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Abstract: One of the most promising techniques for condition monitoring of high voltage equipment
insulation is partial discharge (PD) measurement using radio frequency (RF) antenna. Nevertheless,
the accuracy of monitoring, classification, localization, or lifetime estimation could be negatively
affected due to the interferences and noises measured simultaneously and contaminate the RF signals.
Therefore, to achieve high accuracy of PD assessment, exploiting the denoising algorithms is inevitable.
Hence, this paper seeks to introduce a new technique to suppress white noise, the most prevalent type
of noise, especially for RF signals. In the proposed method, the ability of artificial neural network
(ANN) in curve fitting is applied to denoising of different types of measured RF signals emitted from
PD sources including ‘crack’, ‘internal void’, in the insulator discs and ‘sharp points’ from external
hardware. The processes of denoising for named signals with the proposed method are carried
out, and the obtained results are compared with the outputs of a wavelet transform-based method
named energy conversation-based thresholding. In all tested signals, the proposed technique showed
superior denoising capability.

Keywords: partial discharge; denoising; RF signal; wavelet transform; artificial neural network;
curve fitting

1. Introduction

High voltage (HV) equipment plays an essential role in power system reliability. Sometimes, there
will be irrecoverable damage for industrial or residential customers if a failure in the insulation of HV
equipment happens, leading to unexpected outages. Hence, to prevent such problems as well as to
exploit the power system in the highest performance, condition monitoring of high voltage equipment
insulation systems is considered as a reliable solution [1].

One of the most prevalent, influential, and non-destructive methods for condition monitoring
is partial discharge (PD) assessment, which can be used to reveal the weak points of the insulation
system at an early stage before complete failure occurrence [1,2]. Nevertheless, the performance of PD
monitoring could be reduced due to the negative effect of the various sources of noise or interference.
Thus, denoising of PD signals is inevitable during the condition monitoring process [1,3].

The noises added in the process of PD measurement are usually classified into three categories,
including pulse shaped, narrowband, and wideband interference. The pulse-shaped intereference is
mostly removed from PD signal through a number of pattern recognition approaches such as exploiting
artificial neural network (ANN) or support vector machine (SVM) algorithms [3]. For the second type
of noise, the narrow band generated by radio waves or telecommunication systems, the most prevalent
denoising methods are notch filters and wavelet transform algorithm [3,4].
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Wideband noises, sometimes called background noises, have a stochastic nature and depend on
the measuring system as more sensitive measuring systems are more prone to wideband noise [3,5].
To remove such noise, digital signal processing algorithms—including mathematical morphology [6,7],
empirical mode decomposition [8,9], and wavelet transform [2,10]—can be exploited. Mathematical
morphology is a time-domain and effective algorithm with a low computational burden but the
determination of the type and length of the structure element has always been a challenge [6].
Empirical mode decomposition is a time-domain algorithm that is recently proposed for white noise
suppression. Although this method is able to find the level of signal decomposition through a
self-adaptive approach, the computational burden to solve the problem of mode mixing, as well
as thresholding process, are the obstacles that are yet not completely solved [9]. Being one of the
most prevalent algorithms, wavelet transform (WT) has long been exploited in PD signal denoising.
Although significant progress has been made in the WT based methods, this algorithm is still struggling
with a number of challenges such as mother wavelet selection, decomposition level determination, and
thresholding procedure [2,3,10].

This paper presents a new method utilizing ANN curve fitting and function approximation
abilities to remove white noise from RF PD signals. The method is proposed and compared with a WT
based algorithm using different types of PD RF signals emitted from three damaged insulator discs,
including ‘crack’, ‘internal void’, and ‘hardware sharp points’.

In the rest of the paper, the laboratory setup for PD signal measurement is provided in Section 2.
Then, Section 3 presents both the WT-based and proposed ANN denoising methods. Section 4 is
devoted to results and discussion while the conclusion is given in Section 5.

2. Laboratory Setup for PD Signals Measurement

The ceramic insulators used as the samples consist of two different damaged insulator discs
where the first disc is intentionally cracked, whereas the second sample has a hole in the disc cap [11].
Moreover, the corona is generated externally using sharp electrodes to mimic defects in overhead line
hardware. The overall experimental setup is shown in Figure 1. PD was measured simultaneously
using both RF antenna with 1–2 GHz bandwidth and classical PD measurement system. Each damaged
disc is added to three intact discs in a string, then using a test transformer, 45 kVrms is applied to the
strings; consequently, the wideband horn antenna captures the RF signals. The antenna is connected
by a low impedance cable to a 2 GHz oscilloscope. Details of the setup are provided in [11].
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3. Denoising of Partial Discharge RF Signals

The present section intends to discuss several parameters to quantify the severity of white noise.
Also, both the wavelet transform and the proposed method are introduced.

