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Abstract: In this paper, we address the problem of asset performance monitoring, with the intention
of both detecting any potential reliability problem and predicting any loss of energy consumption
efficiency. This is an important concern for many industries and utilities with very intensive
capitalization in very long-lasting assets. To overcome this problem, in this paper we propose an
approach to combine an Artificial Neural Network (ANN) with Data Mining (DM) tools, specifically
with Association Rule (AR) Mining. The combination of these two techniques can now be done
using software which can handle large volumes of data (big data), but the process still needs to
ensure that the required amount of data will be available during the assets’ life cycle and that its
quality is acceptable. The combination of these two techniques in the proposed sequence differs
from previous works found in the literature, giving researchers new options to face the problem.
Practical implementation of the proposed approach may lead to novel predictive maintenance models
(emerging predictive analytics) that may detect with unprecedented precision any asset’s lack of
performance and help manage assets’ O&M accordingly. The approach is illustrated using specific
examples where asset performance monitoring is rather complex under normal operational conditions.

Keywords: asset management; maintenance management; data mining; artificial intelligence;
energy efficiency

1. Introduction

Nowadays we are living a digital transformation in maintenance and asset management,
characterized by higher assets’ performance information levels and enhanced management control
possibilities, in real time and throughout the useful life of the assets.

Data is what really enables this transformation and is becoming critical in today’s organizations [1].
Having useful data available is becoming paramount in order to be able to make the best decisions
in Asset Management (AM). However, transforming data into information and the management of
this information as knowledge are still challenges. Different researchers agree in the fact that an
integrated asset information management strategy is required [2] in order to effectively habilitate the
AM decision-making.

Besides the long-term availability of data, the quality of decisions made is often constrained by
the quality of data available. Thus, data quality is another interesting and recent topic for research for
asset management practitioners [3]. Therefore, research has also focused on developing frameworks
for assessing and improving data availability and quality.

When considering which data are needed for supporting informed AM decision-making,
the required data can vary from case to case. The major challenge is that required data is usually
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scattered among separate information systems (Enterprise Resource Planning systems (ERP) and other
external information sources that have not been integrated, and other non-automatic sources) [4,5].
As widely agreed, integration should facilitate the bidirectional data and information flows into
the decision-making process at all levels [4] of asset control. The basic concept is the need for a
common asset database to provide a primary reference to information regarding assets’ properties for
supporting decisions [5].

Another key development to improve data quality and long-term availability is the emergence
of digital technologies and their adoption in AM. In this regard, Internet of Things (IoT) [6–8] and
Cyber-Physical System (CPS) [9] are currently leading concepts of the transformative process pushed
by a blend of mature technologies. Big Data analytics, that access the data and promise to provide fast
decision-making with the use of smart analytics tools [10,11], are in fact going to complement the IoT
with further features useful for decision-making support.

The growing data availability enabled by Industry 4.0 technologies makes the traditional techniques
for data analysis obsolete. Indeed, to deal with such an amount of data, the application of appropriate
algorithms for data understanding and knowledge extraction is necessary. In this context, an important
contribution is provided by Knowledge Discovery in Databases (KDD) techniques: analyzing a massive
amount of data, KDD’s goal is to extract useful information and derive knowledge [12,13]. Data Mining
(DM) techniques belong to the KDD domain and, according to [14], they regard the discovery of hidden
information and patterns, as well as relationships in large databases [15]. Advanced simulation will
also play a key role, amongst the tools relevant for prediction of the stochastic processes that occur in
the physical world [16].

Finally, in such a technology landscape, an important concept is often noted, that is the Digital
Twin (DT), considered as a virtual entity, relying on the sensed and transmitted data of the IoT
infrastructure, as well as on the capability to elaborate data through data analytics and simulation
technologies, with the purpose to allow optimizations and informed decision-making. The potentials
for decision support along the asset lifecycle offered by DT modeling are highly promising, leading to
think of future applications built on the DTs of Physical Assets.

Problem Description

In this paper, we address the problem of assets’ performance monitoring, with the intention of both
detecting any potential reliability problems and predicting any loss of energy consumption efficiency.

The idea of the paper is to add new capabilities to existing Condition-Based Maintenance (CBM)
programs that may exist in energy plants and facilities. CBM is defined as “Preventive maintenance
including a combination of condition monitoring and/or inspection and/or testing, analysis and
subsequent maintenance actions” [17]. CBM monitors the condition of maintainable items in order to
dynamically determine a suitable preventive schedule [18]. ISO 13372 [19] defines CBM as “Maintenance
performed as governed by condition monitoring programs”.

CBM can be presented in the literature as a system, program or solution. For instance, the US
Army [20] defines the “CBM system” as a system including the analytical methods, sensors, data
acquisition (DA) hardware, signal processing software, and data management standards necessary to
support the use of CBM as a maintenance approach to sustain and maintain systems, subsystems, and
components. A “CBM program” comprises the application of the different CBM solutions that have
been adopted for a particular system involving management and maintenance task planning [21]. A
“CBM solution” can be understood as the application of a particular monitoring solution to a specific
case (failure mode or element).

CBM is increasingly becoming common in engineered systems. In recent decades, we have seen
the transition from maintenance approaches that combine run-to-fail and programmed preventive
maintenance to more efficient maintenance approaches such CBM [22]. As instrumentation and
information systems become cheaper and more reliable, CBM becomes an important tool for running a
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plant or a factory [18]. In automated manufacturing or process plants, condition-based maintenance
(CBM) is preferred wherever it is technically feasible and financially viable [23].

Condition monitoring techniques such as vibration analysis, thermography, acoustic emission or
tribology [19], along with developments in Prognosis and Health Management (PHM) has provided
new powerful capabilities for maintenance [24,25]. These capabilities allow us to treat, efficiently,
the new maintenance challenges in modern systems and applications [20,26].

However, the problem of asset’s performance monitoring can become a very complex problem in
some operational situations when:

• The assets can perform in very diverse operating conditions (sometimes also diverse environmental
conditions) over time;

• Assets’ condition is not feasible to be monitored, or simply doing it becomes a complex technical
problem with a very troublesome and economically non-viable solution. This difficulty many
times related to the asset specific functional location;

• Altogether could cause a lack of assets performance control and subsequent loss of expected
performance efficiency.

To overcome these problems, we need practical tools that can be adapted to any potential current
asset location and operating condition, having the possibility to control asset performance and reliability,
ensuring life cycle expectations according to existing business plans.

This has become an important concern for many industries and utilities with very intensive
capitalization in long-lasting assets [27]. These organizations demand innovative, practical solutions,
that can somehow replicate the benefit provided by emerging IoT and CPS, but in currently existing
assets, contributing to their current assets’ Total Cost of Ownership (TCO) and/or Total Value of
Ownership (TVO) [28], the latter in case that we can somehow model, and quantify, the value provided
by the asset along its life cycle.

