
dcemo outside diameter of cement sheath, mm
dpo outside diameter of drill string, mm
Tp drilling fluid temperature in drill string, ◦C
Tpi inside wall temperature of drill string, ◦C
Tpo outside wall temperature of drill string, ◦C
Ta drilling fluid temperature in annulus, ◦C
Tw wall temperature of the well, ◦C
Tf temperature of the formation, ◦C
Tsurf surface temperature, ◦C
T0 bottom-hole temperature inside the drill string, ◦C
T1 bottom-hole temperature of the drill string, ◦C
T2 bottom-hole temperature in annulus, ◦C
T3 seawater temperature, ◦C
Tin inlet temperature of the drill string, ◦C
ρs density of seawater, kg/m3

ρp density of the drilling fluid inside the drill string, kg/m3

ρa density of the drilling fluid in annulus, kg/m3

ρeff effective fluid density with in the formation, kg/m3

ρm mixed fluid density within the formation, kg/m3

ρ0 original density of the drilling fluid inside the drill string, kg/m3

ρi density of each fluid phase, kg/m3

cs specific heat capacity of seawater, J/(kg·◦C)
cp specific heat capacity of the drilling fluid inside the drilling string, J/(kg·◦C)
ca specific heat capacity of the drilling fluid in the annulus, J/(kg·◦C)
ceff specific heat capacity of fluid information, J/(kg·◦C)
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Qcp friction heat source of the drilling fluid inside the drill string, W/m3

Qca friction heat source of the drilling fluid in the annulus, W/m3

Q
′

ca friction heat source of the drilling fluid in the annulus of the multi-system pressure, W/m3

Qm pump rate of the drilling fluid inside the drill string, m3/s
Qa pump rate of the drilling fluid in the annulus, m3/s
Qk flow rate of overflow of fluid in the formation, m3/s
Ql flow rate of leakage of fluid in the formation, m3/s
ϕ porosity of formation rock
va flow rate of drilling fluid in annulus, m/s
vkk the flow rate of overflow of each sublayer in a multi-pressure system, m/s
vll the flow rate of leakage of each sublayer in a multi-pressure system, m/s
vi the flow rate of each fluid phase, m/s
Ai the area of the flow cross section, m2

K absolute permeability of isotropic porous medium
K1 relative permeability
P intrinsic average pressure of formation, Pa
Pfi Annulus friction pressure loss
H well depth, m
h the depth of a well at a given location, m
G geothermal gradient, ◦C/m
yml depth of mudline
µ velocity in the x direction, m/s
vr seepage velocity of fluid information, m/s
χ experimental measurement coefficient

Appendix A. Model Solution

The model established in this paper is discretized by finite difference method. The first-order space uses the
first-order windward scheme, the first-order time uses two points for backward difference, and the second-order
space uses three points for central difference. The meshing method of wellbore and formation is shown in
Figure A1.
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1 , , , 1 , , 1 , 1 1. ,( ) ( ) ( ) ( ) ( )n n n n n n n n n

i j i j i j i j i j i j i j i j ca iD T T E T T F T T G T T Q−
− + +− = − + − + − +  (A5) 

Equation (A5) can be rewritten as follows: 

1 , 1 1, 1 , 1 , 1 ,
n n n n n
i j i j i j i j i ja T b T c T dT U+ + −+ + + =  (A6) 

Figure A1. Schematic diagram of mesh grids of wellbore and formation.



Energies 2019, 12, 3533 23 of 27

Appendix A.1. Heat Transfer Model Discretization of Drilling Fluid in Drill String

π

4
dpi

2 ∂[ρpcpTp]

∂t
= Uapπdpi(Ta − Tp) + Qm

∂[ρpcpTp]

∂y
+ Qcp (A1)

Making A1 =
πdpi

2ρpcp

4∆t , B = πUapdpi, C =
ρpcpQm

∆y , Then,

A1(Tn
i, j − Tn−1

i, j ) = B(Tn
i, j+1 − Tn

i, j) −C1(Tn
i, j − Tn

i−1, j) + (Qcp)
n
i (A2)

Equation (A2) can be rewritten as:
aTn

i, j + bTn
j, j+1 + cTn

i−1, j = Un
i, j (A3)

where, a = A1 + B + C1, b = −B, c = −C1, Un
i, j = A1Tn

i, j + (Qcp)
n
i .

