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Abstract: The roasting of phosphate pellets is an energy-intensive process the optimization of which
can give rise to considerable efficiency improvements. To this purpose, the mathematical modeling
and the computer-aided simulation of a multi-stage process of phosphate pellets roasting have been
developed. This process includes drying, dissociation reaction of carbonates and a sintering process
in a moving, dense, multilayer mass of phosphate pellets in a special horizontal grate apparatus.
A theoretical model for the physical-chemical processes of a mass of phosphate pellets moving in
a multistage process and subject to external operation variables (i.e., temperatures and flowrates
of the drying gas at different positions of the conveyor length) has been developed. By letting
these control variables vary over suitable ranges limited by technical constraints, it is possible to
construct an algorithm that minimizes the overall energy consumption subject to the attainment of the
required quality indicators of the pellets. Therefore, the set of constraints includes bounds on both the
operational variables and quality indicators of the final product. A dynamic programming algorithm
subject to suitable penalty functions for avoiding constraints violation has been used. The results
obtained show that the scientifically based operation described in this paper achieves the goal of
attaining considerable energy savings while assuring the quality of the finished pellets. Furthermore,
the results highlight the convenience of extending the general strategy developed in this article to
other chemical energy engineering processes.

Keywords: drying process; phosphate pellets; multistage grate machine; optimization of energy
efficiency; dynamic programming

1. Introduction

The rational use of energy and raw materials is a problem of vital importance for most complex
chemical and metallurgical plants and provides an ecologically sound approach that reduces the
environmental impact and the necessity of wastewater treatments or of remediation procedures. This
is particularly true for manufacture energy-intensive industrial products using thermal treatments. In
this paper, the process of roasting a moving multilayer mass of phosphate pellets in a horizontal grate
apparatus (a widely used equipment in the chemical industries [1,2]) is considered.

The markets for phosphates include important sectors such as fertilizers, foods, detergents, water
treatment chemicals and others. In particular, the production of phosphorous requires the phosphate
pellets to be dried before remelting, otherwise the functioning of the ore-thermal furnace would be
seriously impaired and the consumption of energy would be higher than the one necessary to dry the
phosphate pellets before entering the furnace.
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A complex multistage roasting process is a combination of drying processes, dissociation of
carbonates and sintering of grains in the pellet, which provides the final strength of the pellets
formed [3]. Flow conditions and heat treatment characterize the quality of the final products [3,4].

A change in the technical specifications of the process or in the granulometric composition of
mineral raw materials requires expensive experimental studies to reconfigure the operation parameters
of the horizontal grate machine [5,6]. Therefore, the mathematical modeling and the computer-aided
simulation of the drying of a moving, dense multilayer mass of phosphate pellets in conveyors
combined with an optimization algorithm to minimize the energy consumption constitutes a problem
of considerable theoretical significance and practical importance [2,7].

The overall resulting algorithm includes an objective function based on the minimization of energy
consumption subject to equality constraints provided by the theoretical mathematical model in the
form of partial differential equations and to inequality constraints (bounds) that correspond to both
product quality constraints and technical operation mode limitations. Therefore, the problem can be
regarded as a dynamic optimization with respect to the operation variables (controls) that determine
the energy consumption subject to differential constraints on physical properties (state variables) and
inequality constraints on both state and control variables. The presence of inequality constraints on
state variables is one of the most difficult problems in dynamic optimization [8]. Additionally, since
the differential equations defining state variables are partial differential equations, available algorithms
and codes cannot be used, rather, special algorithms are to be developed and their robustness and
efficiency has to be tested, as shown in the following sections.

The article is organized as follows: Section 2 develops the theoretical model and the resulting
optimization problem, Section 3 provides structure and details of the algorithm proposed and shows
the numerical results obtained, Section 4 provides a discussion and shows the limitations of the
approach used, and Section 5 concludes.

2. Materials and Methods

The theoretical physical model and the resulting optimization problem include several steps that
are described by the following equations:

1. Drying of single pellets, the state variables of the drying process depending on one spatial
coordinate (the pellet radius) and one temporal variable.

In the model of drying of a single pellet, it is assumed that as drying progresses, the localized
front of moisture evaporation deepens (Figure 1). Heat is supplied to the evaporation front due to
the thermal conductivity of the dry layer of material, where heat is used to convert the liquid into
vapour. As a result of evaporation, an overpressure is created inside the porous structure of the pellet,
under the action of which the formed vapours diffuse from the evaporation front to the outer surface
of the wet pellet. Therefore, the rate of moisture removal depends on two resistances in series, i.e.,
heat transfer and diffusion [9]. The vapour pressure and the temperature at the evaporation front are
established during the drying process and follow the usual saturated vapour pressure law [10]. This
model of localized evaporation front is most appropriate for large porous wet materials (such as raw
phosphate pellets [11–13]).