3.1. Peak of Signal to Noise Ratio

In the process of PD signal examination, signal-to-noise ratio (SNR) is normally utilized in order
to compare the energies of the original signal and white noise. However, it has been reported that for
non-periodic transient signal calculating the peak signal-to-noise ratio (PSNR) is a better measure for
the severity of white noise [12]. Therefore, being non-periodic and transient, RF signals better utilize
the index of PSNR to assess the severity of white noise.

3.2. Factors for Evaluation of Denoising Algorithms

In terms of exploring and comparing the operation of denoising algorithms, the following
parameters are exploited:

1. The Electric Charge Error (QE):

QE = (
N∑

i=1

∣∣∣X(i)
∣∣∣− N∑

i=1

∣∣∣Y(i)∣∣∣)/( N∑
i=1

∣∣∣X(i)
∣∣∣) × 100 (1)

2. Root Mean Square Error (RMSE):

RMSE =

√√√
1
N

N∑
i=1

∣∣∣Y(i) −X(i)
∣∣∣2 (2)

3. Correlation Coefficient (CC):

CC = (
N∑

i=1

(X(i) −X) × (Y(i) −Y))/

√√√ N∑
i=1

(X(i) −X)
2
×

N∑
i=1

(Y(i) −Y)
2

(3)

4. Signal-to-Noise Ratio—Denoised (SNRD):

SNRD = 10 log10

 N∑
i=1

∣∣∣X(i)
∣∣∣2/

N∑
i=1

∣∣∣Y(i) −X(i)
∣∣∣2 (4)

where X, Y, and N represent the noise free PD current signal, the denoised RF signal, and the length of
the measuring data window respectively.

3.3. Considering Discrete Wavelet Transform for Denoising of RF Signal

3.3.1. Basic Principles

In this section, the process of the discrete wavelet transform (DWT) is highlighted and summarized
in the following steps:

Step 1: In the first level of decomposition, the noisy signal Y(t) is applied to the high and low pass
filters and coefficients of approximation (A1) and detail (D1) sub-bands are obtained. Afterward, in
the second level of decomposition, the coefficients of A1, as a new signal, are applied to the new high
and low pass filters. These processes are then continued to reach the desired pre-defined number of
decomposition level (NDL), i.e., J.
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Step 2: The thresholding procedure (TP) is used to remove the noise in the calculated coefficients
of detail sub-bands (D1-J).

Step 3: According to the process shown in Figure 2, the thresholded detailed sub-bands and the
last level coefficients of approximation are gathered together by inverse discrete wavelet transform
(IDWT) to reconstruct the signal Ŷ(t) [13].Energies 2019, 12, x FOR PEER REVIEW 4 of 14 
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Figure 2. The schematic diagram of the process of denoising by wavelet transform, including 
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Figure 2. The schematic diagram of the process of denoising by wavelet transform, including
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3.3.2. Mother Wavelet (MW) Selection

In the process of denoising by WT, the target is to keep the coefficients of the signal and noise
suppression coefficients in the calculated sub-bands by TP. In the present paper, EBWS method is
employed for MW selection, which has shown to give better results in the conducted simulations
for denoising of RF signals. In EBWS, the distribution of signal energy in the sub-bands is utilized
to select the best MW. In fact, a collection of appropriate MWs is considered; then an index, energy
percentage (EP) achieved by (5), is calculated for all MWs. Next, in each level of decomposition,
the MW corresponding with the biggest EP is selected as the optimum MW [14]. The selected MWs
consist of Daubechies, orders 1–25 (db1–db25), symlets, orders 2–15 (sym2–sym15), and Coiflets, orders
1–5 (coif1–coif5).

EP = (
∑

k

aJ,k
2)/(

∑
k

aJ,k
2 +

∑
j

∑
k

d j,k
2) (5)

where a, d, j, and k represent approximation coefficients, detailed coefficients, decomposition level, and
length of samples in sub-bands, respectively. It should be noted that in most cases db4, as the MW, has
presented better operation for denoising by WT exploited in this work.

