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Abstract: The effort to continuously improve and innovate smart appliances (SA) energy management
requires an experimental research and development environment which integrates widely differing
tools and resources seamlessly. To this end, this paper proposes a novel Direct Load Control
(DLC) testbed, aiming to conveniently support the research community, as well as analyzing and
comparing their designs in a laboratory environment. Based on the LabVIEW computing platform, this
original testbed enables access to knowledge of major components such as online weather forecasting
information, distributed energy resources (e.g., energy storage, solar photovoltaic), dynamic electricity
tariff from utilities and demand response (DR) providers together with different mathematical
optimization features given by General Algebraic Modelling System (GAMS). This intercommunication
is possible thanks to the different applications programming interfaces (API) incorporated into the
system and to intermediate agents specially developed for this case. Different basic case studies have
been presented to envision the possibilities of this system in the future and more complex scenarios,
to actively support the DLC strategies. These measures will offer enough flexibility to minimize
the impact on user comfort combined with support for multiple DR programs. Thus, given the
successful results, this platform can lead to a solution towards more efficient use of energy in the
residential environment.

Keywords: demand response; direct load control; home energy management system; mixed-integer
linear programming

1. Introduction

Much has been written about the new role consumers can play in future smart grid (SG). Driven
by the massive integration of renewable energy resources, the SG is evolving swiftly, causing changes
in how electricity is produced, managed, marketed, and consumed. If for a while, the SG paradigm
meant merely accepting a bi-directional flow of electricity and information, it must continue to evolve
to adapt to the current demands of the digital consumer. In the years to come, the computational
exploitation of the enormous amounts of information provided by the Internet of Things (IoT) sensors,
incorporated at all layers of the SG, will become the main engine of its evolution towards the digital
energy network, focused on customer service. This is what has been called “data-driven energy” [1].
A large amount of energy data will support collective decision making, opening the way to more
responsive utilities and more engaged consumers. This will undoubtedly impact the evolution of
household appliances. In fact, SAs are already showing their potential for data-driven energy [2].

The growing use of energy by domestic appliances shows no signs of slowing, reaching 2900 TWh
in 2017. The use of electricity by these loads continues to grow by almost 2% per year, a steady trend
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since 2010 [3]. Although the electricity demand for major appliances has slightly decreased since 2007,
mainly due to improvements in their energy efficiency, the rapid proliferation of small appliances and
brown goods has absorbed these savings. The energy consumption due to these small loads has grown
twice as fast as that of large appliances in the last decade. In addition, only one-third of domestic
appliances consumption is under regulatory protection, particularly in emerging markets. This may
become even more relevant in the near future as the demand for electricity in buildings increases
due to the impact of the charging infrastructure for electric vehicles. While it is true that there is a
need to increase the rigor of existing policies by extending regulatory coverage to a broader range of
devices, on the other hand, user awareness may be the key factor. However, to achieve this, consumers
should be rewarded to some extent when changing their behavior. The availability of information and
communication technologies (ICT) on SG can be decisive in meeting this commitment through the
widespread adoption of DR strategies.

In other areas, such as power electronics, it is common to find a complete chain of modeling,
development, testing, optimization, virtual validation, and rapid prototyping commercial tools that
integrate seamlessly into a convenient testing and development environment such as these tools of
Typhoon (Typhon, Somerville, USA) [4] and dSPACE (dSPACE, Paderborn, Germany) [5]. It is possible
to find testbed proposals for different applications in SG, like our previous one [6]. In the newly
released paper [7], a distributed framework for real-time management and co-simulation of DR in SG is
presented. This solution provides a near real-time co-simulation platform to validate new DR-policies
exploiting IoT approach performing software-in-the-loop. In the recent papers, authors propose an
interesting testbed for distributed DR based on a microgrid (MG) modeled on the PSIM software
(Powersim, Rockville, USA) to provide frequency regulation [8] and control over other grid parameters
in general [9]. In the model, the nodes of virtual IoT devices are created according to the collective
characteristics of their real twins, connected to the system. Network conditions can be reproduced
when testing new DR algorithms to provide, e.g., frequency regulation reserve services.