The corresponding mathematical model is provided by Equation (1). It was established that
during the drying of a separate spherical pellet, heat transfer is carried out by heat conduction with
endothermic effect of heat absorption on the phase transition during evaporation:

ρmcm
∂Tm

∂τ
=

1
x2

∂
∂x

(
λx2 ∂Tm

∂x

)
− q(ω), (1)

where: Tm is the temperature, ρm the density and cm the specific heat at a distance x from the center
of the pellet; λ is the coefficient of thermal conductivity of the material; τ is the time; q is the heat of
evaporation in a spherical shell of radius x per unit of time due to phase transition, andω = ∂ψ/∂τ
where ψ = (ξ/r)3.
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As shown in Appendix A, the relative degree of the spherical pellet drying is equal to:

ω =
∂ψ
∂τ

=
3λ(T0 − θ∗)

3√ψ

ρmuQSr2
(

3√ψ− 1
) , (2)

where: QS is the latent heat of evaporation; θ∗ the saturation temperature; T0 the temperature at the
external surface of the pellet x = r.
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Figure 1. The physical model of the localized evaporation front in the pellet, where ξ is the radius of 
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Figure 1. The physical model of the localized evaporation front in the pellet, where ξ is the radius of
the evaporation front and x is the radial coordinate of the pellet.

2. Heat and mass exchange between the heat-carrier gas flow and the multilayer vertical stacking
of pellets in the direction of the flow.

The heat transfer is provided by a convection mechanism described by the equation:

ρgcgWg
∂Tg

∂y
= αV

(
Tg − Tm

)
x=r

(3)

where: Tg, ρg, cg and Wg are temperature on the pellet surface, density, specific heat and velocity of the
heat-carrier gas; y is the coordinate along the height of the pellets layer; αV = αF · fSP, αF being the heat
transfer coefficient from the surface and fSP the specific surface area of the pellets in the layer.

The pressure in the gas flow varies along the y axis according to Reference [14]:

∂P
∂y

= 1500
(1− ε)2

ε3 ·

Wgµg

(2r)2 + 17.5
(1− ε)
ε3 ·

ρgW2
g

2r
, (4)

where: P is the pressure and ε is the porosity of the layer; r is the pellet radius; µg is the dynamic
viscosity of the heat-carrier gas.

The process of the moisture mass transfer between the pellet and the gas flow is given by:

ρgWg
∂xW

∂y
=
βW fsp(PVR − PV)

RTg
, (5)

ρm
∂u
∂τ

=
βW fsp(PVR − PV)

RTg
, (6)
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where: u is the moisture content in the pellet; xw is the moisture content of the gas; PVR is the vapour
pressure of moisture on the surface of the pellet; PV is the vapour pressure of moisture in the gas and
βW is the mass transfer coefficient. The functional form of these equations depend on the definition of
βW from the following equation of mass transfer [15]

NuM = 2 + 0.83Re0.53PrM0.33Gu0.135,

where NuM = βw(2r)/D
PrM = υg/D

Gu = (Tg − θ∗)/Tg

D = 0.21610 4(Tg/273)1.8

The initial and boundary conditions for of differential Equations (1)–(6) which describe the drying
process of the entire moving multi-layer mass of pellets are:

τ = 0 : Tm = Tm0, u = u0,ψ = 1;
x = 0 : ∂Tm

∂x = 0;

x = r : −λ
(
∂Tm

∂x

)
= αF

(
Tg − Tm

)
x=r

;

y = 0 : Tg = Tg0(τ), P = P0, xw = xw0

where: xw0 is the moisture content; Tg0 is the gas temperature at the inlet to the layer; Tm0 is the initial
temperature of the pellets; P0 is the atmospheric pressure.

3. Process optimization.
The dense multilayer mass of pellets is moving on the conveyor of length l at a speed of V

and passes through separate (i = 1, 2, . . . , k) vacuum chambers of length ∆l. Correspondingly, the
permanence time in each chamber is ∆τ = ∆l/V.

The heat-carrier gas is supplied with a certain temperature Tg0(τ) and speed Wg(τ). Diffusing
with a turbulent motion through the multi-layered mass of pellets, it releases heat to them, leaving the
layer with a temperature Tgh(τ) (Figure 2).

The resulting optimization task is given by the minimization of the overall amount Q of electric
(Qel) and thermal (Qheat) energy consumption necessary to attain the drying level required, where Qel
is the amount of electrical energy spent on the formation of the heat-carrier gas flow at a rate Wg and
Qheat is the amount of thermal energy of fuel combustion spent on heating the heat-carrier gas to the
initial temperature Tg in each vacuum chamber. Since electric energy is approximately four times
more expensive than thermal energy (generated by the burning of fuel), electric energy is used only to
operate the blowers. The drying level is given by the equation

u =

h∫
0

u(y; τfin)dy, (7)

where h is the height of the roasting bed and τfin = l/V. While it is required that u→ 0 , its exact value
is a matter of trade-off with energy consumption.