To this end, we will first introduce ANN and DM techniques that will be used in the paper. ANN
will be proposed to solve the problem of identifying when asset behavior abnormalities appear while
DM AR techniques will be used to in detail for which operating conditions are appreciated as behavior
abnormalities, and to what extent is energy efficiency impacted. Then we will present the proposed
process, together with some samples to appreciate the way its implementation is deployed. Finally, we
present some practical results, conclusions and further research opportunities.

2. Rational for the ANN and DM Techniques Selection

Within the AI tools, Artificial Neural Networks (ANN) is the tool selected because of their ability
to process information features in non-linear, high-parallelism, fault and noise environments with
learning and generalization capabilities [29,30]. In comparison to other methods, ANNs are well
suited for solving problems where explicit knowledge is difficult to specify or define, but where
there are enough data [31,32]. For these reasons ANN are a very popular tool for prediction and
classification problems, but we agree that more research is needed to make their implementation more
practical in real life applications, taking advantage of existing maintenance engineering tools and
management systems [33].

Concerning data analysis tools, several DM techniques exist and, according to the purpose of
each study and to the characteristics of the variables under investigation, the accurate selection of the
most appropriate one is the first step for the success of the analysis [34]. We propose a classification of
the DM techniques, differentiating among models requiring or not a reference value for the analyzed
variable. The former group is furtherly detailed, discriminating between descriptive models, namely
the ones oriented to defining relationships among objects (e.g., conceptual clustering), and associative
models, addressing the relationships among variables (e.g., association rules, model-based reasoning,
reason weighting). According to this, among the DM techniques, we selected Association Rules (ARs)
mining for two main reasons: firstly, because of its purpose, that is discovering relevant and non-trivial
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attribute-value relations not immediately recognizable in a massive amount of data [35]. The second
one is related to ARs’ mining intuitiveness, that makes results interpretation instantaneous even for
non-domain experts. Also, ARs mining is very popular in several different fields of application.

In this paper, we will propose an innovative process for determining the proper combination of
ANN tools with Data Mining (DM) techniques. In fact, the combination of these two techniques can
now be done using software which can handle large volumes of data (big data), assuming that the data
must be available during the asset’s life cycle, and that its quality must be tested. If this process could
be practically implemented, novel predictive maintenance models may emerge (predictive analytics),
models that with unprecedented precision may detect any asset lack of performance and therefore
help to manage asset O&M.

2.1. State of the Art: ANNs Applications in AM

As already mentioned, ANNs represent a powerful methodology for prediction and classification
issues. Specifically, they enable condition analysis of the asset and of the operating variables, with the
aim of anticipating potential problems [36].

In the existing literature, there are several applications of ANNs referring to predictive maintenance
and asset management. For instance, [37] studied the condition of gearbox bearings in wind turbines
using a nonlinear autoregressive ANN, in order to estimate their condition and anticipate possible
failures. Moreover, ANNs can be combined with other techniques, like decision trees, in order to
improve the accuracy of the prediction obtained: an example of this combination is presented for
the maintenance of heating ventilating and air conditioning systems [38] or in engine gearbox fault
diagnosis [39]. ANNs have also been applied to detect the health status of rotatory components; an
enhancement of the ANN’s learning stage (e.g., reducing the calculation time) can be performed by
estimating weights and biases through a Genetic Algorithm, as suggested by [40]. In [41], an asset
prognostic system, based on principal component analysis and back-propagation ANN, is proposed
and applied to transformers of a large power system. The potentiality of ANNs in fault diagnosis
is proven, among the others, by [42] that analyzed the vibration data to predict bearings failures,
while [43] addressed the engine cylinders temperature to foresee potential malfunctioning. A similar
approach is also applied for controlling the exhaust gas temperature of gas turbine engine and detecting
wearing problems: integrating data recorded through different sensors of the turbine, allows the
monitoring of the turbine’s performance and fault detection [44]. Another application belonging to the
energy field regards the analysis of temperature and irradiance values to predict the performance and
failures of photovoltaic plants [45]; interestingly, as implemented in a power grid company, ANNs may
also be integrated in ontological models to optimize the faults diagnostics and repairing processes [46].

The ANN technique can be considered therefore a mature technique with high technological
readiness for its immediate implementation and in many companies many different applications where
they are used can be found. This makes rather practical the implementation of ANN algorithms for
prediction in many industrial scenarios, of course given the accuracy and fitting of the algorithm is the
appropriate one.

2.2. State of the Art: AR Mining Applications in AM

ARs were first applied to determine the relationships among items frequently bought together [47].
With the growing popularity of such a methodology, the applications to other fields increased as well,
furtherly highlighting the versatility of the methodology. For example, in the manufacturing field, ARs
mining is applied for relating the root cause to groups of machines in a production process [48] or in
predicting process failures [49,50].

Other ARs mining applications regard the analysis of events co-occurrences or correlations.
For instance, they can be used in defining the occurrence of couples of events, as presented in case
of trains diagnostics [51]: rules relating sequential events are taken into consideration, in order to
more efficiently monitor train fleets. In a similar manner, process reliability and safety is addressed
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by several authors: [52] develop a procedure for failure detection on machines belonging to different
production lines, by integrating maintenance data; [53], instead, apply the ARs to deploy a Total
Productive Maintenance strategy to increase the reliability of the production process. Maintenance
policies based on ARs mining for the prediction of components’ breakages are also applied in existing
contributions related to refinery plants, both involving an active participation of plants operating
personnel in parameters setting [54] and automatizing the latter aspect through the resolution of an
optimization model considering production constraints [55]. Conversely, some authors showed that
the application of ARs mining in power plants has a positive impact for diagnostic purposes, but are
not a sufficient in predicting failure occurrences [56].

The ANNs and ARs mining approaches are promising methodologies for prediction and
classification, but more research is needed in terms of combination of the two. A work integrating
the ARs mining and ANNs approaches operational reliability issues is already existing in literature:
specifically, the ARs are extracted to define the factors influencing power distribution reliability; then,
such factors are given in input to an ANN for the normal behavior modelling of the distribution net [57].
The approach proposed in the current paper is the opposite: indeed, the normal behavior is firstly
estimated through an ANN and, when a substantial deviation is noticed, the ARs mining is applied to
diagnose whether such a deviation impacts on the efficiency and performance of the asset. In fact, if
the ability of ANN models to predict the normal behavior of a system starting from the analysis of
the process’ variables is indisputable, it might also be useful to understand what are the impact that
influence the abnormal behaviors of the process. Such an analysis can be easily carried out through the
ARs mining. For this reason, the approach proposed in the current paper regards the combination of
the ANN and ARs mining.