Similarly, in order to support the field of DLC research in this emerging application area of SA,
it is necessary to provide new testbeds for lab experimentation. Therefore, the main contribution of
this work is the development of a research test bench flexible enough to incorporate different tools of
different origins such as weather forecasting APIs, DR providers from the utility and mathematical
optimization features built on the basis of the LabVIEW systems (2015, National Instruments, Austin,
USA) design platform and development environment for a visual programming language. It can benefit
from user-friendly and intuitive software as well as hardware such as powerful real-time processors,
user-programmable field-programmable gate array (FPGA), and full I/O interfaces. However, although
it also offers libraries of dedicated functions, it has been necessary to specifically develop a sophisticated
software (that did not exist) that supports the seamless link between the tools, since their individual
parts are precisely aligned with each other. In this sense, the proposed testbed is a novelty since most
of the papers available in the literature are focused on the development of complex mathematical
models without considering the integration of these tools that are so important to implement a realistic
platform and thus emulate scenarios and test cases as real as possible. Furthermore, this work is a step
forward from previous research, as it includes several tools that have never been integrated before.

The organization of the paper as follows. Sections 2 and 3 presents the background of the research.
Then, Section 4 describes the experimental platform and also examines the control and optimization
strategies, considering practical limitations and safety constraints in detail. In Section 5, the case study
is discussed. Finally, the conclusions and future work are reported in Section 6.

2. Home Energy Management Systems (HEMS) State of the Art

The combination of the SG paradigm with IoT technologies and the will of consumers to actively
participate in their energy control has enhanced the HEMS concept. These are systems capable of
monitoring home consumption at different levels and implementing automation or control mechanisms.
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They have evolved at an unstoppable pace in the last years. By 2013, most systems only offered
home monitoring, either local or remote and rarely some manual control over switches or dimmable
loads [10].Currently, on the contrary, a wide variety of control systems are available ranging from the
simple automatic scheduling of applications to the optimization of energy resources, through advanced
algorithms that consider the state of numerous external variables such as energy prices or weather
conditions. What is more, they are even able to learn from users thanks to the incorporation of artificial
intelligence [11].

Because of this evolution and the large range of devices and algorithms that are being integrated
into the HEMS, the number of works in the literature is extensive and unapproachable for a paper
whose purpose is not that. However, for example, the authors in [12] define a classification according
to the level of complexity of these systems. This will help to situate the present work and the challenges
addressed. The levels from the lowest to the highest complexity are Monitoring, Logging, Alarm,
Energy Management, and DR.

Nowadays, the first three levels can be regarded as a prerequisite. Every HEMS must carry out
home monitoring at different aggregation levels. The basic level is the total household consumption,
generally measured by technologies such as Smart Meters, widely deployed across Europe [13].
Nevertheless, the energy footprint of individual elements can be recorded by means of load submetering
or non-intrusive load monitoring (NILM) algorithms, which use machine learning to distinguish
individual appliances from the total consumption [14].

The capture of measures can be performed with different granularity and be stored in different
supports. In this way, all or part of the data is stored in the cloud, from where it is possible to obtain
descriptors or apply machine learning algorithms. This also allows for the possibility of generating
alarms at different levels, so fast events that require immediate attention can be generated and then
processed in the so-called Edge, while more complex alarm mechanisms can be implemented in higher
layers after preprocessing and analysis of historical data.

The aforementioned elements are essential for the creation of reliable controls at the next levels
named: energy management and DR. The first focuses on the control of a combination of distributed
resources to guarantee a continuous power supply, whereas the second goes a step further and manages
the individual consumer appliances.

Among the recent publications, the most used optimization techniques are mixed-integer
linear-programming [15], and variation of those [16], as well as population-based algorithms [17]. It is
also common to find works that propose multi-objective algorithms to reach a trade-off between the
energy savings that can be achieved and the benefits from possible incentives [18].

Nevertheless, as is evident from the most recent publications, the use of Internet technologies as
a solution to optimization problems is becoming more and more common [19], as they tackle issues
such as the diversity of household appliances, the simultaneous pursuit of several objectives in parallel,
and the uncertainty in predicting conditions such as occupancy levels, energy consumption or weather
conditions [20].