Considering the specific cost Sel of electric energy Qel and the specific cost Sheat of heat energy
Qheat, the energy consumption S costs are given by the equation: S = Sel·Qel + Sheat·Qheat.

The relation between heat and electric energy specific costs vary depends on region, country and
other factors. In our calculations Sel/Sheat = 4.
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The goal of the optimization is to find the value of the vector of control variables (Tg0, Wg) so that
the average moisture content u and cost of energy consumption S reach a minimum value: u→ min,
S→ min.

Therefore, the resulting bi-objective optimization has been cast into the form

F(Tg0, Wg) = min
Tg0(τ), Wg(τ)

(α1u(Tg0(τ), Wg(τ)) + α2S(Tg0(τ), Wg(τ))), (8)

where α1 and α2 are the weights of the trade-off.
The optimization problem (8) is subject to several constraints:

(a) equality constraints resulting from the physical model (Equations (1)–(6))
(b) inequality constraints on the independent variables (controls) Tg0(τ), Wg(τ) subject to upper

bounds WgMAX and TgMAX, due to the technical features of the horizontal grate machine
(c) inequality constraints on variables of the model (state variables). They must be included due to

considerations on material properties [16,17]:

• heating rate
∂Tm/∂τ ≤ ∆1Tm

max (9)

• temperature gradient
∂Tm/∂x ≤ ∆2Tm

max (10)

• gas temperature at the exit from the pellet layer

Tg(h) ≤ Tgmax (11)

• moisture content
u(y, τ) ≤ umax (12)

• moisture transfer intensity
I(y, τ) ≤ Imax (13)

The optimal controls (the profiles of Tg0(τ) and Wg(τ)) could be computed numerically either
using Pontryagin’s maximum principle or Bellman’s dynamic programming. However, while the
dynamic programming approach scans the entirety of the state space to detect an optimum control,
the solution obtained is both necessary and sufficient for the controls to be optimal, the maximum
principle provides only a necessary condition [18,19]. Due to the complexity of the model employed,
local optimizers cannot be ruled out and consequently an algorithm based on dynamic programming
has been developed.

To this purpose. the pellet grate length is discretized into k sections to which Bellman’s recursive
principle of optimality is applied, as shown in Figure 3.
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Figure 3. Topological decomposition scheme for the optimization of the drying process using discrete
dynamic programming. State variables are indicated with Si, control variables (temperatures and flow
rates of the heating gas) with Xi, and the objective function at each cell with Qi. Both forward and
backward steps are shown.

The objective function can be rewritten as

min
Xi

F = min
{

Fk(Xk; Sk−1) +
k−1∑
i=1

Fi(Xi; Si−1)

}
, where

Fk(Xk; Sk−1) = α1u(Sk) + α2Q(Xk), Fi(Xi; Si−1) = α2Q(Xi),

Controls and state variables in each stage are related through the partial differential
Equations (1)–(6) and can be expressed through the relationship

Si = ϕ(Xi; Si−1), (14)

Expression (14) can be determined by discretizing the [τ, y] domain into
[
∆τi, ∆y j

]
intervals

and solving, for each space-time interval, the heat equation for each separate pellet using an implicit
finite-difference scheme obtained by splitting the radius R into N intervals ∆xn, n = 1, . . . , N, as shown
in Figure 4.
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Figure 4. Conventional diagram of a local vacuum chamber, in which for a selected space-time cell[
∆τi, ∆y j

]
, a pellet of radius R is considered.

Heat conductivity between pellets has been neglected because of the small contact surface and of
the turbulence of the flow which strongly enhances heat convection.

The set of equations makes it possible to determine the temperature values of the pellets
Tm(x, y, τ) = Tmi

j,n, and consequently of the temperature gradient (∂Tm/∂x)i
j,n and heating rate

(∂Tm/∂τ)i
j,n, the temperature of the heat-carrier gas at the exit of the vertical multilayer laying of

pellets Tgi
J, the moisture content Ui

j, moisture transfer intensity Ii
j and the relative degree of drying ψi

j
can be determined from the solution of the entire system of partial differential equations (PDE) using
the drying process computer simulation developed by the authors [20].