3.3.3. Thresholding Procedure (TP)

As is discussed in the previous sub-section, TP must be implemented so that the components of the
signal and the noise elements are maintained and eliminated in the detail sub-bands, respectively. Thus,
the performance of signal denoising by WT is depended on the way of threshold value calculation. In
this paper, the proposed idea by [10], energy conservation-based method (ECBT), considered as one of
the promising methods, is implemented as follows:

1. The original noise-free signal is decomposed to reach the predefined level, J, resulting in AJ and
D1-J sub-bands.

2. The mentioned procedure above is repeated for the noisy signal, in order to achieve NAJ and
ND1-J sub-bands as well.
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3. The coefficients of NAJ are kept completely, and all components of ND1 are set on zero. Next,
threshold values, λJ, are estimated for each level of ND2-J, and the coefficients are then thresholded
using (6)

λECBT
j (x) =

{
x, i f |x| ≤ λ j
λ j i f |x| ≥ λ j

(6)

where, X and λj, respectively, present the coefficients and threshold value of level j, obtained by (7).

λ j = A j

n j ×
ED j

END j

 (7)

where Aj, nj, EDj, and ENDj are the vector obtained through (8), the length of NDj, energy of the detail
sub-band Dj, and energy of the noisy detail sub-band NDj, respectively.

A j = Ascend(
∣∣∣ND j

∣∣∣) (8)

Since the original noise-free signal is not available to attain EDj, a pre-defined lookup table
is proposed by authors [10], demonstrating the necessity of a prior knowledge of PD signals for
implementation of ECBT.

3.4. Proposed Method

The proposed idea in this section introduces a novel approach to the problem of denoising,
employing ANN. In fact, the process of denoising in this algorithm is merely carried out in time-domain
instead of currently widespread time–frequency domain algorithms. In other words, the samples
of the digital signal are considered as a collection of discrete ones, rather than a continuous signal,
intended to be fitted by an appropriate curve and is explained in the present subsections.

3.4.1. Artificial Neural Network Curve Fitting

Artificial neural network is a prevalent algorithm exploited in curve fitting, data classification,
and time-series problems [15]. In this work, a multi-layer perceptron network is employed in which
the samples of the measured noisy signal are assumed as the inputs and the output is the fitted curve,
as depicted in Figure 3. The structure of the employed ANN includes a feed-forward network, in the
input and output layers, comprised of sigmoid and linear activation functions, respectively. As shown
in Figure 4, a series of samples, which are the ANN input vector, is approximated using an appropriate
curve and the output of ANN corresponds to the least square error and obtained by Equation (9). Thus,
the acquired curve in the process is considered as the denoised signal.

Error =
n∑

i=1

(ei)
2 (9)

where n and ei are assumed to be the number of the samples and the error of the ith sample, respectively.
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3.4.2. Suitable Number of Neurons for the Structure of the ANN

In this paper, a two-layer ANN is considered to avoid the computational burden of higher layers of
ANN. Hence, while the output layer is made up by one neroun, the first layer is going to be investigated
in this subsection. Therefore, to attain a suitable number of neurons for the first layer, different values
will be examined for three types of the RF signals and the one that results in the least RMSE will be
selected, shown in Figure 5. It should be noted that in this figure the signals and their frequency
spectrum both in noise-free and noisy condition (PSNR = 1) are depicted. It is worth mentioning
that the optimization method, exploited in this investigation, is Levenberg–Marquardt. As shown in
Figure 6, 100 neurons showed the lowest RMSE for the three different measured RF signals. It should
be noted that the length of the data window (DW) is 10,000 samples and it is assumed as a basic data
window (BDW) in the paper. Therefore, longer DWs are considered the main data window (MDW)
and hence must be divided into the BDWs.
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Figure 6. Considering the suitable number of neurons for the three different RF signals.

3.4.3. Optimization Methods

In this subsection, the performance of five optimization methods, including Levenberg–Marquardt,
Bayesian regularization, BFGS quasi-Newton, resilient back-propagation, and scaled conjugate gradient
for the utilized ANN in the proposed method is investigated. Hence, the operation of these functions for
denoising of the RF signal, for instance, the sharp point type, in three noise levels are explored and shown
in Table 1. As seen, in all cases, the best performance is obtained by Levenberg–Marquardt; therefore,
it is exploited in the structure of ANN in the proposed method as the best optimization method.
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Table 1. The results of denoising, the factor RMSE, by five optimization methods and in the cases of
three levels of noise (PSNR) including 1, 1.5, and 2.