3. Brief Background of the ANN-DM Techniques Selected

The ANN architecture selected consists of an input layer, an output layer and one or more hidden
layers. Research has been made in evaluating the number hidden layers (deep of the network) and the
number of neurons in these layers, normally depending on the problem complexity or on the accuracy
needed [58]. Also, neural networks may use different available training algorithms to learn from data,
with different features and efficiency [59]. The learning process consists of an iterative process to
minimize a function (named loss function), which is normally a non-linear function containing the
ANN parameters (biases, learning rate and weights). The process stops when a specified condition
is reached.

In the literature, we can find many different training algorithms among which the gradient descent
is recognized as the simplest one [60]. This is a first order method that will be used in this paper to
implement a backpropagation process to train the network so that the ANN can learn to link arbitrary
inputs to outputs. The backpropagation algorithm has been selected since it has provided excellent
results compared to conventional lineal and polynomial methods dealing with time series of data [61].

In this paper, the ANN with backpropagation prediction model selected is a continuous time
simulation model that has demonstrated to be easy to adapt for prediction accuracy and self-learning
capabilities (as explained later in Section 4.2).

Concerning our data analysis tool, once the current study addresses the identification of the
relationships among variables, an associative model is required and, specifically, the Association Rules
(ARs) are mined. A formal definition of an Association Rule and a description of the rule mining
algorithm is provided in the following.

Given a set of Boolean data I = {i1, i2, . . . in} called items and a set of transactions T = {t1, t2, . . . tm},
a transaction ti is defined as a subset of items belonging to I (i.e., an item-set). An Association Rule (AR)
is an implication in the form Γ→ ∆, where Γ and ∆ are item-sets belonging to I and whose intersection
is null (i.e., Γ ∩ ∆ = Ø). Γ and ∆ referred to as body and head of the rule, respectively. The quality of an
AR can be assessed through different metrics; in this study, we apply the most popular ones, that are
(1) the Support and (2) the Confidence.
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(1) Support (Γ→ ∆) = (|Γ,∆|)/m: the support is the ratio between the number of transactions both
containing the item-sets Γ and ∆ (|Γ, ∆|) and the total number of transactions (m). Hence, it represents
the probability of finding a transaction containing Γ and ∆.

(2) Confidence (Γ→ ∆) = (Support(Γ→ ∆))/(Support(Γ)): the confidence can be considered as a
measure of the strength of the rule. Indeed, it is calculated as the support of Γ→ ∆ over the support of
item-set Γ. In practice, confidence represents the probability of occurrence of ∆, given the occurrence
of Γ, i.e., the conditional probability of ∆, given Γ.

The procedure for mining the ARs from a dataset, starts from the generation of the Frequent
Item-sets: the users define a minimum support according to the dataset’s characteristics; then,
the item-sets appearing in T with a frequency higher than the minimum support are generated through
the FP-growth algorithm [62]. Starting from each frequent item-set F, all the rules in form X→ Y, such
that X U Y = F, are generated.

Since assets’ performance monitoring involves the analysis of continuous variables,
the discretization of such attributes should be taken into account. This issue is already addressed
in existing literature: indeed, some authors provided guidelines on how discretizing such values.
For example, [12] propose an entropy minimization-based heuristic to define multiple intervals,
while [63] propose the application of an evolutionary algorithm to define ranges automatically. Data
could also be clustered before extracting the ARs, even if some relationships can be disregarded (e.g.,
the support of such rules does not reach the minimum support required). In order not to lose any
relevant information, in the energy consumption monitoring field, data are often partitioned according
to a specific strategy, e.g., in fixed ranges [64]. Hence, in our application, the discretization of the
continuous variables is defined in accordance with the O&M department, so that all the different
operating conditions can be mapped. The software RapidMiner (www.rapidminer.com), an opensource
data mining platform, is selected to carry out the analysis. Among the various tools available on
the market, RapidMiner is being considered one of the most user-friendly, because of the graphical
interface and the ease of modifying the parameters, since no programming skills are required [65].

4. ANN-DM Combination Process and Sample Problem

The “Asset Performance Monitoring and Reliability Assessment Process” coordinates and
integrates data, engineering tools and human resources (with knowledge, skills and experience)
in order to achieve the best possible recommendation for assets’ operations and maintenance actions.
This process also analyzes the different renovation and reinvestments options which are available for
the physical asset. All these activities are accomplished taking into account different operational and
data related constraints and controls, as presented using the Functional Modelling method IDEFØ
diagram [66] of the process in Figure 1.
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This process is a continuous improvement process responsible for leading and controlling the
knowledge captured concerning the behavior of the asset (observed properly when integrating O&M
Data [I1], with process [I2] and condition monitoring data [I3]), adapting permanently operations
and maintenance actions. The process provides consistency to major maintenance actions and assets
replacement options ensuring proper AM orientation according to predictable and/or unpredictable
circumstances that may take place.

The general process in Figure 1 can be split into four different subprocesses, named modules in this
paper, as illustrated in Figure 2. The first module is Data Processing, responsible for the preparation
of valid data, quality tested (O1), for the subsequent processes, as well as for the normalization of
this data (O2). The second module is the one to provide an algorithm that can identify deviations
of the asset from its expected behavior under normal operating conditions. These deviations are
presented in the form of prediction error (O3). The third module deals with the measurement of the
deviation, obtaining the relationship between operational data and efficiency (O5) and then calculating
the efficiency loss observed for a period (O6). Finally, the last module takes this information to adjust
O&M actions properly (O7) and to reevaluate asset major interventions (O8) accordingly.
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In the following paragraphs, we explain each one of these processes with detail, going down to
level 2 in the IDEFØ diagram presented (therefore we use the Functional Modeling method IDEFØ
with three hierarchical series of diagrams). In addition, the application of each phase of the process is
illustrated with a practical example.

4.1. Sample Problem Description

For this paper we have selected the example of a process pump located inside a cryogenic LNG
storage tank, with the following features:

• A unique design allowing the pump to be installed inside the tank in a vertical column to remove
the possibility of major tank leakage due to a pipe or connection problem.

• The pump and motor units are submerged, and the column acts as a guide to seat the pump
during installation and performs as the discharge pipe from the pump.

• The plant information system shows operating conditions of the pump to detect any
potential problem.

• The pump has very different possible operating conditions (resulting of very different tank levels,
flow, pressure, LNG density, operating hours of the pump, etc.).
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• It is very troublesome to establish a clear judgement about potential pump malfunctioning. Besides
this, condition monitoring capabilities are limited to previously mention operating variables (for
instance, no items vibration, bearing temperatures, motor temperatures are received).

In this example, the scope of the analysis was fixed as follows:

• To generate a process and tool for the prediction of anomalies in the operation of the pumps with
complex operation and supervision regime.

• To establish the guidelines for the practical implementation of the models and methodology.
• To generate enough information to prepare a Business Case for the company to implement the

process if there is a demonstrated payback to the business.
• Some other secondary or complementary objectives were:
• To identify the operating regimes of the equipment so that anomalies are recorded.
• To obtain the loss of performance of the equipment when producing the anomalies detected.