3. Smart Appliances Overview

What is a SA? There is more than one definition, but popularly a SA is recognized because it has
some degree of embedded processing and wireless connectivity. Sometimes called a Net appliance,
an Internet appliance or an information appliance, it can be as simple as an application that warns
you whenever your refrigerator has a door opened, or as complex as remotely controlling your oven
from your smartphone or via a voice assistant. However, in the framework of the SG, the term “smart”
focuses on those systems (with communications-enabled) which are able to modulate their electricity
consumption in response to external signals such as price information [21], local measurements [22]
or direct control commands [23]. In other words, those appliances that can support grid flexibility
because they have been configured to respond to DR requests.
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In a recent survey [24], 28% of people find SA very attractive, but people are more reluctant to
buy them because of price concerns, so 49% of people say this is a barrier to buying. Other barriers
include dynamic pricing, lack of interoperability and legal framework as reported by the European
parliament [25] and the world economic forum [26]. First, the lack of a dynamic pricing model to
the clear majority of customers is an obstacle. Users will not be willing to change their habits if
they cannot perceive that this intelligent functionality can bring them substantial financial savings.
Second, the high purchase premiums and long replacement cycles of these devices are prolonging their
mass adoption. Thirdly, to enable the communication between SAs that use different protocols and
standards, and to ensure interoperability, the communication interface must be supported by a data
model that conforms to a harmonized reference ontology. A semantic platform called OpenFridge has
recently been proposed in [27] that has been deployed and evaluated with real-life users distributed
globally. But the candidate for such a reference ontology will almost certainly be the Smart Appliances
REFerence ontology (SAREF) [28]. SAREF4ENER [29] is the SAREF extension to be able to fully support
DR for the energy domain.

Finally, the lack of a clear legal structure around customer data limits growth in this area.
This could include the appliance energy use pattern meaning when, how much and how is energy
being consumed. These data could even be monetized. For example, appliance manufacturers might be
willing to pay an energy supplier a fee for these data, as they can be of great value in terms of customer
service, product support, as well as maintenance. In the case of aggregation [30], how this data could
be shared among customers to allow, e.g., for their energy efficiency comparison. An aggregator can
operate on behalf of a group of consumers, having access to data and possible remote adjustment over
consumers’ appliances. If the security of connected devices used in aggregation is not safeguarded,
consumers could be exposed to several risks like data theft or request of appliance ransomware.
Security flaws and data privacy issues are main concerns of the users, and only a few regions have
well-defined rules about who can access, own, and share utility customer data.

However, the prospects for SA are bright. The global market for SA is projected to reach $38.35
billion by 2020, with a compound annual growth rate (CAGR) of 16.6% over the projected period
2015–2020. IoT-enabled devices (currently low, about 5% of white goods) are expected to grow
dramatically, and the number of sensors is expected to increase six-fold by 2020. So, according to the
International Energy Agency, by 2040 almost 1 billion households and 11 billion SA could participate
in interconnected electricity systems.

Typically, DR policies can be classified between load-shifting strategies, which move the load
from on-peak or event hours when demand and rates are the highest, to off-peak hours when
rates are lower, and load-shedding strategies, which directly reduce or avoid energy use during
on-peak hours altogether. Consequently, in the residential sector, the loads can be divided into
non-shiftable, time-shiftable and energy “sheddable”. The time-shiftable loads are the appliances
whose operation can be moved from peak to off-peak times with the minimal loss of comfort for the
inhabitant. This is the category of ‘wet’ appliances, e.g., dishwashers (DW), washing machines (WM),
and tumble dryers (TD). These appliances account for a significant proportion of household energy
consumption. Alternatively, non-shiftable loads, such as lighting and brown appliances, cannot delay
their operation [31]. At present, there is no deployed infrastructure that allows remote activation of
these appliances. However, their behavior has been deeply studied and it is now possible to understand
the potential of the DR in supporting the operation of the network [32].

Among household appliances, a special category is the thermostatically-controlled loads (TCL)
(e.g., electric water heaters (EWH), HVAC systems, refrigerators, and freezers) as their thermal inertia
allows for flexible load patterns (both shifting and shedding) while meeting their service requirement.
Therefore, compared to other SA, TCL exhibit predictable behavior from the DR point of view, and
even more when aggregated in large population clusters [33]. In recent work, a stochastic model has
been presented for the generation of high temporal resolution synthetic profiles of the consumption of
these domestic appliances [34]. However, its potential for flexibility remains virtually unknown. [35]
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presents the recent projects that are facilitating the transition from research to development. In general
terms, and due to their inherent characteristics, there are two types of TCL, with different operating
principles. First, resistive loads (i.e., heat generation equipment) and, second, compressor-driven
loads (i.e., heat pumping equipment). Although this paper is particularly dealing with resistive loads,
greater demand elasticities could be achieved if the control strategy achieved were extended to the rest
of the residential TCL.

