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Abstract: Continuation power flow (CPF) calculation is very important for analyzing voltage
stability of power system. CPF calculation needs to deal with non-smooth constraints such as the
generator buses reactive power limits. It is still a technical challenge to determine the step size
while dealing with above non-smooth constraints in CPF calculation. In this paper, an asymptotic
numerical method (ANM) based on Fischer-Burmeister (FB) function, is proposed to calculate CPF.
We first used complementarity constraints to cope with non-smooth issues and introduced the FB
function to formulate the complementarity constraints. Meanwhile, we introduced new variables for
substitution to meet the quadratic function requirements of ANM. Compared with the conventional
predictor-corrector method combining with heuristic PV-PQ (PV and PQ are used to describe bus
types. PV means that the active power and voltage of the bus are known. PQ means that the active
and reactive power of bus are known.) bus type switching, ANM can effectively solve the PV-PQ bus
type switching problem in CPF calculation. Furthermore, to assure high efficiency, ANM can rapidly
approach the voltage collapse point by self-adaptive step size adjustment and constant Jacobian
matrix used for power series expansion. However, conventional CPF needs proper step set in advance
and calculates Jacobian matrix for each iteration. Numerical tests on a nine-bus network and a 182-bus
network validate that the proposed method is more robust than existing methods.

Keywords: continuation power flow; non-smooth constraints; asymptotic numerical method;
complementarity constraints; Fisher–Burmeister function; predictor-corrector method

1. Introduction

Power flow calculation is one of the most basic calculation in power system analysis, and it is also
the basis of power system stability calculation and fault analysis [1]. Continuation power flow (CPF)
calculation combines the continuous method with the static power flow of power system, which is
widely used in static voltage stability analysis of power system [2–8]. However, it is still a technical
challenge to deal with the non-smooth constraints such as the reactive power limits violation in CPF
calculation [9].

The reactive power limit in CPF calculation has important effects on the voltage stability limit of
power system. The traditional method of solving reactive power limit is the logical switch of PV-PQ
(PV and PQ are used to describe bus types. PV means that the active power and voltage of the bus
are known. PQ means that the active and reactive power of bus are known.) bus type. In [10], a
new definition of bus types was presented. The solvability criteria and solution method of bus-type
extended power flow are given. And the double switching logic of the new bus types is given to handle
the reactive power limits of generators. It is complicated to deal with PV-PQ switch by traditional
logic switch method. In [11], a CPF method which considers the reactive limits of generators as a part
of the algorithmic procedure was proposed. Lagrange polynomial interpolation formula is used to
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find the Q-limit breaking point indices. Then the algorithmic continuation steps would be guided by
skipping to the closest Q-limit breaking point, consequently reducing the number of continuation steps
and saving computational time. With the development of power system research, complementary
constraints have been introduced into CPF calculation to deal with the problem of reactive power limit,
which greatly improves the solving efficiency.

Reactive power limits can be formulated as complementarity constraints. By using complementary
constraints to describe the switching relationship of PV-PQ bus type, the relationship between reactive
power and voltage of the bus can be effectively considered without making logical judgment in
the process of power flow (PF) iteration. References [12,13] stated that limit-induced constraints on
exchange may induce PF divergence. An optimization based model was proposed in [14] to cope
with complementarity constraints and was solved using interior point method (IPM). This method is
relatively time-consuming since the PF equations are replaced by a constrained optimization problem.
To guarantee PF global convergence, in [15,16], trust region based method was proposed to cope with
complementarity constraints, whose computation burden even more heavy.

Predictor-corrector method is a conventional CPF calculation method. It involves the prediction
of next solution point and correcting the prediction to get the next point on the curve. It includes
four parts: prediction, correction, step size control, and parameterization. The values of variables and
parameters along the solution curve can be parameterized in a number of ways [17,18].