4.2. Imput Data Processing Module

The procedure described below is necessary to unify the data received from different information
sources. For this, the guidelines for data capture, cleanup and subsequent standardization are listed.
In this way, we can ensure that ANN models and association rules are as effective and precise as possible.

The steps listed below are shown in detail in the IDEFØ 1.1 to 1.5 diagram (Figure 3):

(1) Asset case study definition: The first step of the procedure (IDEFØ1.1) is to choose the asset
case study from organization asset portfolio (I1.1) so that it can be representative to extend
the results to other similar equipment or systems of the plant. For the equipment selection,
the organization must have good and consistent data for operation and maintenance history
(C1.1) that allows obtaining the model of the same with success. In this step, it is convenient to
collect all the technical information of the equipment (C1.3), referring to the maintenance and
operation recommendations by the manufacturer. Each operation variable that is extracted from
the control system of the equipment will have to be standardized based on the design standards.
Additionally, another restriction to consider is the operational context, to understand how the
equipment works in their environment and how they can be affected by external conditions
and different modes of operation (C1.2). Singular case studies and the obtaining of a single
model for single equipment can be given, or alternatively, the option of a sufficiently flexible
model to be able to extend to similar equipment, and in this way, take advantage of the work
and the dedicated effort. In many cases, the operational context may be completely different,
because of location, altitude, external agents and other operational parameters that accelerate
ageing and variation of performance. So, it is advisable to choose equipment that do not have the
same operational context to obtain better accuracy in obtaining the model. The final decision to
select the asset case study is approved by O&M Manager “R2”, based on the above comments.
The following table shows all available variables and the origin of them (Table 1):

Table 1. Asset case study definition, data source, for the process pump example.

Variable
Corrective &
Preventive

Maintenance

Fluid
Density Flow

Intake
Temperature

& Output
Temperature

Output
Pressure

Tank
Level

Power
Consumption

Operation
Modes

Hours Since
Last

Overhaul

GMAO
√

LNG Quality
Registration

√

Plant
Information

System

√ √ √ √ √

Shift
superintendent

book

√

Pump
horometers

√
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Valid & 
process 

data
Asset case study 

definition
Variables 
selection

I1.1. Organization 
asset portfolio

Asset case 
study Variables

1.1 1.2

Period selection 
& data 

recording 
frequency

Period & 
DRF

1.3

C1.1 Consistent 
operation & 

maintenance history 

I.1. O&M data
I.2. Process data
I.3. Condition 
monitoring data

C1.2 External 
condition & 

operation modes

C1.3. Technical 
information

Data validation 
& processing

1.4

R2: O&M manager

Data 
normalization
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(2) Selection of variables: Once the case study equipment has been chosen and the operational
context described, as indicated in the previous paragraphs, the next step (IDEFØ 1.2) is to select
the variables that are used for modeling and studying the behavior by ANN and association rules.
All the variables must be part of the historical operation and maintenance, and to comply with
the following requirements:

• Data must be consistent and without significant temporal breaks in the series.
• The frequency at which the information is extracted from different sources of information

must be enough to capture the changes of state in each of the variables.
• The variables must be independent of each other, if some dependencies between variables are

detected, those dependent variables for which less information is available will be discarded.
• At least one or more variable must be of operation (for example, flow, pressure, electric

consumption, power consumed, speed, etc.).
• The other variables must be linked to the equipment condition, such as vibration, bearing

temperature, etc. In addition, some variable must be related to the operational context and
environment, such as outside temperature, required load, operation mode, etc.

Notice that in order to improve the choice of variables, it is advisable to use statistical techniques
to measure the degree of dependence (see R1 in previous Figures). For the example presented in this
paper, the variables that have been selected and that will follow the next phases of the process are
those shown in Table 2.

Table 2. Sample covariance matrix and correlation coefficients, to identify the dependence
between variables.

COVARIANCE Flow Output
Pressure

Power
Consumption

Intake
Temperature

Output
Temperature

Tank
Level

Fluid
Density

Hours Since
Last Overhaul

Flow 0.04100
Output pressure −0.01438 0.01096

Power
consumption 0.03624 −0.01337 0.03503

Intake
temperature −0.00531 −0.00167 −0.00562 0.014173

Output
temperature −0.01038 0.00208 −0.01078 0.00905 0.02344

Tank level 0.00565 0.00538 0.00543 −0.01025 −0.00348 0.02418
Fluid density −0.00457 0.00241 −0.00281 −0.00077 −0.00340 −0.00315 0.01663
Hrs since last

overhaul −0.00844 0.00100 −0.00922 0.00279 0.00428 −0.00392 0.01136 0.08351

This table is the result of applying statistical techniques; in particular, it has been studied using a
covariance matrix and correlation coefficients, the dependence between variables [67]. The analysis
of the results assumes that flow, output pressure, output temperature and Hrs since last overhaul
are indispensable for the model, and that other variables such as fluid density, tank level and intake
temperature are secondary, and they could be left out of the model if sufficient data is not available for
power consumption prediction modeling.
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(3) Period selection and data recording frequency: Once the variables have been selected, it is
necessary to define the period in which the study will be carried out (IDEFØ 1.3). It is advisable
to choose a period in which all possible scenarios have been registered, for example, that the
system has operated in all different operating modes, overhauls, corrective maintenance, etc.
Likewise, in addition to selecting the period, it is also necessary to select the interval of data
recording of the different information sources. As mentioned in step 2, this period must allow us
to capture with enough detail, the change of state in the variables for its interpretation and study,
with the objective of training the network faithfully and being able to identify anomalies in the
behavior of the equipment (C1.4). At this point, it is convenient to carry out a study between
the efforts required to obtain the data and the subsequent results for a model with a high level
of precision. For a shorter sampling interval, higher levels of accuracy in the prediction of the
model are obtained (for example, data/minute vs data/hours). In Table 3, the periods selected for
the case study are shown. It is divided into three periods; the passage from one period to another
is marked by an overhaul (OH) maintenance activity. The data recording frequency has been
every calendar hour.

Table 3. Period selection.

Hours Period before OH 1 Period before OH 2 Period before OH 3

Operating hours From 2.375 To 16.147 From 0 To 5.173 From 0 To 94
Valid data points 10.082 4.857 49

(4) Data validation and processing: This step involves the validation and processing of the information
(IDEFØ 1.4). This is one of the most important steps and usually the one that consumes more
resources in the application of the methodology. Usually, there are errors in the information that
must be reviewed and above all, the unification of the information from the different information
sources in the same selected period. The importance of this step is essential to achieve results
that are as close as possible to reality. Another measure to consider at this point is the revision of
the consistency of the database, filtering the noise and erroneous information generated by the
instrumentation installed in the assets. For this, it is necessary to use data validation tools “R1”,
representations by dispersion diagrams, etc. Once the data has been normalized, the next step is
the implementation in the artificial neural network to obtain the ideal model of system behavior.
The model obtained, together with the real-time reading of the variables, can be compared with
the real behavior of the system, so that in an ideal case, the deviation from the expected behavior
can be detected.