Optimization Method
PSNR

1 1.5 2

Levenberg–Marquardt 0.04102 0.02899 0.02258

Bayesian Regularization 0.04387 0.02966 0.02263

BFGS Quasi-Newton 0.04236 0.03041 0.02261

Resilient Back Propagation 0.04296 0.02918 0.02283

Scaled Conjugate Gradient 0.04165 0.03039 0.02276

3.4.4. Effect of Sampling Rate on the Performance of the Proposed Method

In this subsection, the performance of the proposed method is considered from the sampling rate
effect point of view. Hence, the RF signal, for the PD source of a sharp point, in the cases of different
sampling rate is exploited in this investigation. Therefore, denoising of the signal in each case is carried
out and the factor RMSE is calculated for each, shown in Figure 7. As seen, the more sampling rate for
RF signal, the more accuracy in the denoising procedure by the proposed method can be obtained,
where the lowest error is observed for the signal by 8 GS/s. However, in this work, the sampling rate of
2 GS/s is used for PD signal measuring, due to the computational burden.Energies 2019, 12, x FOR PEER REVIEW 8 of 14 
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3.4.5. Full Procedure of the Proposed Method

The proposed method can be summarized as follows:

1. Normalizing the RF signal by
XN = X/max(|X|) (10)

where X and XN are the main RF signal and normalized one, respectively.
2. Dividing MDW into the pre-defined BDW with 10,000 samples lengths each.
3. Separately denoising each BDW, using 100 neurons in the ANN structure.
4. Connecting all BDWs together to attain the complete denoised MDW RF signal.
5. Obtaining the real RF signal by multiplying the maximum value, achieved in Step 1, by the signal

denoised in Step 4.
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4. Results and Discussions

4.1. Effectiveness of the Proposed ANN-Based Denoisng Technique

In this section, the RF signals are polluted with white noise at different levels, with PSNR ranging
from 1 to 2 with steps of 0.25. Moreover, the obtained results from denoising with the proposed method
as well as the wavelet-based method are presented. In Figure 8, the result for the first type of RF signal
generated from a crack for a severe noise (PSNR = 1) is shown. Additionally, the denoising evaluation
factors—including QE, RMSE, CC, and SNRD—are exploited in order to compare the proposed method
with ECBT in the different values of PSNR, as depicted in Figure 9. It is evident that ANN-based
denoising technique showed a better performance than ECBT in all calculated parameters. These
investigations are repeated for other RF signals, namely internal void, and sharp point types, as well;
hence, denoising results for the most severe noise are, respectively, depicted in Figures 10 and 11 for the
named damaged types mentioned above. In addition, the proposed method is compared with ECBT in
cases of various PSNR, for both RF signals including internal void and sharp point types, as shown in
Figures 12 and 13, respectively. As depicted, the proposed method demonstrates its superiority in RF
signal denoising.

It is noteworthy that, in ECBT, the proposed method by authors in [10], exploitation of a pre-defined
lookup table in the process of denoising is imperative, due to the fact that there is no noise-free original
signal for the implementation of the method in the real situation. Whereas, in this work, the noise-free
RF signals are exploited instead of using the pre-defined lookup table. That means the proposed
method is compared to ECBT with the highest possible performance, being probably too optimistic.
Additionally, there is no idea about the optimum number of decomposition levels for DWT, likely to
vary for each PD signal. Here, we performed denoising with ECBT in various decomposition levels,
including 1 to 8 levels and the optimum results are obtained for the case of 5 levels, utilized in ECBT
for denoising of these RF signals.
Energies 2019, 12, x FOR PEER REVIEW 9 of 14 

 

 

Figure 8. Denoising of RF signal, ‘crack’ type, in the case of PSNR = 1. 

. 

Figure 9. Results of denoising from RF signal in different noise levels where PSNR ranges from 1 to 2 
by steps of 0.25, in the case of ‘crack’ type. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-5

0

5

A
m

pl
itu

de
 (V

)

10-3

Noisy RF Signal
Original RF Signal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Sample

-5

0

5

A
m

pl
itu

de
 (V

)

10-3

ANN
Original RF Signal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-5

0

5

A
m

pl
itu

de
 (V

)