The contributions of this paper are as follows:

(1) In this paper, a new CPF calculation method based on asymptotic numerical method (ANM) is
proposed, which can only cope with quadratic functions. PV-PQ bus type switch is reformulated
by Fischer-Burmeister (FB) functions. FB function is also transformed into quadratic equation
to meet the requirements of ANM. Then, ANM is used to calculate the continuous power flow
and more robust than predictor-corrector based method to cope with constraints exchange issue.
Conventional buses type switch logic methods in CPF, as the number of PV buses changing to PQ
increases, the use of logical judgment inevitably increases the burden of calculation, even causing
the power flow calculation failed.

(2) Compared with the conventional predictor-corrector method, ANM can quickly approach the
voltage collapse point by self-adaptive step size adjustment and constant Jacobian matrix used
for power series expansion, thus greatly improving the CPF calculation efficiency.

2. Establishment and Solution of ANM-CPF

2.1. Semi-Smooth Quadratic Power Flow Equations

The power flow problem is formulated as a set of nonlinear mismatch equations for active and
reactive power, as follows,

For a network with N buses, active and reactive power satisfy that:

Pi − ei

N∑
j=1

(Gi je j − Bi j f j) − fi
N∑

j=1

(Gi j f j + Bi je j) = 0, (1)

Qi − fi
N∑

j=1

(Gi je j − Bi j f j) + ei

N∑
j=1

(Gi j f j + Bi je j) = 0, (2)

where Pi, Qi are active power and reactive power of bus i, ei, fi are real and imaginary part of bus i
voltage, Gi j, Bi j are conductance and susceptance matrix elements respectively.

For PV buses, Equation (2) can be replaced by the equation of voltage:

(Uset
i )

2
− e2

i − f 2
i = 0, (3)
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where Uset
i is voltage target of PV buses.

For voltage control buses PV and slack bus, when the reactive power exceeds the lower limit, the
bus reactive power is set to the lower limit. When the reactive power exceeds the upper limit, the
bus reactive power is set to the upper limit. When the bus reactive power does not exceed the limit
maintain the original value.

Describe the above relationship with complementary constraints as follows:

√
e2

i + f 2
i = Uset

i + U+
i −U−i , U+

i ≥ 0, U−i ≥ 0(
Qi −Qmin

i

)
⊥U+

i = 0, ∀i ∈ {PV, Slack}(
Qmax

i −Qi
)
⊥U−i = 0, ∀i ∈ {PV, Slack}

Qmin
i ≤ Qi ≤ Qmax

i

, (4)

where Qmax
i and Qmin

i represent the maximum and minimum limits of reactive power of bus i
respectively, U+

i and U−i are slack variables for voltage regulation. There is a general rule of power
system. When the reactive power of power system is greater than the maximum limit, the voltage
regulation target will be lowered by −U−i , when the reactive power of power system is less than the
minimum limit, the voltage regulation target will be enlarged by +U+

i .
To cope with the complementarity constraints u⊥v, the Fischer-Burmesiter (FB) function [19],

is introduced:
φ(u, v) = u + v−

√
u2 + v2 + µ, u ≥ 0, v ≥ 0, (5)

where a slack variable µ = 10−20 is introduced to avoid non-differentiable problem of FB at
(u = 0, v = 0).

In order to turn Equation (5) into a quadratic equation to satisfy the calculation requirements
of ANM, we defined a new variable again for variable substitution, the Equation (5) is converted
as follows:

φ(u, v) = u + v−w, u ≥ 0, v ≥ 0, w ≥ 0, (6)

where w =
√

u2 + v2 + µ.
FB function has nice properties, such as strong semi-smoothness. Moreover, the squared norm of

FB function has a Lipschitz continuous gradient. The FB functions for the complementarity constraints
in the power flow can be arranged as:

U+
i + (Qi −Qmin

i ) −w+ = 0

(w+)
2
− ((U+

i )
2
+ (Qi −Qmin

i )
2
+ µ) = 0

U−i + (Qmax
i −Qi) −w− = 0

(w−)
2
− ((U−i )

2 + (Qmax
i −Qi)

2 + µ) = 0

, (7)

where w+ and w− are intermediate variables.
Finally, power mismatch Equations (1)–(3) and (7) constitute the power flow equations, which can

be solved by using ANM.