(5) Data normalization: Normalization is applied as part of data preparation for machine learning
(IDEFØ 1.5). The goal of normalization is to change the values of different variables in the dataset
to a common scale, without distorting differences in the ranges of values. For machine learning,
every dataset does not require normalization. It is required only when features have different
ranges. Each variable is normalized between 0 and 1, making use of the technical information
collected in the first step of the procedure. For example, if a variable is by design limited between
250 and 700 m3/h, the values that are outside the range are not considered for the study, but the
values within the range will be normalized between 0 for values close to 250 m3/h and 1 for values
close to 700 m3/h. In the following table, the maximum (Vmax) and minimum (Vmin) values for
each of the variables selected for the case study are shown in Table 4.
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Table 4. Values for data normalization.

Variable Vmin Vmax

Flow (m3/h) 250 700
Intake Pressure (kgf/cm2) 6 14

Intake Temperature (TAsp) (◦C) −160.5 −150
Impulsion Temperature (TImp) (◦C) −160.5 −153.5

Tank Level (Nivel T) (mm) 0 50,000
LNG Density (Dens GNL) (kg/m3) 430 465

Hrs since last Overhaul (h) 0 16.128
Power (Kwh) 200 350

4.3. Prediction Model Module

As mentioned above, in this paper, the prediction model selected is a continuous time simulation
model that has demonstrated to be easy to adapt for prediction accuracy and self-learning capabilities.
The model (Figure 4) implements an ANN with a backpropagation algorithm using Vensim® simulation
environment (Ventana Systems Inc., Harvard, MA, USA), to benefit of the outstanding software
optimization features for fast training. The stock and flow diagram—SFD—of the simulation-based
prediction model is presented in Figure 5.
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Besides providing high rigor for writing model equations, Vensim helps to trace and to understand
the importance of model existing feedback loops and supports multiparametric optimization that will
result essential for this process (IDEFØ 2.1 in Figure 4). Some interesting features of the model that has
been implemented in this process are:

• The ANN structure (number of neurons per layer) can be easily changed by modifying the number
of elements of the different subscripts, which correspond to the number of neurons of the network
(in our initial model we have considered only one hidden layer and 20 neurons).

• The network has two bias parameter (hidden layer [Bias 1] and output layer [Bias 2]) and two
learning coefficients or rates (hidden layer [LC 1 = Eta 1 during training time] and output layer
[LC 2 = Eta 2 during training time]).

• Input Data (in our example values of flow, temperatures, tank levels, densities, and operating
hours, to predict a pump energy consumption) and target data (values of energy consumption)
are imported from plant information systems, to be uploaded automatically to Vensim (O2 in
Figure 4). Input data goes to first layer neurons, while target data will be compared with the
values predicted by the ANN output.

• ANN Training time is introduced as a parameter, once this time is reached in the simulation, the
LC1 and LC2 are set to zero, and the learning process finished since the adjustments flows of the
weights will be stopped.

To overcome potential training dynamic issues, we can rely on tools provided by Vensim for
optimization and calibration of model parameters. Vensim uses the direct-search method that does not
evaluate the gradient (Powell Modified Method), to calibrate model parameters [68,69] In our case,
it is important to calibrate Bias 1, Bias 2, Eta1 and Eta2 (learning coefficients), and all initial weights
parameters w1o(i,j) and w2o(j,k) in order that the ANN offers its best possible fit as soon as possible.
The optimization model implemented in the Vensim Powell Optimizer in our (IDEFØ 2.1) is as follows:

Objective Function:
Min

∑
t Current SQ Error t with t = 1 . . . Final Simulation Time

Subject to:
−1 ≤ w10(i,j) ≤ 1 with i = 1 . . . n inputs, j = 1 . . . m neurons in the HL
−1 ≤ w20(j) ≤ 1 with j = 1 . . . m neurons in the HL
0 < Eta 1 ≤ 1 For the leaning coefficient of the HL
0 < Eta 2 ≤ 1 For the leaning coefficient of the Output Layer

BMin < Bias 1 ≤ BMax with BMin y BMax to be selected (for instance −10, 10)
BMin < Bias 2 ≤ BMax with BMin y BMax to be selected (for instance −10, 10)

where w10 (i, j) and w20 (j, k) are the initial weights values.

With Vensim the analyst can select to stop the algorithm according to a maximum number of
iterations or according to certain tolerance criteria for the solution. It is surprising to see the low error
obtained for a relatively few number of iterations of the algorithm. Once the optimization algorithm is
stopped, results for parameter values can be logged together with the performance of the model for
the optimal solution found.

Proceeding in this way, we can easily select initial model parameter values, and then by running
the model with the backpropagation algorithm, we can obtain final weights values for the ANN
algorithm that will be put into operation (IDEFØ 2.3 in Figure 4).

For our pump example, the considered ANN model structure, where the authors had to initially
iterate five times with the number of neurons in the hidden layer, can be characterized as:

• Three layers
• Seven neurons in the input layer
• Twenty neurons in the hidden layer (previously tested between 5, 10, 15, 20 and 25)
• One output neuron
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The implementation in Vensim required:

(1) Connection with standard data in Excel provided by Plant Info Systems;
(2) Training interval definition (first 70% of valid data points in Table 3, Period 1, in

chronological order);
(3) Basic tests of operation and validation of the ANN Model;
(4) Optimization of ANN algorithm values optimizing a total of 164 parameters:

• Initial weight values w1 (i, j), i = 7, j = 20; 140 parameters
• Initial weight values w2 (j), j = 20; 20 parameters
• Parameters Bias 1 and Bias 2; 2 parameters
• Learning Coefficient Eta 1 and Eta 2; 2 parameters

(5) Simulation with the backpropagation algorithm to find the final values for:

• Weight values w1 (i, j), i = 7, j = 20; 140 parameters
• Weight values w2 (j), j = 20; 20 parameters

(6) The testing (30% remaining of valid data points in Table 3, Period 1, in chronological order) and
calculation of the quadratic error of prediction;

(7) The prediction error trend study.

