
energies

Article

Dye-Sensitized Solar Cells Using Aluminum-Doped
Zinc Oxide/Titanium Dioxide Photoanodes in Parallel

Jung-Chuan Chou 1,* , Cheng-Chu Ko 1, Jun-Xiang Chang 1, Chih-Hsien Lai 1, Yu-Hsun Nien 2,
Po-Yu Kuo 1 , Huang-Hua Chen 2 , Hui-Hsuan Hsu 2 and Geng-Ming Hu 2

1 Graduate School of Electronic Engineering, National Yunlin University of Science and Technology,
Douliu 64002, Taiwan

2 Graduate School of Chemical and Materials Engineering, National Yunlin University of Science and
Technology, Douliu 64002, Taiwan

* Correspondence: choujc@yuntech.edu.tw; Tel.: +88-65-534-2601 (ext. 4383)

Received: 23 July 2019; Accepted: 5 September 2019; Published: 9 September 2019
����������
�������

Abstract: In this study, both zinc oxide (ZnO) nanorods and aluminum-doped zinc oxide (AZO)
nanosheets were deposited by hydrothermal growth on fluorine-doped tin oxide (FTO) glass. After a
photoanode was added to ZnO nanorods or AZO nanosheets, the photovoltaic conversion efficiency
(PCE) increased due to improved electron transport and enhanced dye absorption. The improvement
in electron transport was verified by electrochemical impedance spectroscopy (EIS), and the increase
in dye absorption was verified by ultraviolet-visible spectroscopy. Both of these factors facilitated an
increase in PCE. Parameters for dye-sensitized solar cells (DSSCs) using ZnO nanorods/TiO2 and
AZO nanosheets/TiO2 photoanodes were tested and the results were recorded using EIS. The results
indicated that the addition of the ZnO nanorods increased the short-circuit current density (Jsc)
from 9.07 mA/cm2 to 10.91 mA/cm2, the open circuit voltage (Voc) from 0.68 V to 0.70 V, and the
PCE from 3.70% to 4.73%, respectively. When the DSSCs were produced in a parallel silver-grid
device, the results showed that PCE could be increased from 3.67% to 4.04% due to the reduction in
connection resistance.

Keywords: dye-sensitized solar cells (DSSCs); aluminum-doped zinc oxide (AZO); titanium dioxide
(TiO2); parallel connection

1. Introduction

Increased energy demands have accelerated fossil fuel depletion. Some researchers have predicted
that certain remaining fossil fuel reserves will only last forty years, whilst others, like natural gas,
will last around 60 years, and coal will last approximately 100 years [1]. For this reason, renewable fuels
are growing in importance to both industry and researchers; for instance, wind power, hydropower,
biomass energy, photovoltaics, and geothermal heat, are all undergoing intensive theoretical and
practical development.

Among the currently available renewable energy technologies, photovoltaics are particularly
promising. They provide the means to transfer sunlight into electrical energy [2–6]. Solar cell
developments thus far have been divided into four generations: (1) silicon-based solar cells, (2) thin-film
cells, (3) organic and nano-material cells, and (4) multi-layer composite cells. Silicon-based solar cells
are confined to the terrestrial photovoltaic market, due to their high production cost. Compared to
high-cost traditional silicon-based solar cells, dye-sensitized solar cells are a cost-effective photovoltaic
device, with some notable advantages. The production process is simple, low-cost, and quick;
furthermore, the end-product is more flexible in its range of possible applications, and it can also
operate under low light intensities [7–11]. Due to the dye-sensitized solar cells’ (DSSCs) ability to work
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efficiently, even in very low light conditions such as at dawn or dusk, this makes them an extremely
promising development in the field of photovoltaics.

DSSCs are composed of a photoanode, an electrolyte, and a counter electrode. In general, the
material applied to the photoanode is titanium dioxide (TiO2), which also has a good compatibility
with dye molecules. The material selected for the photoanode is extremely important as it is the
principle component responsible for transforming the received sunlight into electrical power [12]; thus,
the photovoltaic conversion efficiency of DSSCs can be improved by modification of the photoanode.
The subject of this paper is enhancement of the photovoltaic conversion point, which, in this case,
will be conducted by modification of the photoanode of the DSSC.