2.2. Algorithm of ANM-CPF

The ANM algorithm is a continuous method for high-order prediction using power series
expansion [20]. The solution curve of the nonlinear equation with parameters is segmented, and
the solution curve of each segment can be analytically expressed in the form of closed power series.
The nonlinear problem is transformed into an infinite amount of linear subproblems, and the sum of
the solutions of the first few nonlinear subproblems is used to approximate the real solution. Since the
predicted solution is almost the same as the real solution, the ANM-CPF continuous process does not
require a correction step in general, and the calculation step size can also be adaptively adjusted.
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In order to clearly explain the calculation principle of the ANM algorithm, a two-bus example is
introduced in the Appendix A. The detailed calculation process and results are listed there.

Further decompose the above Equations (1)–(3) and Equation (7) by a homotopy transformation:

f (x,λ) = L(x) + Q(x, x) + λF + H = 0, (8)

where x represents variables, including parameters such as the real and imaginary part of bus voltage
ei, fi, reactive power Qi, and intermediate variables w+ and w−. λ is the scalar embedding parameter
used to describe the increase of active power Pi and reactive power Qi. L and Q represent linear
and bilinear operators respectively in Equations (1)–(3) and (7). F is the increase direction of active
and reactive power at each bus. H is a constant vector consisting of the reactive power limits Qmin

i ,
Qmax

i , slack variable µ, etc. The detailed decomposition process of above power flow equations for the
two-bus network corresponds to (A1) and (A4)–(A7) in Appendix A.

Suppose that (xt,λt) is the tth (t = 0, 1, 2 . . .) computed point, the qth point between tth and (t + 1)th
step can be expressed as the series like:

xq
t = xt +

K∑
p=1

x(p)t (∆s)q

λ
q
t = λt +

K∑
p=1

λ
(p)
t (∆s)q

, (9)

where K is the truncation order of the series, (∆s)q is the step size of qth point between tth and (t + 1)th,

(x(p)t ,λ(p)t ) is the Taylor coefficients.
The maximum step size is divided into M equal parts. And the step size of qth point between tth

and (t + 1)th satisfies:

(∆s)q = q
∆smax

M
, 1 ≤ q ≤M, (10)

where ∆smax is the maximum step size of the tth computed point and when q is equal to M, xq
t = xt+1.

The relationship between step size ∆s and the maximum step size ∆smax for a practical two-bus network
can be seen in the Table A1 in Appendix A.

The Taylor coefficients (x(p)t ,λ(p)t ) at different orders are determined by a series of equations:
Order p = 1:

f t
xv1 = −F(
x(1)t ,λ(1)t

)
= ±(v1, 1)/

√
1 + ‖v1‖

2
2

, (11)

Order p ≥ 2:

f t
xvp = −

p−1∑
r=1

Q(x(r)t , x(p−r)
t )

λ
(p)
t = −λ

(1)
t

〈
vp, x(1)t

〉
x(p)t = vp + λ

(p)
t v1

, (12)

where f t
x is the value of Jacobian matrix at xt, and v1, vp are intermediate variables. Constant

Jacobian matrix at xt is used for each point between xt and xt+1 when using power series expansion.
The calculation of Jacobian matrix and Taylor coefficient in a practical two-bus network corresponds to
(A8) in Appendix A.
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Notice that Q(x(r)t , x(p−r)
t ) is a matrix composed of functions that construct quadratic terms of

the equations:

Q(x(r)t , x(p−r)
t ) =


(x(r)t )

T
∗A1

Q ∗ (x
(p−r)
t )

...

(x(r)t )
T
∗An

Q ∗ (x
(p−r)
t )

, (13)

where Ah
Q (1 ≤ h ≤ n) is a sparse coefficient matrix, the value of n is equal to the dimension of variable x.