Results of the prediction error (as in Figure 6) provide precise information about possible
abnormal operating conditions of the assets for any operating regime (or, as in Figure 6, after an
overhaul intervention carried out on the asset). Calibration can be done for each network configuration
selection (i.e. given numbers of neurons per layers: n, m, l), and each time input data conditions
recommend to retrain the network.Energies 2019, 12, x FOR PEER REVIEW 14 of 25 
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Sample additional regression results for the ANN algorithm (for the 20 neurons in the hidden
layer) are presented in Table 5. Notice how step 4 of the Vensim model implementation process,
described above, provides extremely good results for training (Table 5) since all initial values for the
weights, biases values as well as training coefficient are already optimized when the backpropagation
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algorithm starts for the final run with optimal parameter values. Therefore, the backpropagation
algorithm just refines the values for the weights set by the direct search technique.

Table 5. Artificial Neural Network (ANN) algorithm results for the regression problem (with 20 N/HL).

Metric Training Before the Overhaul 1 After the Overhaul 1

RMSE 0.00030 0.00043 0.00222
MAE 0.01567 0.02297 0.05447

MAPE 0.02807 0.03963 0.12195

The precision of the algorithm results can be observed in Figure 7, where a histogram of absolute
values for the results of prediction before the overhaul of the pump is presented.
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Therefore, by using the Vensim model and software, the algorithm to put into operation (final
ANN model) will be the result of two optimization phases:

(1) Direct search techniques using the modified Powell method applied for the optimization of initial
values of weights, biases and learning rate coefficients (in IDEFØ 2.1. in Figure 4).

(2) Backpropagation algorithm for the optimization of the weights during the ANN training period
(IDEFØ 2.2. in Figure 3), when we use initial values of weights, biases and learning rate coefficients
optimized in IDEFØ 2.1.

Before concluding this phase and regardless of the fact our results are promising, we realize that
the selection of a given technique, like ANN, should not be done without discussing whether we are
delivering results that can be benchmarked to those provided by other available advanced machine
learning techniques for predictive analytics. This certainly supports the tool selection and provides
more elements for a well-informed decision for the management of assets [33].

It is important to say that not all the techniques that we will now review have the same maturity
level than ANNs in reliability analysis or maintenance. For instance, we have few examples of
Support Vector Machines (SVM) or Random Forest (RF) to predict systems performance and reliability,
the utilization of these techniques, in the referred fields, will probably take place with more intensity in
the coming years [70].

Regarding the application of SVM techniques compared to ANN, the readers are referred to [71]
where a study is presented comparing different Neural Network techniques (NNBR, NRBR, NRBR) and
NSRV, based on the results obtained in each of them from the mean square error and the relative mean
(RMSE and MRE). This model of artificial intelligence (SVM) is in this case the one that provides the
best result, obtaining a high precision in the power consumption prediction of pumps and significantly
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improving the results of the neural networks. Likewise, there are numerous references for the
application of this technique to study energy prediction and systems’ performance, for instance some
authors [72,73] compare SVR techniques (multi-scale support vector regression) with a multilayer
perceptron neural network, obtaining better results with SVR due to its speed and robustness. Although
it is a relatively recent technique, the results obtained are very promising and encourage further
research in this field.

We have fitted the SVM nonlinear models with the SVM function available in the library e1071
of the R system [74], which offers an interface to the award-winning C++ implementation, LIBSVM,
by Chan and Lin. The data set is described by n training vectors {xi, yi}, i = 1, 2, . . . , n, where the
p-dimensional vectors xi contain the predictor features and the yi ∈ {−1, 1} are the responses of each
vector. Among the several variants of SVM existing in the library e1071, we have used ε-classification
with the Radial Basis Gaussian kernel function.

Concerning the linear SVM prediction, the Liblinear library [75] has been used, which is an open
source library for large-scale linear prediction. It supports logistic regression and linear support vector
machines. We have used the implementation of the LiblineaR package [76]. This package does not
consider the nonlinear transformation φ(x) nor the kernel function. However, the estimation of the
models is particularly fast as compared to other libraries, and the package is based on the LIBLINEAR
C/C++ library for machine learning.

Regarding RF, this is one of the most recent techniques that we have decided to test for this
case study, reaching very promising results. Some other interesting examples in the literature use
the RF technique to classify data, showing high accuracy compared to other techniques [77]; In other
examples [78] RF is used to improve, for instance, prediction of wind energy production in the short
term, which is a complicated problem due to the stochastic nature of the wind and using the effects of
seasonality. Other interesting examples can be found in [79], where two applications of Decision Trees
techniques are presented: the planning of organized energy storage in microgrids and energy control
within a PC through the optimal use of local energy resources. A complete case study shows properly
the feasibility of this technique.

We have used the R package RandomForest [80], which builds 500 trees by default and the number
of variables to randomly select is the p/3, being p the number of predictors.

Table 6 presents the results that were obtained during the application of the above mentioned
techniques to the prediction of energy consumption of the pump for the period before and after
overhaul 1, and of course for similar data.

Table 6. Benchmarking the result of the different predictive analytics techniques.

Model Data Set RMSE

ANN Model
Before the Overhaul 1 0.00043
After de Overhaul 1 0.00222

SVM non linear
Before the Overhaul 1 0.00045
After de Overhaul 1 0.00230

SVM Linear (Liblinear) Before the Overhaul 1 0.00052
After de Overhaul 1 0.00269

Random Forest
Before the Overhaul 1 0.00038
After de Overhaul 1 0.00201

As the reader can appreciate, the prediction accuracy results are really similar to the different
algorithms, but for this particular case study the ANN model performed better that the SVM, while the
RF model results were definitely the benchmark.

This was a good exercise to test the prediction quality of the ANN algorithm, this fact besides
the maturity in the implementation of this technique within the reliability and assets management
organization and some other practical implications, made the selection of the ANN process reasonable.
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4.4. Output Data Analysis and Control Module

When a substantial deviation of the error trend is noticed, the third step of the process is performed,
as shown in Figure 8.
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The prediction error (O3) of the power consumption prediction model acts as a trigger for this
stage. Indeed, when the error committed by the ANN increases more than a tolerable threshold (C2)
and this growth protracts for a defined time interval, it is recommendable to analyze the performance
in terms of efficiency. Hence, the valid data (O1) determined in the Input data processing unit and the
prediction error are input in the AR data mining activity. The aim of this step is studying the relations
among the operating conditions and the efficiency of the system under investigation (O5) and checking
any loss of efficiency (O6).

The steps to carry out the analysis, reported in detail in Figure 7, are the following:

(1) Time interval selection (IDEFØ 3.1): in order to check for any possible performance loss, we may
want to compare situations belonging to different time intervals (C3), such as the efficiency before
and after an overhaul or a failure of the equipment. For instance, we could select all the available
data to develop as complete as possible analysis or select a symmetric time window, e.g., 1000
working hours before and after an overhaul.