4. Structure of the Smart Appliance Control Testbed

The proposed control platform is composed of four main blocks that collect data and exchange
information between each other aiming to implement the abovementioned DR policies through DLC.
The platform architecture is shown in Figure 1, where LabVIEW works as the core application by
handling the data provided by the outer blocks. This central block also has the highest priority from the
call handling point of view, that is, LabVIEW follows the classical scheme where the main application
deals with the so-called subVI to allow modular designs. At the same time, this subVIs will be the
interfaces with the rest of the blocks.

The block on the right side is related to the API that provides the testbed with both weather
information (Ambient temperature and photovoltaic (PV) production forecast) and the price of
the energy.

Finally, these DR policies must be mathematically translated into an optimization model which
includes several constraints related to the people’s habits, the availability of energy from different
sources and the household appliances features among others. The model should also offer a certain
degree of flexibility with respect to the number of invokes and formulation changes. All these reasons
have contributed to opt for General Algebraic Modelling System (GAMS) as the software used to solve
the proposed model. Furthermore, another component including the functions given by the GAMS
API is used to integrate this software into LabVIEW using a dynamic link library (DLL). The following
sections will describe these previous blocks and their interactions in more detail.
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4.1. LabVIEW

LabVIEW has been the tool used to integrate and manage all blocks of the platform. Concretely,
the developed LabVIEW application consists of two threads commonly known as while loops located in
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the block diagram. The first one implements the whole infrastructure necessary to parametrize and call
the GAMS model and comprises the data collection from the API solcast [36], dark sky [37] and Spanish
system operator information system (E-SIOS) [38], which is the information system of the Spanish
electricity group Red Eléctrica de España (REE), using the subVI getAPIData.vi that implements an
hypertext transfer protocol (HTTP) client. This loop also entails the data standardization with respect
to the sampling times by means of dataConv.vi, the model call through callDLL.vi as will be described
in the following section and the display of the results. However, the second loop just converts the raw
information of the scheduled SA (name, operation mode, and time) into a recognizable information by
the model through getSAData.vi.

The graphic user interface (GUI) or front panel is shown in Figure 2 and has three main parts,
namely, the SA scheduler (part A) including at the top the EWH section where the parameters that
model this appliance (Minimum and maximum temperatures, tank capacity, nominal power, initial
temperature, loss factor, inlet water temperature, and the hourly hot water consumption) are set up.
The rest of SA under analysis in this study (WM, DW, and TD) are modeled according to their average
power consumption and are scheduled at the bottom of part A where both the time and mode of
operation as well as the cycle time can be selected. Two modes of operations have been evaluated:
The fixed mode is used to launch the SA at a fixed time while the variable mode enables a certain
degree of flexibility since the SA is scheduled over a time interval. As a result, the platform is forced to
decide the start time within this interval once the model is solved. This part also includes information
(Name, operation mode and time) about the scheduled SA.
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At the top of the part B are the parameters that model the energy storage system (ESS) such as
the initial state of charge (SoC), capacity, minimum, and maximum SoC allowed as well as maximum
power flow and a maximum ratio of change. At the middle, some features of the nanogrid under study
can be found: Geographical coordinates (Longitude and latitude), tilt angle, power and efficiency
in the case of the PV system or maximum power and tariff type with respect to the grid connection.
The last section in part B includes the local directories required by GAMS, on the left half, and the
personal keys that API administrator provides to establish a secure connection, on the right half.

Finally, part C shows the results of the optimization process divided into three graphs. From top
to bottom, the first graph plots the hourly price of the energy according to the selected tariff, the
optimal power consumption from the grid and thus the cost once these two previous ones are known.
The second graph shows profiles such as the SoC and power taken from the batteries, the PV production
and the amount of such power that would be injected into the nanogrid, the power usage of the SA
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and the consumption to be considered non-shiftable. The last graph describes the whole state of the
EWH depicting its power consumption as well as the water and ambient temperatures.