The maximum step size ∆smax satisfies:

∆smax = (ε/‖(
K−1∑
r=1

Q(x(r)t , x(K−r)
t )‖)

1
K

, (14)

where ε is the calculation accuracy control parameter. In view of (A9) and (A10) in Appendix A,
the calculation process of the maximum step size ∆smax can be seen clearly.

Given (12) and (14), ∆smax can be rewritten as follows:

∆smax = (ε/‖(− f t
xvK)‖)

1
K . (15)

3. Case Study

In this section, case studies are conducted on a small IEEE nine-bus network and a large 182-bus
network. The detailed data is referred to [21,22]. The comparison between the ANM and the
conventional predictor-corrector method is as follows. Both methods start from the same initial points.

3.1. Example 1: IEEE Nine-Bus Network

3.1.1. Without the Consideration of Reactive Power Limit in CPF

In order to verify the correctness of the ANM, we set the limit of the system reactive power
constraint to infinity. This ensures the PV buses or slack bus do not violate the limit in CPF, so the
reactive power constraints do not work, as shown in Figure 1. When the scalar embedding parameter
λ increases to λ = 1.641, the system load power increases to 2.641 times the initial value. The voltage
stability limit will be reached, causing the system voltage to collapse.
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From Figure 1, we can see that the solutions by using ANM is completely consistent with those
by using the conventional predictor-corrector method in PF iteration. It shows that ANM inherits
the excellent characteristics of high precision, verifying the correctness of the model and algorithm.
In addition, it is easy to conclude that the step size can be adaptively adjusted to improve the calculation
speed in PF iteration by using ANM.

At present, CPF is the most commonly used voltage stability analysis method of large power
systems [23,24]. In order to validate the results of the IEEE nine-bus network, we carried out transient
stability studies in DlgSILENT. The voltage of slack bus 1, PV buses 2 and 3 remain constant until the
scalar embedding parameter λ increases to λ = 1.641. When time = 100 s, increase the load power to
2.641 times the initial value, we can see that the voltage of bus 1, 2, and 3 constantly oscillate during the
subsequent iterative process, as shown in Figure 2. It proves that the system voltage will be unstable
when it reaches the voltage stability limit, which is consistent with the calculation of CPF.

Energies 2019, 12, x FOR PEER REVIEW 6 of 18 

At present, CPF is the most commonly used voltage stability analysis method of large power 
systems [23,24]. In order to validate the results of the IEEE nine-bus network, we carried out transient 
stability studies in DlgSILENT. The voltage of slack bus 1, PV buses 2 and 3 remain constant until the 
scalar embedding parameter λ  increases to 1.641λ = . When time = 100 s, increase the load power 
to 2.641 times the initial value, we can see that the voltage of bus 1, 2, and 3 constantly oscillate during 
the subsequent iterative process, as shown in Figure 2. It proves that the system voltage will be 
unstable when it reaches the voltage stability limit, which is consistent with the calculation of CPF. 

 

 
Figure 2. Voltage transient stability analysis results of bus 1, 2, and 3. 

In view of (15), ( )t
x Kf v−  can be understood as the vertical increment of function ( , )f x λ  at 

point ( , )t tx λ . When the PV curve gently changes, the vertical increment is small, the maximum step 
size is large, whereas, when the curve steeply changes, the vertical increment is large, the maximum 
step size is small. So the step size adaptive adjustment can be realized, as shown in Figure 3. The 
maximum step size at different points on IEEE nine-bus network can be seen in Figure 4. From Figure 
4, we can see that the maximum step size near the voltage bifurcation point is smaller than other 
points. It can be further verified that the step size of ANM can be adjusted adaptively. 

105.00103.00101.0099.0097.0095.00 [s]

1.30

1.10

0.90

0.70

0.50

0.30

[p.u.]

G1: Voltage, Magnitude
G2: Voltage, Magnitude
G3: Voltage, Magnitude

D
I
SI
LE

N
T

Figure 2. Voltage transient stability analysis results of bus 1, 2, and 3.