(2) In our application, according to the O&M manager (R2), we decided to consider the whole dataset,
in order not to lose any information on the asset performance and to study only the filtered data
relevant for the aim of the Data Mining step. Specifically, we split the dataset into 3 periods
(Table 7): the first one, starts from the beginning of the system monitoring and lasts until the
preventive Overhaul. The entire period would be composed of 13,772 working hours, but due to
missing data and low quality ones, only 3223 can be considered in this study. The second time
window, instead, ranges from the Overhaul to the catastrophic failure of the system (4856 of the
5173 working hours can be analyzed). After the failure of the asset, only 92 working hours are
recorded, of whom 49 can be studied.

Table 7. Time intervals analyzed in our application.

Time Intervals Number of Hours Milestone

TI 1 3223 Overhaul

TI 2 4856 Failure

TI 3 49 Current date

(3) Variable selection and discretization (IDEFØ 3.2): depending on the depth of the analysis, we
could filter some of the valid data determined in the first step, or limit the study to a certain



Energies 2019, 12, 3454 17 of 25

number of variables. In addition, if the selected variables are measured through continuous values,
a discretization is necessary since the AR mining algorithm applies to discrete elements. In our
application, the variables selected are pressure, flow-rate, impulsion temperature, aspiration
temperature, tank level, and density; all of them are related to the efficiency of the system.

(4) The discretization process is performed in accordance with the O&M manager (R2). Indeed, a
tradeoff is needed in this step: on the one hand, in fact, the discretization ranges have to be small
enough to represent a specific operating condition. On the other hand, instead, we wish to have
the greatest interval size, so that the system frequently operates inside it. In other words, if the
intervals are too small, the system could work inside each of them very rarely and, consequently,
we may not profit from the data. In the next table (Table 8) we report the minimum and maximum
values of the valid data and the size chosen for each interval.

Table 8. List of variables, minimum values, maximum values and interval sizes.

Variable Min Value Max Value Size

Flow rate [m3/h] 328 668 30

LNG Density [kg/m3] 430 465 5

Tank level [mm] 1900 35,900 1000

Intake Pressure [kg/cm2] 6.5 13.5 1

Intake Temperature [◦C] −160 −157 1

Impulsion Temperature [◦C] −160 −153 1

Efficiency [%] 42 68 1

(5) AR mining (IDEFØ 3.3): the discretized variables ranges represent the input of AR mining stage;
quality of the results depends on data quality and availability (C1) and the temporal constraints
considered (C3). The resources necessary to deploy the data mining procedure are O&M manager
(R2) and the AI&DM analyst (R6), together with AR RapidMiner model (R4). According to the
methodology explained in Section 3, we have to analyze the rules having values of the efficiency
as head (∆), and values of all the other selected variables as body (Γ). Each AR is associated with
a support and a confidence: the former represents the percentage of time units over the total in
which the operating conditions and the efficiency have assumed the values expressed by the rule.
The latter, instead, indicates the probability of having the efficiency expressed by the rule, given
the values of the operating variables. For example, in Table 9, some of the rules extracted (O5)
are reported. Column 1 to 6 (Flow rate, LNG Density, Tank level, Pressure, Intake Temperature,
Impulsion Temperature) contain the body of the rule, while the seventh is the head (Efficiency);
column 8 and 9, instead, respectively report the support and the confidence associated with each
rule. The rules exemplified in Table 3, should be interpreted as follows (let’s consider, for instance,
the first row): when the operating conditions of the system are characterized by a flow rate
included in the range 478–508 m3/h, a density between 450 and 455 kg/m3, the tank level between
5900 and 6900 mm, the pressure inside the tank is between 10.5 and 11.5 kgf/cm3, the aspiration
temperature (TAsp) is included in −159 ◦C and −158 ◦C and the impulsion temperature (TImp) is
in −158 ◦C and −159 ◦C, in the 75% of the cases (confidence = 0.75), the efficiency of the system
ranges between 59 and 60%; in the remaining 25% of the cases (see the second row of the table),
instead, the efficiency range is 60–61%. The support associated with the former relation is 0.0006:
this value indicates the probability of having the operating conditions values listed before and an
efficiency level in 59–60%. Similarly, the rule associating the operating conditions values and the
efficiency between 60–61% have a joint probability of occurrence, namely a support, of 0.0002.
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Table 9. Example of the ARs extracted.

Flow Rate Density Tank Level Pressure T Asp T Imp Efficiency Support Confidence

[478–508] [450–455] [5900–6900] [10.5–11.5] [−159–−158] [−158–−157] [59–60] 0.0006 0.75

[478–508] [450–455] [5900–6900] [10.5–11.5] [−159–−158] [−158–−157] [59–60] 0.0002 0.25

(6) Rules comparison (IDEFØ 3.4): The relations among the operating conditions and the efficiency
(O5) mined in the previous step should be compared in order to verify the actual existence of
an efficiency loss (O6) and the corresponding probabilities. To this end, we need to select rules
presenting analogue values of the operating conditions but belonging to different time intervals,
i.e., those identified in the first step of this stage. This activity has to be carried out both by the
O&M manager (R2) and the DM&AI analyst (R6). In our study, three different time intervals
have been selected and compared, as shown in Table 3. The highest number of comparable
conditions characterizes TI 1 and TI 2: specifically, 58 common operating conditions have been
identified in which the system under investigation works both before and after the overhaul (i.e.,
the milestone dividing TI 1 from TI 2). As shown in the following table (Table 10), in almost the
totality of the rules there is a loss of efficiency. Comparing the remaining time intervals, there are
less coincident operating conditions. In general, the efficiency of the TI3 is higher than the one of
TI 2 and greater-equal than the one of TI 1.

Table 10. Efficiency comparison among the identified time intervals.

Time Intervals Efficiency Comparison Coincident Operating Conditions

TI 1 vs. TI 2
Efficiency TI 1 > Efficiency TI 2 54

Efficiency TI 1 ≤ Efficiency TI 2 4

TI 1 vs. TI 3 Efficiency TI 1 ≤ Efficiency TI 3 16

TI 2 vs. TI 3 Efficiency TI 2 < Efficiency TI 3 3

A more detailed example is reported in the following table (Table 11). The first row contains
the operating conditions and the corresponding efficiency in TI 1, while in the following three rows
the analogue conditions and the efficiency values are reported for TI 2. In all cases, a decrease of
the efficiency is noticed: indeed, in TI 1 its value is among 64% and 66%, while in TI2, efficiency
values range among 60% and 62%. In TI 3, the efficiency increases, returning to the same range as
TI 1. The interpretation of these results should be related to the preventive overhaul executed at the
end of TI 1. Possibly, an error during the maintenance intervention or the re-installation occurred,
compromising the performance of the entire asset and leading to a catastrophic failure at the end of TI
2. Indeed, in TI 3, the normal level of efficiency was reestablished.

Table 11. Rules comparison among the identified time intervals.