Ref. [13] introduced the use of zinc oxide (ZnO) nanowire (a kind of metal oxide semiconductor)
into DSSCs, which is based on aluminum-doped zinc oxide (AZO) thin film. This was followed by
studies using either graphene oxide (GO) and/or ZnO [14] as an active layer, to enhance the amount of
dye-loading and decrease carrier transfer impedance. In addition, some researchers [15] used GO and
magnetic beads (MBs) in the counter electrode for improved photocatalytic activity and to create a
fast electro-catalyst through triiodide reduction. Another group of researchers [16] used ferroferric
oxide (Fe3O4) to apply an active layer, in order to decrease electron recombination. Aluminum (Al) is
added to the ZnO, meaning that Zn2+ is replaced with Al3+. Al3+ occupies interstice lattice positions
in the ZnO. The use of AZO has the following advantages: it is low cost, exhibits an outstanding
electrical conductivity, demonstrates a high thermal stability, and displays high transmittance in the
wavelength range between 300 nm and 700 nm [17]. M. Baradaran [18] et al. fabricated ZnO/AZO/ZnO
and ZnO/AZO multilayer thin films. Photovoltaic properties, optical and structural, were studied by
X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. F. Ajala [19] et al. synthesized
AZO nanoparticles by the sol–gel method. This study indicated that the existence of aluminum
did not change the electronic structure or optical characteristics. G. P. Daniel [20] et al. deposited
ZnO on corning glass by radio frequency (RF) magnetron sputtering. J. Bhattacharya [21] et al.
fabricated polymer solar cells based on AZO thin film as a counter electrode which could enhance the
current density. L. CP. et al. [22] fabricated hexagonal clubs of a ZnO photoanode for DSSC and the
photovoltaic conversion efficiency of 4.28%. J. Mou et al. [23] fabricated ZnO nanoflakes for DSSC and
the photovoltaic conversion efficiency was raised to 3.64% using ZnO nanoflakes. J. Chang et al. [24]
researched DSSCs with ZnO nanocone photoanodes. DSSCs sensitized with different dyes displayed a
better photovoltaic conversion efficiency, with the highest photovoltaic conversion efficiency of 4.36%
being observed with the C218 dye. In this study, we fabricated ZnO/TiO2 and AZO/TiO2 double layers.
The AZO had a better electrical conductivity than ZnO. However, aluminum doping could lead to
nanostructure changes, resulting in nanorods or nanosheets. Compared with ZnO nanorods, we found
that aluminum doping using the hydrothermal method reduced the efficiency. This is because of
the amount of dye absorbed was reduced in the AZO nanosheet. Therefore, this resulted in a loss of
current density and photovoltaic conversion efficiency.

2. Materials and Methods

2.1. Materials

Titanium dioxide (TiO2) powders (P25) and ruthenium-535 bis-TBA (N719) were purchased from
UniRegion Bio-Tech, Taiwan. The AZO sputter target (Al:Zn = 2:98) was purchased from Ultimate
Materials Technology Co., Ltd., Taiwan. Ethanol was purchased from Katayama Chemical, Japan.
The lithium iodide and 4-Tert-Butylpyridine (electrolyte) were purchased from Sigma-Aldrich, United
States. 1-propyl-2, 3-dimethylimidazolium iodide (DMPII) was purchased from Tokyo Chemical, Japan.
The silver conductive paste was purchased from Advanced Electronic Material Inc. (Taiwan).



Energies 2019, 12, 3469 3 of 13

2.2. Fabrication of the AZO Seed Layer

The AZO film was deposited on the fluorine-doped tin oxide (FTO) glass substrate by the radio
frequency sputtering system. The base pressure and working pressure were at 3 × 10−6 torr and
3 × 10−3 torr, respectively. The RF power was 60 Watt, and the flow rate of argon and oxygen was
10 sccm and 1 sccm, respectively. The AZO film had a deposition time of 30 min [25].

2.3. Fabrication of the ZnO Nanorods and AZO Nanosheets

The substrate with an AZO seed layer was placed in an autoclave containing Zn(NO3)2·6H2O
(0.0012 M) and hexamethylenetetramine (0.0012 M). The parameters for the hydrothermal method were
growing the ZnO nanorods at 85 ◦C for 60 min. After the above hydrothermal process, the substrate was
washed with deionized (D. I.) water, to finish preparing the ZnO nanorod substrate [26]. In addition,
we added Al(NO3)3·9H2O to the aqueous solution, resulting in the formation of AZO nanosheets.
The ratio of Al:Zn was 2:98 [27].