In view of (15), ‖(− f t
xvK)‖ can be understood as the vertical increment of function f (x,λ) at point

(xt,λt). When the PV curve gently changes, the vertical increment is small, the maximum step size is
large, whereas, when the curve steeply changes, the vertical increment is large, the maximum step size
is small. So the step size adaptive adjustment can be realized, as shown in Figure 3. The maximum
step size at different points on IEEE nine-bus network can be seen in Figure 4. From Figure 4, we can
see that the maximum step size near the voltage bifurcation point is smaller than other points. It can
be further verified that the step size of ANM can be adjusted adaptively.
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3.1.2. Consideration of Reactive Power Limit in CPF

Considering reactive power limit in CPF, the reactive power limit data of IEEE nine-bus network
can be referred to [21]. When scalar embedding parameter λ increases to λ = 1.533, the system load
power increases to 2.533 times the initial value. The reactive power of bus 1 will violate its reactive
power limit, causing the system voltage to collapse, as shown in Figure 5.

The comparison on the central processing unit (CPU) time for both methods is listed in Table 1.
In view of Equations (11) and (12), ANM can reduce the time of calculating Taylor coefficient by
using constant Jacobian matrix at each point between xt and xt+1 when using power series expansion.
The constant Jacobian matrix can lessen calculative burden on the premise of ensuring the accuracy
of calculation. However, conventional CPF needs to calculate the Jacobian matrix for each iteration.
It can be seen that ANM-CPF using constant Jacobian matrix for power series expansion assure the
proposed method more efficient.
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Table 1. Calculation time of one point in PV curve for both methods.

Method ANM-CPF Conventional CPF

Average CPU time for each point/s 4.01× 10−4 2.34× 10−2

When the reactive power of some PV buses and slack bus violate their limits, they are converted to
PQ buses or Qθ (Qθ is used to describe bus types, which means that the reactive power and phase angle
of the bus are known) bus respectively. In the nine-bus system, the conventional predictor-corrector
method cannot smoothly realize the PV-PQ bus switching. The step size is s = 0.01. The PV curves of
bus 9 for both methods are as follows. The points of PV curve are sparse near the voltage bifurcation
point by using the conventional predictor-corrector method, which is not suitable for obtaining accurate
maximum load point. But the ANM can smoothly realize the PV-PQ bus switching and the step size is
automatically small near the voltage bifurcation point because of the self-adaptive adjustment. The PV
curve can be smoothly drawn, as shown in Figure 6. Correspondingly, no matter how small the step
size of conventional predictor-corrector CPF is, the points are still sparse near the voltage bifurcation
point, as shown in Figure 7.Energies 2019, 12, x FOR PEER REVIEW 9 of 18 
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solutions are almost the same as the real solutions. The higher the accuracy of variables for ANM,
the less influences on the results. At meanwhile, the calculated solutions are closer to the real solutions.

The comparison on the CPU time for different µ is listed in Table 2. We can see that when µ takes
different values, there is little difference in CPU time consumed. But ANM still consumes less time and
computes more efficiently than conventional predictor-corrector method.

Table 2. Comparison on the central processing unit (CPU) time for different µ.

Slack Variable µ = 10−7 µ = 10−20

Average CPU time for each point/s 3.60× 10−4 3.52× 10−4

3.2. Example 2: A Large 182-Bus Network

3.2.1. Computation of ANM-CPF

For a 182-bus network, the results of conventional predictor-corrector method are not convergent
with the consideration of reactive power limit when the scalar embedding parameter λ increases to
λ = 0.01. The PV buses or slack bus can be converted to PQ buses or a Qθ () bus when the reactive
power violates their limits by using conventional predictor-corrector method. However, the switch
cannot be recovered if the violation temporarily disappears in the sequential iterations. Once the
PV buses or slack bus are converted to PQ buses or a Qθ bus, they cannot be converted back to PV
buses or slack bus when the reactive power do not violate the limit, which is not consistent with the
actual situation. But ANM can calculate the correct solutions when the scalar embedding parameter λ
increases to λ = 1.340, the reactive power of bus 70 will violate its reactive power limit causing the
system voltage to collapse. We calculated the PV curve of PQ buses, and selected two buses to display,
as shown in Figure 10. It further proved that ANM is more robust than conventional predictor-corrector
method from the above discussion.
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3.2.2. Computation Failures of Conventional CPF