10-3

ECBT
Original RF Signal

1 1.25 1.5 1.75 2
PSNR

15

20

25

30

35
QE

ANN
ECBT

1 1.25 1.5 1.75 2
PSNR

0.02

0.03

0.04

0.05
RMSE

ANN
ECBT

1 1.25 1.5 1.75 2
PSNR

0.96

0.97

0.98

0.99

CC

ANN
ECBT

1 1.25 1.5 1.75 2
PSNR

25

30

35

40

SNR-D

ANN
ECBT

Figure 8. Denoising of RF signal, ‘crack’ type, in the case of PSNR = 1.
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Figure 9. Results of denoising from RF signal in different noise levels where PSNR ranges from 1 to 2
by steps of 0.25, in the case of ‘crack’ type.
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Figure 10. Denoising of RF signal, ‘internal void’ type, in the case of PSNR = 1.
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Figure 11. Denoising of RF signal, ‘sharp point’ type, in the case of PSNR = 1.
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Figure 12. Results of denoising from RF signal in different noise levels where PSNR ranges from 1 to 2
by steps of 0.25, in the case of ‘internal void’ type.
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Figure 13. Results of denoising from RF signal in different noise levels where PSNR ranges from 1 to 2
by steps of 0.25, in the case of ‘sharp point’ type.

4.2. Consideration of Denoising for Combining Two RF Signals

This subsection seeks to consider the performance of the denoising methods in the case of a
combination of two RF signals. In fact, it is assumed that in the process of PD signals measuring,
two PD sources generate RF signals, simultaneously, and the horn antenna captures both. Thus, the
measured signal, for instance, the combination of ‘sharp’ and ‘internal’ types, are utilized for comparing
the proposed method and ECBT in various noise levels. Hence, the denoising results for severe noises
(PSNR = 1) are shown in Figure 14 and the comparison in various noise level is given in Figure 15.

Energies 2019, 12, x FOR PEER REVIEW 12 of 14 

 

 

4.3. Consideration of Denoising for Combining Two RF Signals 

This subsection seeks to consider the performance of the denoising methods in the case of a 
combination of two RF signals. In fact, it is assumed that in the process of PD signals measuring, two 
PD sources generate RF signals, simultaneously, and the horn antenna captures both. Thus, the 
measured signal, for instance, the combination of ‘sharp’ and ‘internal’ types, are utilized for 
comparing the proposed method and ECBT in various noise levels. Hence, the denoising results for 
severe noises (PSNR = 1) are shown in Figure 14 and the comparison in various noise level is given 
in Figure 15. 

 

Figure 14. Denoising of RF signal, combination of ‘sharp point’ and ‘internal void’ types, PSNR = 1. 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

-5

0

5

10 10-3

Noise Free RF Signal
Original RF Signal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Sample

-5

0

5

10-3

ANN
Original RF Signal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-5

0

5

10-3

ECBT
Original RF Signal

1 1.25 1.5 1.75 2
PSNR

8

10

12

14

16

18
Q

ANN
ECBT

1 1.25 1.5 1.75 2
PSNR

0.985

0.99

0.995

CC

ANN
ECBT

1 1.25 1.5 1.75 2
PSNR

35

40

45

50

SNR-D

ANN
ECBT

1 1.25 1.5 1.75 2
PSNR

0.02

0.03

0.04

0.05

0.06
RMSE

ANN
ECBT

Figure 14. Denoising of RF signal, combination of ‘sharp point’ and ‘internal void’ types, PSNR = 1.
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Figure 15. Results of denoising from RF signal in different noise levels where PSNR ranges from 1 to 2
by steps of 0.25, in the case of combination of ‘sharp point’ and ‘internal void’ types.

5. Conclusions

In this paper, an ANN-based approach is introduced for white noise suppression. The paper
investigates the influence of the main ANN parameters on the performance of the proposed method,
namely the appropriate number of neurons and the optimization method for the structure of ANN.
Moreover, WT-based algorithm called ECBT is used for comparison, as one of the most popular
algorithms for PD signal denoising. The performance of the proposed method is examined by the
laboratory-measured RF signals emitted from different PD sources, namely crack, internal void, and
hardware sharp points. The RF signals are contaminated with white noise at various levels, with
the PSNR ranging from 1 to 2 with the step of 0.25. In all tested cases, the evaluation factors prove
a significant superiority of the proposed method for denoising of PD RF signals compared to ECBT.
In addition to the ANN superior performance, it is noteworthy that using WT-based algorithms
still suffers from other restrictions like mother wavelet selection, determination of the number of
decomposition levels, and thresholding procedure. Moreover, to get high performance of WT-based
methods, prior knowledge of the signal is needed; whereas, the proposed method is implemented
simply without exploiting any prior knowledge.
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