2.4. Fabrication of the DSSCs with ZnO Nanorods/TiO2 Photoanodes and AZO Nanosheets/TiO2 Photoanodes

The TiO2 paste contained 2 g of TiO2 (P25), 4 mL of D.I. water, and 0.4 mL of ethanol. We used
insulating heat-resistant tape to control the working area of the photoelectrode, and the working area
was 0.64 cm2. The TiO2 was deposited on the ZnO nanorods and AZO nanosheets by the doctor blade
method, and the ZnO nanorods/TiO2 and AZO nanosheets/TiO2 were then subjected to annealing
at 450 ◦C for 30 min. Subsequently, the double layers were immersed in N719 dye for 24 h. Finally,
the platinum (Pt) counter electrode was fabricated on FTO glass by sputtering [25]. The DSSCs were
sealed by Surlyn [28]. Figure 1a shows the structure of DSSCs and Figure 1b shows a photograph of
the DSSC packaging.
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cap covered the two holes and epoxy to avoid electrolyte leakage This completed the production of 
the photoanode for DSSC 2 devices in parallel, and the schematic structure is shown in Figure 2a. In 
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reducing the impedance between the connecting wire and transparent conductive oxide (TCO), as 
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Figure 1. (a) Schematic diagram of the dye-sensitized solar cell (DSSC) structure. (b) Photograph of the
DSSC packaging.

2.5. Fabrication of Packaging for DSSCs in Parallel Connection

It was necessary to connect different active areas in parallel in order to fabricate the DSSC’s main
area. First, the counter electrode drilled two holes. The purpose of the two holes was to facilitate
the injection of the electrolyte. Then, the photoanode, the counter electrode, the Surlyn packaging
film, and the small square normal glass were prepared. The hot press machine was used to heat
press the Surlyn packaging film between the photoanode and the counter electrode at 100 ◦C for 60 s.
Finally, the electrolytes were injected through the two holes into the component. A small square
normal glass cap covered the two holes and epoxy to avoid electrolyte leakage This completed the
production of the photoanode for DSSC 2 devices in parallel, and the schematic structure is shown
in Figure 2a. In addition, we deposited the silver paste around the photoanodes by the doctor blade
method for reducing the impedance between the connecting wire and transparent conductive oxide
(TCO), as shown in Figure 2b.
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Figure 2. Schematic diagram of (a) two parallel and (b) two parallel silver-grid DSSCs using zinc oxide
(ZnO) nanorod photoanodes (one device exists in a silver-grid).

2.6. Instruments

The photovoltaic DSSC parameters were tested and recorded under an air mass of 1.5 global
(AM 1.5 G) using a solar simulator (MFS-PV-Basic-HMT, New Taipei Taiwan). The Nyquist plots
showing the interface impedance were generated using electrochemical impedance spectroscopy
(BioLogic SP-150, Grenoble France) and the frequency range used for measurement ranged from 1 Mhz
to 50 mHz. The absorbance level of the N719 dye was obtained using ultraviolet-visible spectroscopy
(UV-vis) (LABOMED UVD-3500, Los Angeles USA).

3. Results and Discussion

3.1. Characterization of ZnO Nanorods and AZO Nanosheets

Figure 3 shows the X-ray diffraction (XRD) pattern of the ZnO nanorods and the AZO nanosheet
deposition on the AZO seed layer. The AZO seed layer was deposited on pure glass. The sample
showed the hexagonal wurtzite structure of ZnO (Joint Committee on Powder Diffraction Standards
(JCPDS) card No. 36-1451) [29,30]. The ZnO nanorods were deposited on the AZO seed layer,
which showed a stronger diffraction peak corresponding to the (002) plane, growing along the c-axis
perpendicular to the substrate surface; weak (100), (101), (102), and (110) peaks were also observed.
When Al(NO3)3·9H2O was added to the aqueous solution to form the AZO nanosheets, the reduced
(002) peak intensity indicated that the AZO nanosheets did not exhibit an improved crystallinity [31,32].
Figure 4 shows the Field-Emission Scanning Electron Microscope (FE-SEM) forms for the ZnO nanorods
and AZO nanosheets. Figure 4a shows the surface morphology of the ZnO nanorods. The thickness
of ZnO nanorods was ~250 nm, as shown in Figure 4b. Figure 5a shows the surface morphology of
the AZO nanosheets, and the thickness of the AZO nanosheets was ~241 nm, as shown in Figure 5b.
Figure 6 shows the cross-view of the TiO2 layer with different photoanodes. Figure 6a,b indicate that
the TiO2 film was deposited on ZnO nanorods or AZO nanosheets, and the thickness of TiO2 was
~16 µm, as shown in Figure 6c [33].
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3.2. Ultraviolet-Visible Spectroscopy