Appendix A.2. Heat Transfer Model Discretization of Drilling Fluid in Annulus

Appendix A.2.1. The Multi-Pressure System Is Located in the Middle Section of the Formation

(1) Heat transfer equation of the lower annulus can be written as follows:

π

4
(dw − dpo

2)
∂[ρacaTa]

∂t
= Uapπdpo[Ta − Tp] + hwπdw[Ta − Tw] + Qm

∂[ρacaTa]

∂y
+ Qca (A4)

Making D1 =
π(dw

2
−dp

2)ρaca

4∆t , E = πdpoUap, F = πdwUa f , G1 =
Qaρaca

∆y , Then

D1(Tn
i, j − Tn−1

i, j ) = E(Tn
i, j−1 − Tn

i, j) + F(Tn
i, j+1 − Tn

i, j) + G1(Tn
i+1 j − Tn

i, j) + (Qca)
n
i (A5)

Equation (A5) can be rewritten as follows:

a1Tn
i, j + b1Tn

i+1, j + c1Tn
i, j+1 + dTn

i, j−1 = Un
i, j (A6)

where, a1 = D1 + E + F + G1, b1 = −G1, c1 = −F, d1 = −E, Un
i, j = D1Tn−1

i, j + (Qca)
n
i .

(2) Heat transfer equation of the upper annulus can be written as follows:

π

4
(dw−dpo

2)
∂[ρa

′ca
′Ta]

∂t
= Uap

′πdpo[Ta−Tpo] +U f a
′πdw[T f −Ta] + (va +

n∑
k=1

vkk −

n−1∑
l=2

vll)
∂[ρa

′ca
′Ta]

∂y
+Qca

′ (A7)

Making D1 =
π(dw

2
−dpo

2)ρa
′ca
′

4∆t , E = πdpoUap
′, F = πdwUa f

′, G1 =
ρa
′ca
′(Qa+Qk−Ql)

∆y , then

D1(Tn
i, j − Tn−1

i, j ) = E(Tn
i, j−1 − Tn

i, j) + F(Tn
i, j+1 − Tn

i, j) + G1(Tn
i+1, j − Tn

i, j) + (Qca
′)n

i (A8)

Equation (A5) can be rewritten as follows:

a1Tn
i, j + b1Tn

i+1, j + c1Tn
i, j−1 + d1Tn

i, j+1 = Un
i, j (A9)

where, a1 = D1 + E + F + G1, b1 = −G1, c1 = −E, d1 = −F, Un
i, j = D1Tn−1

i, j + (Qca
′)n

i .
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Appendix A.2.2. When the Multi-Pressure System Is Located at Bottom Hole, the Whole Annulus Is
Affected by the Multi-Pressure System. Therefore, Its Heat Transfer Model and Discrete Method Are
the Same as the Upper Annulus Model when the Multi-Pressure System Appears in the Middle Open
Hole Formation

Appendix A.3. The Heat Transfer Mode in the Formation and Seawater

The heat transfer mode in the formation and seawater is radial heat conduction, so the heat transfer model
and discrete method are the same. Therefore, only the heat transfer equation inside the formation is discretized
to illustrate.

(ρc)e f f
∂Ti(x, y, t)

∂t
= λe f f

∂2T f (x, y, t)

∂2x
+
λe f f

x

∂T f (x, y, t)

2x
(A10)

Making H1 =
(ρc)e f f ∆r
λe f f ∆t , K = 1

∆r , then

H1(Tn
i, j − Tn−1

i, j ) = K(Tn
i, j+1 − 2Tn

i, j + Tn
i, j−1) +

1
r j
(Tn

i, j+1 − Tn
i, j) (A11)

Equation (A11) can be rewritten as follows:

a2Tn
i, j + b2Tn

i+2, j + c2T j
i−1 = Un

i, j (A12)

where, a2 = H1 + 2K + 1
r j

, b2 = −(K + 1
r j
), c2 = −K, Un

i, j = H1Tn−1
i, j .

Appendix A.4. Heat Transfer Equation of Boundary between Strata and Annulus Can Be Written as Follows

πdwUa f (T f − Ta) = πdwλe f f (
∂T f

∂r
), makingM =

Ua f ∆r

λe f f
(A13)

Equation (A13) can be rewritten as follows:

(M + 1)Tn
i, j −MTn

i, j−1 − Tn
i, j+1 = 0 (A14)

Appendix A.5. The Dispersion of the Momentum Equation

Pn
i Ai − Pn

i−1Ai−1

∆z
=

(ρv)n
i Ai − (ρv)n−1

i Ai

∆t
+

(ρv2)
n
i Ai − (ρv2)

n
i−1Ai−1

∆z
−

(P f i)
n
i Ai − (P f i)

n
i−1Ai−1

∆z
− gAiρ

n
i (A15)

Making the ψ = Ai−1/Ai, Equation (A15) can be changed as:

Pn
i −ψPn

i−1 =
∆z
∆t

[(ρv)n
i − (ρv)n−1

i + (ρv2)
n
i −ψ(ρv2)

n−1
i − ((P f i)

n
i −ψ(P f i)

n
i−1)] − gρn

i (A16)

Figure A2 shows the flow chart of solution process.
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