TI Flow Rate Density Tank Level Pressure T Asp T Imp Efficiency Support Confidence

1
[508–538] [445–450] [27,900–28,900] [11.5–12.5] [−160–−159] [−159–−158] [64–65] 0.0003 0.5

[508–538] [445–450] [27,900–28,900] [11.5–12.5] [−160–−159] [−159–−158] [65–66] 0.0003 0.5

2
[508–538] [445–450] [27,900–28,900] [11.5–12.5] [−160–−159] [−159–−158] [60–61] 0.0002 0.5

[508–538] [445–450] [27,900–28,900] [11.5–12.5] [−160–−159] [−159–−158] [61–62] 0.0002 0.5

3
[508–538] [445–450] [27,900–28,900] [11.5–12.5] [−160–−159] [−159–−158] [64–65] 0.0204 0.5

[508–538] [445–450] [27,900–28,900] [11.5–12.5] [−160–−159] [−159–−158] [65–66] 0.0204 0.5

As presented in this paragraph, the output of the output data analysis and control module are the
relations among the operational, process, condition monitoring variables and efficiency and, after the
comparison, a measure of the efficiency loss.
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It is important to notice that modifying the head of the rule, i.e., replacing the efficiency with
another attribute, allows moving the focus of the investigation. For example, it could be interesting
to compare the operational variables with the failure modes, in order to associate different operating
conditions with the most likely failure mode and prevent it through specific actions.

4.5. Decision Support Module

This last module of the IDEFØ 1 diagram is presented in Figure 9.
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At this point of the process, the O&M manager can make decisions concerning possible changes in
the normal operation and maintenance of the asset, but can also select a better strategy for the overhaul
and reinvestment in the asset or its future replacement. These possibilities are constrained by the
process flexibility sometimes, and may generate changes in equipment behavior that must be tracked
and analyzed for possible re-training of the tool.

5. Implementation Process Results for the Pump Example

In our example, and concerning the scope of the project (as detailed in the introduction of Section 4),
after a discussion with the General O&M Manager, the following was concluded:

• Concerning the prediction of anomalies in the operation of equipment with complex operation
regime and poor monitoring of their condition through ANN AI-AR DM models: It was agreed
that it is possible to model the behaviour of the pumps and detect anomalies in their operation by
deviations from the prediction. For instance, it could be appreciated how a pump that suffered
a catastrophic failure after its first overhaul, worked with anomalous behaviour throughout its
second period of operation before the failure. Error accumulation was predicting this abnormal
behaviour. Another clear appreciation was the punctual accumulations of error detected when
the asset was reaching certain operating regimes.

• Concerning the guidelines for the practical implementation of the models in business systems:
It was agreed that the systems are currently registering enough data to proceed with the
implementation of this type of tools, and that it would be much more convenient to have all
variables in a digital format and integrated the same information system, where the ANN
algorithm is finally implemented. The implementation of the algorithm can be done by asset, for
greater precision, without a significant increase in costs.

• Concerning the possibility to obtain information to build a business case: It was agreed that the
integrated ANN-DM tool could avoid premature deterioration of equipment, verify the quality of
its major maintenance intervention, ensure its operation at maximum energy efficiency, improve
alarms and current interlocks for the operation of equipment, generate a new technical services to
offer to potential clients, provide thoroughly understanding of the behaviour of pumps throughout
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their life cycle, adjust the periods of completion of major maintenance and estimate the health of
the asset better (comparing with current available techniques).

• Concerning the identification and measurement of the asset´s loss of performance when anomalies
are detected: It was agreed that the analysis of performance in similar operating regimes could
be done properly. For instance, the measurement of the performance loss of the pump with
the catastrophic failure, after its first overhaul could be done showing that the pump always
operated with 4% to 6% lower performance. After the second overhaul, after the catastrophic
failure, the pump recovered perfectly the initial performance.

In general terms, the implementation of the model has been considered a positive learning
experience that can now be deployed for the entire fleet of similar assets, once the business case is
approved. Another important aspect of this project implementation was to estimate the time schedule
for this type of project. Figure 10 the percentage of time per process module accomplished when
studying the first pump is presented. It is important to notice the following:

• The input data processing time resulted to be a 50% of the total project time in this initial
implementation, as a result of the dispersion, different formats and quality of the data processed.
The total time when replicating the study to a similar asset was reduced by 30%. Mainly impacting
the input data processing module (20% time reduction), and the same impact in the next two
modules (5% time reduction each).

• Time for data processing resulted longer than for prediction and data analysis modules together.
This was shocking to the team involved in the project, even if the processing it is in line with the
one indicated by the Cross Industry Standard Process for Data Mining (CRISP-DM), that consider
it to be around the 70% of the total processing time [81]. The use of the AI-DM tools for the
problem analysis was expected to be more time consuming than the data processing according to
the complexity of the tools that were going to be used. However, two intermediate processes were
really efficient and less dependent on circumstances out of the team control.
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Being the current approach based on data, the main success factor of the methodology is data
quality; however, this aspect can represent a major limitation for implementing it, since a substantial
amount of data may not be immediately available in every company. At first, as noticed before,
the procedure may appear time-consuming, but when it is included in the organizational routine,
the obstacle characterized by the time for data validation and processing can be overcame. In addition,
the application of ANN and AR mining requires an expertise in data understanding and modeling a
positive mindset towards changing the current habits in terms of decision making in the O&M field.
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6. Conclusions and New Research Opportunities

In this paper we deal with the problem of asset performance monitoring, to detect potential
reliability problems and to predict loss of efficiency in energy consumption. We concentrated on assets
with multiple operating conditions and low possibilities of components health monitoring.

This paper main contribution is a suggested method to tackle this problem, and the detailed
explanation of the process accomplished, using the IDEFØ Functional Modeling method with three
hierarchical series of diagrams, to implement the method in a complete case study. The resources and
time needed for the project team to finalize the work were recorded.

The technical solution proposed considers the complementary application of the ANN (to detect
when asset behavior abnormalities appear) and DM techniques (to detail the operating conditions for
which behavior abnormalities were appreciated, and the extent of the impact on energy efficiency).
The possibilities of the use of the AR mining tool, after the ANN, were tested and compared with
alternative advanced method to ensure their suitability and accuracy.

Main limitations of the result proposed were found in the time needed for data processing. This
activity was really time consuming for existing business conditions, due to data dispersion, different
formats and quality of the data processed.

The overall case study project results showed that decision-making for the O&M manager could
be improved by detecting any abnormal power consumption of the pump (through the accumulation of
the square error of the prediction), with desired precision, and by releasing the corresponding process
to measure the loss of energy efficiency when that happens. Additionally, it was proven how this
process could serve to test the quality of major overhauls, to improve alarms and current interlocks
and generally to provide a thorough understanding of the behavior of pumps throughout their entire
life cycle.

Finally, it is important to mention that the idea is that the data processing for the ANN training
would be done off-line, as well as the initial selection of variables intervals and rules for DM. Then,
the information provided for O&M decision support could be generated on-line for the management.
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