ZnO is a material which can absorb dyes, and ZnO nanorods are a nanostructure which can
increase the surface area. Therefore, when the photoanode is added to ZnO, which then becomes a
double-layer structure, the amount of dye adsorption increases. Figure 7a shows characteristic peaks
under ultraviolet-visible spectroscopy at ~500 nm. Figure 7a shows when the structures incorporating
the ZnO nanorods or AZO nanosheets demonstrated enhanced dye absorption. Both the ZnO nanorods
and AZO nanosheets displayed better dye absorption than the pure TiO2 structure. The ZnO nanorods
and AZO nanosheets absorbed the dye, so they were deposited onto the FTO glass, which was also
conducive to dye absorption. The dye sensitization effects on the ZnO nanorods/TiO2 and AZO
nanosheets/TiO2 were compared. Figure 7a shows that for doped aluminum, the amount of dye
absorption in AZO nanosheets decreases. Figure 8a shows that the values of the bandgap of the
AZO seed layer, ZnO nanorods, and AZO nanosheet composite film were determined to be 3.39 eV,
3.33 eV, and 3.32 eV, respectively, by extrapolations of the linear regions of the plot to zero absorption.
In addition, the bandgaps of TiO2 and FTO were 3.55 eV and 3.25 eV, respectively. Figure 8b shows the
band gaps of ZnO nanorods/TiO2 and AZO nanosheets/TiO2 photoanodes for DSSCs [34].
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3.3. Electrochemical Impedance Spectroscopy (EIS)

Figure 7b shows the values generated by an equivalent circuit. The purpose of EIS is to measure the
impedance (RS) between a connecting wire and a transparent conductive oxide (TCO), the interfacial
impedance (R1) between an electrolyte and counter electrode, and the interfacial impedance (R2)
between an electrolyte and a photoanode. This paper measured EIS by examining the changes in R2,
to verify that adding AZO nanosheets and ZnO nanorods can improve electron transport.

As shown in Table 1, the R2 values for the TiO2, the ZnO nanorods/TiO2, and the AZO nanosheets/
TiO2 were 76.43 Ω, 36.70 Ω, and 44.58 Ω, respectively. The R2 values for the ZnO nanorods/TiO2

and AZO nanosheets/TiO2 were smaller than that of the pure TiO2, and the results indicated that the
AZO nanosheets and ZnO nanorods can improve electron transport when the electrons have a direct
conduction pathway. Compared with the AZO nanosheets/TiO2 and ZnO nanorods/TiO2, the ZnO
nanorods/TiO2 R2 value was smaller than the R2 for the AZO nanosheets/TiO2, verifying that the
electron transport for the ZnO nanorods was superior to that of the AZO nanosheets. Impedance (RS) is
defined as the wire resistance between a connecting wire and the transparent conductive oxide (TCO).
When a layer of ZnO nanorods, or AZO nanosheets which facilitate electron transport, were deposited
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between the TCO and TiO2, Rs decreased, which resulted in an increase in the short-circuit current
density (Jsc) [28], [35]. Compared with pure TiO2, the Rs of the ZnO nanorods/TiO2 and photoanode
decreased from 27.00 Ω to 20.55 Ω, whereas that of the AZO nanosheets/TiO2 decreased from 27.00 Ω
to 23.16 Ω.

Table 1. Electrochemical impedance spectroscopy (EIS) spectra for the DSSCs with different
photoanodes.

Photoanode Rs (Ω) R1 (Ω) R2 (Ω) Reference

TiO2 27.00 13.78 76.43 This work
ZnO nanorod/TiO2 20.55 14.40 36.70 This work

AZO nanosheet/TiO2 23.16 13.34 44.58 This work
No compact layer N/A 11.20 21.70 [36]

Compact layer N/A 5.20 07.40 [36]

3.4. Photovoltaic Performance of DSSCs Based on ZnO Nanorods/TiO2 and AZO Nanosheets/TiO2

The ZnO nanorods and AZO nanosheets increased the current density and fill factor because
these nanostructures had good electrical properties and improved electron transport to the FTO glass.
Table 2 shows the photovoltaic performance parameters of the DSSC with ZnO nanorods/TiO2 and
AZO nanosheet/TiO2 photoanodes. After the photoanode was added, the photovoltaic conversion
efficiency (PCE) increased because electron transport was improved and dye absorption was enhanced.
Improvement in electron transport was verified by EIS, and the increase in dye absorption was verified
by ultraviolet-visible spectroscopy. Both of these factors facilitated an increase in PCE.

Table 2. Photovoltaic performance parameters of the DSSCs with different photoanodes (the number
of samples, n = 8).