The solution of the dynamic programming problem begins with the last stage. In this case, the
conditional minimum will be determined by the formula:

F∗k(Sk−1) = min
Xk

Fk
(
Sk−1, X∗k

)
,

where X∗k is the conditional optimal control at the last step i = k.
According to Bellman’s recursive formula, the procedure is iterated for each stage according to

the formula
F∗i (Si−1) = min

Xi

{
Fi(Si−1, Xi) + F∗i+1(ϕi(Si−1, Xi))

}
, (15)

subject to constraints (9)–(13) for all state variables and controls present in the stage considered.
The minimization algorithm developed to solve this step is based on the Nelder–Mead optimization

method and uses penalty functions to handle the constraints.
Since feasible values of the controls are known, their initial values are selected inside the interior

domain and constraints on them are dealt with using barrier functions that become arbitrarily large as
the values of the control variables exceed the upper bounds. Since Nelder–Mead method does not use
derivatives, the resulting discontinuities do not impair the minimization procedure.
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The penalty functions on state variables used are of the type

βi =

 γi ·
(
vi − vmax

i

)2
, if vi > vmax

i
0, otherwise

, (16)

where vi includes the variables ∂Tm/∂τ, Tgi
h, ∂Tm/∂x, U, I, and vmax

i the relevant upper bounds.
This procedure provides the sequences F∗k → F∗k−1 → F∗k−2 → . . .→ F∗2 → F∗1 and

X∗k → X∗k−1 → X∗k−2 → . . .→ X∗2 → X∗1 .
Then, using the known initial vector of state parameters, we determine the state S0 and consequently

both the minimum F1 and the optimal control X1.
Iterating in this procedure the optimal values of the parameters Tg0i, Wgi at each stage of the

decomposition provides the optimal sought-after sequence {Xi (Tg0i, Wgi)} that optimizes the drying
process of the multi-layer mass of pellets throughout the horizontal grate machine [21,22].

3. Results

Preliminarily, the model consisting of Equations (1) and (2) only was considered. To confirm
the adequacy of the proposed model, we used the boundary conditions: P|x=r = P0 (the pressure at
the outer boundary of the pellet sphere is equal to the total ambient pressure) and θ| x=ξ = θ∗ and
P|x=ξ = P∗ (at the evaporation front, vapour pressure P∗ and temperature θ∗ are related by the saturated
vapour law) to carry out some numerical experiments to validate Equation (1). The pellet diameter
considered was 2 cm, the initial moisture content in the pellet u0 = 10 ÷ 10.5% (which corresponds
to the moisture of the raw pellet coming down from the disk granulator), whereas several initial
temperatures (temperatures of the drying agent) were considered.

The results obtained (Figures 5–8) match well with experimental data and known qualitative
dependencies. The results have proven to be very stable with changing mesh sizes which were allowed
to range in the interval (0.5–2.0) with respect to the values given in the Appendix B. In this range,
relative discrepancies were below 1% while execution time increased by less than 50% as the lower
step size was selected.Energies 2019, 12, x FOR PEER REVIEW 9 of 18 
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data from Butkarev et al. [11]).
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Figures 5 and 6 show that, as expected, the more intense the drying process, the higher the
temperature of the drying agent. At a temperature of 100 ◦C the drying process does not proceed until
the temperature of the material reaches the saturation temperature. The good agreement of computed
values with experimental data seems to validate the mathematical model developed for the moving
front of evaporation.

Figure 7 shows a pronounced acceleration of the drying process in the first minutes, followed by a
slowing down, due to the fact that at first moisture is removed from the surface layers of the pellet,
and then the evaporation front moves inward, heat being supplied through the dried layer of material.

Furthermore, the temperature of the wet pellet core, reaching the saturation temperature, remains
constant, and the temperature of the dried outer layers increases and approaches the temperature
of the drying agent as shown in Figure 8. Therefore, inside the pellet around the perimeter of the
evaporation front, the temperature gradient is especially pronounced, and the larger it is, the higher the
temperature of the heat-carrier gas, which can lead to the thermal gradient destruction of the pellet. In
addition, the moisture vapour formed at the front of the evaporation diffuses through the dried layer of
the pellet, which makes it necessary to take into account the amount of moisture flux I (kg/(m2

·s)). On
the basis of experimental data on heat transfer in the process of single pellets drying, critical (limiting)
parameters of the heat-carrier gas for pellets of various sizes were determined. For pellets of size 1 ÷ 2
cm and temperature range 150 ÷ 600 ◦C the moisture flux I varies from 4 ÷ 16 10−3 kg (m2

·s).
The solution of the combined set of Equations (1)–(6), which correspond to a simple simulation

with fixed values of the control variables, has been carried out using finite differences algorithms. The
computational scheme is presented in Appendix B.