Conventional buses type switch logic methods in CPF, as the number of PV buses changing to PQ
increases, the use of logical judgment inevitably increases the burden of calculation, even causing the
power flow calculation failing or converging to the wrong solution. When λ = 0.01, from Figure 11,
we can see the PV-PQ bus switching strategy leads the conventional predictor-corrector power flow
diverging in the large system, and the conventional predictor-corrector method first changed PV buses
59, 65, 103, 19, 34, 92, and 105 to PQ buses at position 1O, then converged in five iterations. On sequential
iteration, PV buses 49, 55, 56, 61, and 62 changed to PQ buses at position 2O and converged in four
iterations; PV bus 54 became a PQ bus at position 3O; and, finally, PV bus 66 became a PQ bus at position
4O. However, due to the number constantly oscillated during the iterative process, the conventional

predictor-corrector power flow solution did not converge after 50 iterations from 4O. When λ = 0.01,
the correct solutions are that PV buses 59, 65, 56, 55, 61, 62, 54, 49, 103, and 66 are changed to PQ
buses. Compared to the real solutions, we can see that the conventional predictor-corrector method
mistakenly changes the PV buses 19, 34, 92, and 105 to PQ buses because of false logic judgment, which
leads to the wrong results during the iteration.
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3.2.3. The Reason for the Proposed Method Working

Now let us explain why our proposed method is feasible and effective in the CPF calculation
process considering non-smooth constraints exchange issue.

There is a sharp corner at the constraints exchange stage from Qi −Qmin
i to U+

i = 0, where the
conventional CPF method cannot obtain an accurate direction, which can be mistakenly fixed to PQ
buses and cannot go back to PV buses. However, the proposed ANM-CPF based on FB function can
solve the problem of the constraints exchange positions at the sharp corner better. It can obtain its local
maximum successfully near the sharp point since the direction becomes more smoothly.

4. Conclusions

In this paper, we proposed a CPF calculation method based on the asymptotic numerical method.
The algorithm step size can be adaptively adjusted, in addition we introduced a new variable for
substitution to meet the calculation requirements of ANM, thus effectively dealing with the problem
of reactive power limit. It has certain practicability in solving the problem of CPF in power systems.
The small and large power system verify the robustness and efficiency of the proposed method.
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Abbreviations

The following abbreviations are used in this manuscript:

CPF continuation power flow
ANM asymptotic numerical method
PF power flow
FB Fischer-Burmeister
CPU Central processing unit
PV PV is used to describe bus types, which means that the active power and voltage of the bus are known.
PQ PQ is used to describe bus types, which means that the active and reactive power of bus are known.
Qθ Qθ is used to describe bus types, which means that the reactive power and phase angle of the bus are known

Appendix A

Here we use a two-bus example to add explanation of ANM calculation principles, as shown in Figure A1.
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In the two-bus power system, bus 1 is a slack bus and bus 2 is a PV bus. Set the parameter values:

P = 1.5, V2 = 0.95∠θ, Qmax
1 = Qmax

2 = 15, Qmin
1 = Qmin

2 = −15

Node Admittance Matrix:

G + jB =
[
− j10 j10
j10 − j10

]
Define variable x:

x = [e1, f1, e2, f2, Q1, Q2, V1+, V1−, V2+, V2−,
∣∣∣V1

∣∣∣, ∣∣∣V2
∣∣∣, w1+, w1−, w2+, w2−]

T
(A1)

where x1∼4 represent the real and imaginary parts of bus 1,2, x5∼6 represent the reactive power of bus 1,2, x7∼10 are
slack variables for voltage regulation, x11∼12 are the voltage amplitude of bus 1,2, and x13∼16 are slack variables for
variable substitution.