Photoanode Voc (V) Jsc
(mA/cm2) FF PCE (%) Active

Area (cm2) Reference

TiO2 0.68 ± 0.003 9.07 ± 0.25 0.60 ± 0.01 3.70 ± 0.20 0.64 This work
ZnO nanorod/TiO2 0.70 ± 0.004 10.91 ± 0.23 0.62 ± 0.01 4.73 ± 0.18 0.64 This work

AZO nanosheet/TiO2 0.71 ± 0.004 9.63 ± 0.28 0.63 ± 0.01 4.31 ± 0.23 0.64 This work
No compact layer 0.73 4.80 0.50 1.77 1.10 [37]

Compact layer 0.76 5.87 0.50 2.24 1.10 [37]

Figure 9a shows J-V curves of TiO2, ZnO nanorods, and AZO nanosheets in DSSCs. The photoanodes
were added as ZnO nanorods and AZO nanorods. Table 2 shows the results, which indicate that
adding ZnO nanorods can increase the Jsc from 9.07 mA/cm2 to 10.91 mA/cm2, the Voc from 0.68 V
to 0.70 V, and the PCE from 3.70% to 4.73%, respectively. In addition, this paper compared the
ZnO nanorods/TiO2 with the AZO nanosheets/TiO2. The performance of the AZO nanosheets/TiO2

photoanodes was worse than the ZnO nanorods/TiO2 photoanodes. Figure 9b shows the incident
photon-electron conversion efficiency (IPCE) of DSSCs with different photoanodes. We adopted IPCE
to verify performance improvement. This result confirmed that the IPCE was improved after growing
AZO nanosheets or ZnO nanorods on TiO2.
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3.5. Photovoltaic Performances of DSSCs in Parallel Connection

We fabricated DSSCs using a ZnO nanorod/TiO2 photoanode. When the active area became larger,
the resistance became relatively larger, thereby reducing the photovoltaic conversion efficiency. DSSCs
require a large active area, so we instead fabricated a parallel structure, hoping this would enable a
type of applied modularization.

This study researched different active areas for the DSSCs using a ZnO nanorod/TiO2 photoanode.
Table 3 and Figure 10 show the photovoltaic conversion efficiency of 4.73% for 0.64 cm2, 3.61% for
3.42 cm2, and 1.27% for 6.84 cm2. This shows that using a parallel structure can result in more effective
use of larger DSSC areas. Figure 11a,b show the different parallel connections for DSSCs. In addition
when fabricating the DSSCs, a parallel silver-grid device was produced, as shown in Figure 11c. Table 3
shows the results of using a parallel-grid device and Figure 12 shows a schematic of DSSCs with (a)
two parallel and (b) two parallel-grid connections. The result of reducing the connection resistance is
reflected in the fill factor. The fill factor is increased from 0.54 to 0.60. The main function of the grid
is to increase electron transport, rather than increase the current density. The results indicated that
the parallel silver-grid could reduce the connection resistance. The parallel-grid exhibits an enhanced
photovoltaic conversion efficiency, with a PCE increase from 3.61% to 4.04%.

Table 3. Photovoltaic property of DSSCs with different parallel (P) connections.

Connection Voc (V) Jsc
(mA/cm2) FF PCE (%) Active Area of

Single DSSC (cm2) Reference

1P 0.70 10.91 0.62 4.73 00.64 This work
1P 0.52 06.25 0.39 1.27 06.84 This work
2P 0.68 09.83 0.54 3.61 03.42 This work

2P-grid 0.68 9.88 0.60 4.04 03.42 This work
5P 0.66 08.24 0.68 3.70 25.00 [36] 2007
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4. Conclusions

The properties of the DSSCs fabricated using ZnO nanorods/TiO2 and AZO nanosheets/TiO2

structures have been investigated. It has been shown here that the performance of the ZnO nanorod/TiO2

photoanode is better than that of the AZO nanosheet/TiO2 photoanode for DSSCs when measured
by XRD, UV-vis, and EIS. Optimal parameters for the DSSCs were found using a ZnO nanorod/TiO2

photoanode, whereupon the photovoltaic conversion efficiency improved by 27.83%, from 3.70% to
4.73%. This improvement in the photovoltaic conversion efficiency was due to improvements in the
short-circuit current density (Jsc). The photoanode of the DSSC used a ZnO nanorod/TiO2 double-layer
structure, fabricated using the hydrothermal and doctor blade methods. Different combinations of
DSSCs using alternate active areas and parallel connections were tested, and only relevant findings
were reported. According to the experimental results, DSSCs in a parallel silver-grid can result in a
higher photovoltaic conversion efficiency.
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