The overall algorithm including the dynamic programming step to evaluate the optimal values
of the control variables has then been implemented in the Borland C++ environment. Several
calculations were carried out using different values of the ratio α1/α2. The parameters of the model
were assigned the following values: initial moisture content = 0.114 kg/kg = 10.5%, porosity = εc =

0.35, pellet radius r = 10 mm, conveyor length l = 55 m Tmin
g0 = 290K, Tmax

g0 = 1673K, Wmax
g = 1, 3 m/s,

Imax = 3 · 10−3 Kg ·m−2
· s−1, Umax = 11%, ∆1Tmax

m = 10 K · s−1, ∆2Tmax
m = 5 · 10−3 K ·m−1, which

correspond to sensible assumptions for the multilayer drying process of phosphate pellets in horizontal
grate machine systems. The heat-carrier gas is generated in the hearth of the grate machine as a
result of fuel combustion, its temperature being regulated by the amount of air excess supplied to the
combustion. The physical and chemical input data include water and water vapour properties in the
gas phase that are assumed to follow the law of ideal gases, as well as the properties of the phosphate
material, i.e., porosity, density, specific heat capacity and heat conductivity.

Specific heat capacity and heat conductivity were allowed to change with temperature and their
values were obtained by interpolation of the following graphs (Figure 9).
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The results of the numerical simulation for α1/α2 = 0.01 are presented in Figures 10–13, this ratio
corresponding to a sensible ratio between energy saving and average moisture. Different values could
be chosen depending on operating conditions.Energies 2019, 12, x FOR PEER REVIEW 12 of 18 

 

 

Figure 10. Optimal values of the control variables gT  (temperature of the heat gas). 

 

Figure 11. Parametric family of isolines showing the average radial temperature of the pellets, °С. 

0 10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Drying zone length, %

0.95

0.95 0.9

0.9

0.85

0.85

0.8

0.8

0.75

0.75

0.7

0.7

0.65

0.6

0.6

0.55

0.55

0.5

0.5

0.45

0.45

0.4

0.4

0.35

0.3

0.25

0.2

0.15

0.1 0.05

L
ay

er
 h

ei
g

h
t,

 m

 

Figure 12. Parametric family of isolines showing the variable ψ -relative degree of pellets drying. 

Figure 10. Optimal values of the control variables Tg (temperature of the heat gas).

Energies 2019, 12, x FOR PEER REVIEW 12 of 18 

 

 

Figure 10. Optimal values of the control variables gT  (temperature of the heat gas). 

 

Figure 11. Parametric family of isolines showing the average radial temperature of the pellets, °С. 

0 10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Drying zone length, %

0.95

0.95 0.9

0.9

0.85

0.85

0.8

0.8

0.75

0.75

0.7

0.7

0.65

0.6

0.6

0.55

0.55

0.5

0.5

0.45

0.45

0.4

0.4

0.35

0.3

0.25

0.2

0.15

0.1 0.05

L
ay

er
 h

ei
g

h
t,

 m

 

Figure 12. Parametric family of isolines showing the variable ψ -relative degree of pellets drying. 

Figure 11. Parametric family of isolines showing the average radial temperature of the pellets, ◦C.

Energies 2019, 12, x FOR PEER REVIEW 12 of 18 

 

 

Figure 10. Optimal values of the control variables gT  (temperature of the heat gas). 

 

Figure 11. Parametric family of isolines showing the average radial temperature of the pellets, °С. 

0 10 20 30 40 50 60 70 80 90 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Drying zone length, %

0.95

0.95 0.9

0.9

0.85

0.85

0.8

0.8

0.75

0.75

0.7

0.7

0.65

0.6

0.6

0.55

0.55

0.5

0.5

0.45

0.45

0.4

0.4

0.35

0.3

0.25

0.2

0.15

0.1 0.05

L
ay

er
 h

ei
g

h
t,

 m

 

Figure 12. Parametric family of isolines showing the variable ψ -relative degree of pellets drying. Figure 12. Parametric family of isolines showing the variable ψ -relative degree of pellets drying.



Energies 2019, 12, 3376 12 of 17
Energies 2019, 12, x FOR PEER REVIEW 13 of 18 

 

 

Figure 13. Parametric family of isolines showing the variable u-moisture content of pellets. 

4. Discussion 

In this section, an interpretation of the results displayed graphically in the previous section. is 

provided. 

The obtained results were used to calculate the optimal mode of drying of the pelleted raw 

materials on the OK-520/536F horizontal grate machine. 

In all cases examined, the speed of the drying agent throughout the entire drying process 

remains constant at the highest allowed value of 1.3 ms−1. The heat-carrier temperature increases 

slowly, its rate of change being limited by the restrictions on the heating rate, the temperature 

gradient in the pellet, the proportion of waterlogging and the intensity of moisture transfer [10]. 

Furthermore, the growth rate of the heat-carrier temperature is considerably higher in the initial 

period than in the later stages. Indeed, after reaching a certain limiting temperature, drying takes 

place at a constant temperature of the heat carrier (Figure 11). This is due to the fact that the drying 

process starts only when the temperature of the material reaches the saturation temperature, and the 

temperature rise of the heat carrier is related only to the temperature gradient in the pellet and the 

heating transfer rate. After the surface of the material reaches the saturation temperature, the 

evaporation of moisture begins and the intensity of moisture transfer is the highest (Figure 12), 

because the outer layers have a larger surface and volume. After the outer layers of the pellet have 

dried, the front of evaporation moves into the interior of the pellet. Since the surface of the moving 

front decreases, so does the intensity of drying. 