The power flow equations are as follows:

f1 = 0
B21 f2 + 5(λ+ 1)P = 0
Q1 − (−B11e2

1 − B11 f 2
1 − B12e1e2 − B12 f1 f2) = 0

Q2 − (−B21e2
2 − B21 f 2

2 − B22e1e2 − B22 f1 f2) = 0
e2

1 + f 2
1 − |V1|

2 = 0
e2

2 + f 2
2 − |V2|

2 = 0
V1 + V1+ −V1−−

∣∣∣V1
∣∣∣= 0

V2 + V2+ −V2−−
∣∣∣V2

∣∣∣= 0
V1+ + (Q1 −Qmin

1 ) −w1+ = 0

(w1+)
2
− ((V+

1 )
2
+ (Q1 −Qmin

1 )
2
+ µ) = 0

V1− + (Qmax
1 −Q1) −w1− = 0

(w1−)
2
− ((V−1 )

2 + (Qmax
1 −Q1)

2 + µ) = 0
V2+ + (Q2 −Qmin

2 ) −w2+ = 0

(w2+)
2
− ((V+

2 )
2
+ (Q2 −Qmin

2 )
2
+ µ) = 0

V2− + (Qmax
2 −Q2) −w2− = 0

(w2−)
2
− ((V−2 )

2 + (Qmax
2 −Q2)

2 + µ) = 0

. (A2)

Further decompose the above Equation (A2) by a homotopy transformation:

f (x,λ) = L(x) + Q(x, x) + λF + H = 0. (A3)

In the two-bus example, the matrix L is composed of one term in the PF constraint equation. The matrix Q
is composed of quadratic terms in the PF equation. The matrix F represents the initial values of bus active and
reactive power, and the matrix H represents constants, such as reactive power limit, slack variable µ, initial voltage
value, etc. The detailed values are shown below.

L(x) =



f1
B21 f2

0
0
0
0

V1+ −V1−−
∣∣∣V1

∣∣∣
V2+ −V2−−

∣∣∣V2
∣∣∣

V1+ + Q1 −W1+
2Qmin

1 Q1
V1− −Q1 −W1−

2Qmax
1 Q1

V2+ + Q2 −W2+
2Qmin

2 Q2
V2− −Q2 −W2−

2Qmax
2 Q2



= AL ∗ x, (A4)

where AL is a sparse coefficient matrix:
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The storage format of the coefficient matrix is defined: A[a, b, y] means that the ath row and bth column of the
matrix is y. The values of the rest of elements in the matrix are zero.

The values of the sparse coefficient matrix AL are as follows:

AL : [1, 2, 1], [2, 4, B21], [7, 7, 1], [7, 8,−1], [7, 11,−1], [8, 8, 1], [8, 9,−1], [9, 5, 1], [9, 7, 1], [9, 13,−1], (10, 5, 2Qmin
1 ],

[11, 5,−1], [11, 8, 1], [11, 14,−1], [12, 5, 2Qmax
1 ], [13, 6, 1], [13, 9, 1], [13, 15,−1], [14, 6, 2Qmin

2 ], [15, 6,−1],
[15, 10, 1], [15, 16,−1], [16, 6, 2Qmax

2 ]

Q(x, x) =



0
0

B11e2
1 + B11 f 2

1 + B12e1e2 + B12 f1 f2
B21e2

2 + B21 f 2
2 + B22e1e2 + B22 f1 f2

e2
1 + f 2

1−
∣∣∣V1

∣∣∣2
e2

2 + f 2
2−

∣∣∣V2
∣∣∣2

0
0
0

(W1+)
2
− (V2

1+ + Q2
1)

0
(W1−)

2
− (V2

1− + Q2
1)

0
(W2+)

2
− (V2

2+ + Q2
2)

0
(W2−)

2
− (V2

2− + Q2
2)



=


xT
∗A1

Q ∗ x
...

xT
∗A16

Q ∗ x

, (A5)

where Ah
Q (1 ≤ h ≤ 16) are sparse coefficient matrices.