As the drying agent moves through the layer from top to bottom, it is moistened in the upper 

hotter layers, where the drying of the material is most intense. Moving down to less heated layers of 

the multilayer mass, the heat-carrier gas cools down and, when it reaches the dew point, moisture 

condensation onto the surface of the pellets begins. Therefore, an increase in the temperature of the 

upper layers of the pellets and the intensification of their drying does not provide the best overall 

drying throughout the multilayer mass. Moreover, the process of overwetting the pellets by more 

than a certain amount (≈14%) would be unacceptable in the technology of heat treatment of the 

pellets and would require an increase of the ratio α1/α2. Therefore, the optimization algorithm 

provides a strategy in which the temperature of the heat carrier increases moderately, intensifying 

the average drying process over the layer, and preventing overwetting of the material [23], while 

removing the maximum possible amount of moisture from the layer, depending on the properties of 

the heat carrier and the material of the pellets. The moisture content of the material varies fairly 

evenly (Figure 13) and the relative degree of drying increases, so as to ensure the maximum possible 

wetting of the drying agent due to an increase in the speed of advance of the evaporation front in the 

pellet (Figure 12). 

Figure 13. Parametric family of isolines showing the variable u-moisture content of pellets.

Figure 10 shows that the optimal inlet temperature of the drying gas increases rapidly in the
first part of the conveyor due to the growing layer of the dry region in the pellet which generates a
temperature gradient. Since the temperature of the drying gas at the moving front has to provide a
good heat transfer at all positions of the conveyor, the presence of the gradient requires a higher value
of the drying gas entering the layer.

Figures 11–13 show how the basic variables that characterize the drying process (temperature,
position of evaporation front and moisture content) vary with both the progression along the conveyor
belt and the distance from the top of the layer. Their values, resulting from the overall optimization
procedure, confirm the expected reduction of moisture content and radius of the wet zone, and the
simultaneous increase of the temperature of the pellets with increasing distance travelled along the
conveyor and with increasing nearness to the top of the layer.

4. Discussion

In this section, an interpretation of the results displayed graphically in the previous section.
is provided.

The obtained results were used to calculate the optimal mode of drying of the pelleted raw
materials on the OK-520/536F horizontal grate machine.

In all cases examined, the speed of the drying agent throughout the entire drying process remains
constant at the highest allowed value of 1.3 ms−1. The heat-carrier temperature increases slowly, its
rate of change being limited by the restrictions on the heating rate, the temperature gradient in the
pellet, the proportion of waterlogging and the intensity of moisture transfer [10]. Furthermore, the
growth rate of the heat-carrier temperature is considerably higher in the initial period than in the
later stages. Indeed, after reaching a certain limiting temperature, drying takes place at a constant
temperature of the heat carrier (Figure 11). This is due to the fact that the drying process starts only
when the temperature of the material reaches the saturation temperature, and the temperature rise of
the heat carrier is related only to the temperature gradient in the pellet and the heating transfer rate.
After the surface of the material reaches the saturation temperature, the evaporation of moisture begins
and the intensity of moisture transfer is the highest (Figure 12), because the outer layers have a larger
surface and volume. After the outer layers of the pellet have dried, the front of evaporation moves
into the interior of the pellet. Since the surface of the moving front decreases, so does the intensity
of drying.

As the drying agent moves through the layer from top to bottom, it is moistened in the upper
hotter layers, where the drying of the material is most intense. Moving down to less heated layers of
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the multilayer mass, the heat-carrier gas cools down and, when it reaches the dew point, moisture
condensation onto the surface of the pellets begins. Therefore, an increase in the temperature of the
upper layers of the pellets and the intensification of their drying does not provide the best overall
drying throughout the multilayer mass. Moreover, the process of overwetting the pellets by more than
a certain amount (≈14%) would be unacceptable in the technology of heat treatment of the pellets and
would require an increase of the ratio α1/α2. Therefore, the optimization algorithm provides a strategy
in which the temperature of the heat carrier increases moderately, intensifying the average drying
process over the layer, and preventing overwetting of the material [23], while removing the maximum
possible amount of moisture from the layer, depending on the properties of the heat carrier and the
material of the pellets. The moisture content of the material varies fairly evenly (Figure 13) and the
relative degree of drying increases, so as to ensure the maximum possible wetting of the drying agent
due to an increase in the speed of advance of the evaporation front in the pellet (Figure 12).

The reduction of the environmental impact of the operating conditions identified by the optimal
design described in this paper provide energy saving (approximately 1.1 tonne of fuel equivalent/tonne
of finished product in the example considered using the same input data), and intensification of the
drying process, while satisfying all the technological limitations which results in improved quality of
the finished product as well as in resource saving due to the reduced amount of the material that has to
be returned.

5. Conclusions

Optimization tools have long been used in the design and operation of chemical processes. They
have constantly been evolving in an attempt to provide more and more efficient manufacturing plants
capable of reducing both production costs and development time in a growingly competitive business
context while complying with increasingly strict environmental regulations.

While the case examined in this paper was limited to a specific industrial process, i.e., the roasting
of phosphorous pellets, the general methodology considered can be applied to a large number of
industrial models. Indeed, the usual mass and energy transport phenomena that take place in chemical
processes give rise to complex systems of partial differential equations whose solutions are to be
interfaced to suitable optimization algorithms for the determination of optimal control variables. The
more sophisticated the physical-chemical model used to describe the transport phenomena, the more
reliable the resulting optimization configuration.

Therefore, the new challenges include presently an analysis of the reliability of the constitutive
equations employed, frequently subjected to simplifications to reduce their complexity such as
linearization, as well as of the accuracy of the parameters contained in them.

On the other hand, the use of rigorous, complex physical-chemical models is often hampered by the
necessity of keeping the computational burden within bounds. Indeed, the optimization algorithm to
which these models are interfaced require a high number of onerous iterations due to the impossibility
of using derivatives and to the possible presence of non-convexity and discontinuities. Similarly, a
high level of accuracy in the identification of the parameters present in the models may require a costly
experimental campaign, so that a trade-off between accuracy and costs is frequently accepted.

The assumption of quasistationarity of fields of temperature and pressure in the dried zone of
the pellets, the absence of heat exchange between pellets and the use of parameters taken from the
literature in this paper are examples of the necessity of this trade-off and constitute the main limitations
of the procedure developed.

Suggestions for further work include precisely the attenuation of these limitations by improving the
accuracy of both models and parameters to investigate their impact on the overall optimization strategy.
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Appendix A

In the dried layer of the pellet quasistationary fields of temperature and pressure with a moving
front can be assumed. This makes it possible to write heat and mass balances as follows

d2T
d2x

+
2
x

dT
dx

= 0,
d2P
d2x

+
2
x

dP
dx

= 0. (A1)

subject to the boundary conditions T|x=r = T0, and P|x=r = P0, on the outer surface and. T|x=ξ = θ∗,
and P|x=ξ = P∗, at the internal evaporation front, θ∗ and P∗ being-temperature and pressure of the
saturated vapour. The integration of this equation gives

T = To − (T0 − θ∗)
ξ
x

r− x
r− ξ

P = Po − (P0 − P∗)
ξ
x

r− x
r− ξ

(A2)

The heat balance at the evaporation front gives:

ξ2λ
dT
dx

∣∣∣∣∣
x=ξ

= ξ2ρpuoQs
dξ
dτ

(A3)

The diffusion of vapour generated at the evaporation front diffuses through the dried layer of the
pellet to its surface and is described by the relation for laminar diffusion which depends on the vapour
permeability coefficient K:

ξ2ρs
K
µ

dP
dx

∣∣∣∣∣
x=ξ

= ξ2ρpuo
dξ
dτ

, (A4)

Combining Equations (A2)–(A4) provides the following linear relation in the vicinity of the
evaporation front: T0 − θ∗ =

K Qs
µλ ρs(P∗ − P0).

Similarly, substituting (A2) into (A3), gives a relation that determines the velocity of the moving
evaporation front inside the pellet:

ρpuoQsξ
dξ
dτ

=
λr(T0 − T∗)

r− ξ
. (A5)

Integration of Equation (A5) under the initial condition ξ|τ=0 = r provides an equation that
describes the pellet drying:

ψ2/3

2
−
ψ

3
=

1
6
−
λ(T0 − θ∗)

ρpu0Qsr2 , (A6)

where ψ = (ξ/r)3 is the relative degree of pellet drying.
The time τ f , for which the pellet is completely dry, can be found from relation (A6) under the

condition γ = 0, i.e., τ f =
ρpu0Qsr2

6λ(T0−θ∗)
.

Differentiating Equation (A6), gives:
dψ
dτ =

3λ(T0−θ∗)
3√ψ

ρpu0Qsr2
(

3√ψ−1
) which is the sought-after result.