The values of the sparse coefficient matrix Ah
Q are as follows:

A3
Q : [1, 1, B11], [2, 1, B12], [2, 2, B11], [4, 2, B12];

A4
Q : [1, 3, B22], [2, 4, B22], [3, 2, B21], [4, 4, B21];

A5
Q : [1, 1, 1], [2, 2, 1], [11, 11,−1];

A6
Q : [3, 3, 1], [4, 4, 1], [12, 12,−1];

A10
Q : [5, 5,−1], [7, 7,−1], [13, 13, 1];

A12
Q : [5, 5,−1], [8, 8,−1], [14, 14, 1];

A14
Q : [6, 6,−1], [9, 9,−1], [15, 15, 1];

A16
Q : [6, 6,−1], [10, 10,−1], [16, 16, 1];

F = [0, 5P, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T = [0, 7.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T, (A6)

H =
[
0, 0, 0, 0, 0, 0, V1, V2,−Qmin

1 ,−(Qmin
1 )

2
− µ, Qmax

1 ,−(Qmax
1 )2

− µ,−Qmin
2 ,−(Qmin

2 )
2
− µ, Qmax

2 ,−(Qmax
2 )2

− µ
]
. (A7)

Set the parameter values: ε = 1.0× 10−6, K = 20, M = 15. Take the calculation of 1th point as an example.
The value of Jacobian matrix f 1

x at 1th point is as follows:

f 1
x : [3, 1,−14.169048], [4, 1, 5.8309519], [5, 1, 2.0000000], [1, 2, 1.0000000], [3, 2,−7.5000000],

[4, 2,−7.5000000], [3, 3, 10.000000], [4, 3,−1.6619038], [6, 3, 1.1661904], [2, 4, 10.000000],
[4, 4, 15.000000][6, 4,−1.5000000], [3, 5, 1.0000000], [9, 5, 1.0000000], [10, 5,−38.338096],
[11, 5,−1.0000000], [12, 5, 21.661904], [4, 6, 1.000000], [13, 6, 1.00000], [14, 6,−36.388097],
[15, 6,−1.0000000], [7, 7, 1.0000000], [9, 7, 1.0000000], [7, 8,−1.00000], [11, 8, 1.0000000],
[8, 9, 1.0000000], [13, 9, 1.0000000], [8, 10,−1.0000000], [15, 10, 1.00000], [5, 11,−2.00000],
[7, 11,−1.00000], [6, 12,−1.900000], [9, 13,−1.000000], [10, 13, 38.338096], [11, 14,−1.000],
[12, 14, 21.661904], [13, 15,−1.000], [14, 15, 36.388096], [15, 16,−1.000], [16, 16, 23.611904],

. (A8)

Taylor coefficients are calculated by using Equations (11) and (12). Then we calculate the maximum
step size ∆smax.
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We can get the value of Q(x(r), x(p−r)) after the calculation of Taylor coefficients. So we can get the value of
K−1∑
r=1

Q(x(r)j , x(K−r)
j ) as follows:

K−1∑
r=1

Q(x(r)j , x(K−r)
j ) = 1.0× 10−20

× [0, 0, 0,−0.30175640, 0, 0.03017564, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T. (A9)

Then we can get ‖
K−1∑
r=1

Q(x(r)j , x(K−r)
j )‖ = 3.0326143× 10−21.

In view of (14), we can get the maximum step size ∆smax:

∆smax = 5.3199695. (A10)

The detailed step size for each point between 1th and 2th step is listed in Table A1. Figure out every point
between 1th and 2th step by using (9).

Table A1. Step size for each point between 1th and 2th.

Iteration Number q Step Size (∆s)q
1

1 0
2 0.3799978
3 0.7599956
4 1.1399935
5 1.5199913
6 1.8999891
7 2.2799869
8 2.6599847
9 3.0399826

10 3.4199804
11 3.7999782
12 4.1799760
13 4.5599739
14 4.9399717
15 5.3199695
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