Appendix B

A finite-difference method was used for the numerical solution of Equations system (1)–(6). The
code of the algorithm was developed by the Authors in a Borland C++ environment.
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The number of partitions along the radius of the pellet was set to N = 20, along the height of the
layer to M = 100, and K = 100 time intervals were used. Equation (1) in the finite-deference scheme has
the form

ρm
k
i, jcm

k
i, j

Tm
k
i, j−Tm

k−1
i, j

∆τ = 1
xi

2
1

∆x2

[
x2

i+1/2λ
k
i+1/2, j

(
Tm

k
i+1, j − Tm

k
i, j

)
−

−x2
i−1/2λ

k
i−1/2, j

(
Tm

k
i, j − Tm

k
i−1, j

)]
+ qk

i, j

(A7)

where λi+1/2 =
λi+1+λi

2 ; λi−1/2 = λi+λi−1
2 .

The finite-difference form of Equation (2) becomes

ρg jcg jWg
Tg j − Tg j−1

∆y
= αV j

(
Tg j − TmN+1, j

)
. (A8)

Similarly, Equation (3) becomes:

P j − P j−1

∆y
= 1500

(1− εc)
2

ε3
c

×
Wgµg j

(2r)2 + 17.5
(1− εc)

ε3
c
×

ρg jW2
g

2r
. (A9)

and Equations (4)–(6):

ρg jWg
xW j − xw j−1

∆y
=
βW j fy∂

(
PVR j − PV j

)
RVTg j

, (A10)

ω =
ψk −ψk−1

∆τ
=

3λi, j
(
TmN+1, j − θ∗ j

)
3
√
ψk

ρmuQSr2
(

3
√
ψk − 1

) , (A11)

ρm
uk − uk−1

∆τ
=
βW j fy∂

(
PVR j − PV j

)
RVTg j

. (A12)

As a result, the system of Equations (A7)–(A12) has an ordered band diagonal structure and
includes 2×105 equations.

Nomenclature and Units

cg specific heat capacity of the gas, J kg−1 K−1

cm specific heat capacity of the material, J kg−1 K−1

F objective function of the optimization problem
fsp = 6(1-εc)/(2r)—specific surface of pellets in a layer
H dense layer length of the grate machine, m
h dense layer height, m
I intensity of moisture transfer in a pellet, kg m−2 s−1

K vapour permeability coefficient in the dried pellet
l conveyor length, m
P gas pressure in a layer, Pa
P* saturated vapour pressure of moisture, Pa
P0 barometric pressure, Pa
PVR = 617.7exp[17.25θ∗/(238 + θ∗)] vapour pressure of moisture at the pellet surface, Pa
PV = P·xw/(0.622 + xw) vapour pressure of moisture in the gas, Pa
q heat of evaporation in a spherical shell of radius x per unit of time J m−3 s−1

Q specific consumption of standard fuel expressed in tonnes per 1 tonne of finished product
Qel electric energy consumption, J
Qheat thermal energy consumption, J
QS specific heat of evaporation, J kg−1

r pellet radius, m
R ideal gas constant 8.3144598 J/K/mol
si state variables at stage i
S energy consumption costs, monetary unit
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Sel specific electric energy costs, (monetary unit J−1)
Seheat specific thermal energy costs, (monetary unit J−1)
Tg temperature of the gas (heat carrier, ◦K
Tg0 gas temperature to the inlet of the layer, ◦K
Tm temperature of the material (pellet), ◦K
Tm0 initial temperature of pellets, ◦K
u moisture content in a pellet, kg/kg
V conveyor speed, m s−1

xw moisture content in the gas, kg/kg
x radial coordinate of the pellet, m
X set of control variables (Tg0(τ), Wg(τ))
y coordinate along the height of the pellets layer, m
Wg velocity of the heat carrier, m s−1

Greek Symbols

α1,α2 trade-off weights
αF = (Nuλ)/(2r) heat transfer coefficient from the surface, W-2 K-1

Nu =

{
0, 106Re · Pr0.33, Re ≤ 200,
0, 61Re0.67

· Pr0.33, Re > 200,
Re =

Wg2r
νg

, Pr =
νgρgcg

λg

αV = αF fsp bulk heat transfer coefficient, W/(m3 K)
βw mass transfer coefficient, kg -2 s-1
γi penalty coefficient on constraint i in the optimization problem
∆l spatial discretization mesh, m
∆τ temporal discretization mesh, m
ε total porosity of a pellet
εc porosity of a layer
θ∗ dew point temperature ◦K

θ* = Tg − 1916.6667·{0.622/[163.80016·exp(−17.3·θ*/[θ* + 235]) − 1] −xw}

ξ radius of the evaporation front, m
λ thermal conductivity coefficient of the material J s-1m−1K−1
µg dynamic viscosity of the gas, Pa s
µM viscosity of pellets material, Pa s
υg kinematic viscosity of the gas, m2/s
ρg gas density, kg/m3

ρm material density, kg/m3

τ time coordinate, s
ϕi functional dependence of state variables at stage i Si = ϕ(Xi; Si−1)
ψ = (ξ/r)3 relative degree of drying for spherical particle where ξ is the radius of evaporation front

ω = ∂ ψ/∂τ
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