4.2. Linking GAMS and LabVIEW

This section describes the communication between GAMS and LabVIEW. Some papers show
the integration of GAMS into Matlab [39] or other software like LabVIEW through Matlab as an
intermediary interface [40]. In this sense, the novelty of this work is the direct coupling of both tools
without using any intermediate software. On the one hand, the inner communication between the
GAMS model and its GAMS Data Exchange (GDX) file has been included under the subsection GAMS
as appears in Figure 1. This file is often used to store the parameters with which the model is called,
as well as the model results, however, such interaction does not take place directly but will have to be
handled by means of the appropriated classes and methods that the GAMS object-oriented API [41]
provides resulting in the seamless integration of GAMS into any application such as LabVIEW in this
case. This architecture employs the C++ API in a DLL format which is the interface that makes the
linkage possible. The flowchart is shown in Figure 3. First, system and working directories have been
set; the system directory refers the path where all GAMS installation files are located while the working
directory refers to the path where the GAMS models and GDX files will be stored (also shown in part B
of Figure 2). The second stage aims to create a database object where the parameters used in the model
will be stored, but this will be carried out in the third stage. The model execution options, such as
the names of the database object and the exchange file to be used are subsequently specified. The last
stages are in charge of executing the model, returning the optimal values of the decision variables.
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4.3. An Optimization Model for Demand-Side Management

While most of the proposed models address this issue as a task scheduling problem using heuristics
algorithm to make decisions on shifting, shedding or even disconnecting the load, this paper proposes
a novel mixed-integer linear programming (MILP) model that uses the price-based DR programs to
optimize the power consumption using the potential flexibility that TCL provides to the demand.
The proposed model involves a smart home with its own ESS, distributed energy resources (DER)
based on PV panels as well as a scenario with SA managed through the DLC strategy.

In terms of mathematical formulation, Equation (1) refers to the objective function f (in €) where
Pg(t) (in kW, as all the powers henceforth) and Pr(t) (in €/kWh) are the power consumption from
the grid and the price of the energy respectively at time slot t ∈ [1, 2, . . .T]. The rest of the equations
are constraints related to the power balance, the user preferences and the energy availability from
the sources. Equation (2) denotes the global power balance at each time slot t with Pg(t), the power
taken from the PV panels Ppv(t) as well as the power given by the energy storage system Pess(t) on the
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generation side. On the demand side is the non-shiftable power Pns(t), which involves the stand-by
consumption coming from non-dimmable devices, such as lighting, low power DC adapters used to
supply small devices and also the consumption from the SA scheduled in fixed mode, Ps(t) is the
power consumption of the common-use SA such as the WM, DW and TD scheduled in variable mode
and the consumption of the EWH expressed as the product of its nominal power Pwh and the binary
variable xwh(t) that indicates its state each time slot.

Equations (3)–(5) set the limits for Pg(t), Ppv(t) and Pess(t) respectively, where Pmax
g denotes the

maximum power that can be taken from the grid and Pmax
ess the maximum power that can be injected

into or extracted from the ESS. Moreover, the ratio of change of this variable has also been constrained
in Equation (8) through the parameter dPmax

ess (in kW/h) in order to ensure a lifetime of the batteries as
long as possible. Finally, fpv

(
Ppk

pv, ηpv,α,λ,φ, t
)

refers to the function that implements solcast to provide
the PV production each time slot t and thus has been taken as the maximum power available to be
injected into the system from the PV panels. Parameters such as the installed peak power Ppk

pv, the
efficiency ηpv, the tilt angle α or the location, through the latitude λ and longitude φ will be required
by this API in each HTTP request.

Equations (6) and (7) describe the dynamic of the ESS by means of a simple kWh counter to
compute the current state of charge SoC(t) (in %) based on the previous one SoC(t− 1) and Pess(t) and
setting the SoC(t) limits between SoCmin and SoCmax not to allow deep charges and discharges which is
also a condition to ensure a long lifetime of the system.

The SA scheduling process using the variable mode is modeled by Equations (9) and (10) and
has been conceived as a decision-maker who chooses the optimal SA operation from among the
possible ones that could be generated between the selected start and end times, by shifting the original
consumption one-time slot. In this context, let us define j as the index that refers to each SA to be
scheduled and k j the index associated with each shifted consumption that may be generated for each

j, being N j the number of SA and N j
k the number of possible consumption profiles. This family of

shifted consumptions builds each matrix Γ j
(
k j, t

)
which has as many rows as possible scenarios and as

many columns as considered time slots T. Moreover, for the decision-making process, all the shifted
consumptions have been associated with a binary variable x j

(
k j
)

and thus, the optimal scenario will be
indicated once the model is solved by means of the state of these decision variables. Finally, to ensure
just one shifted consumption operates, Equation (9) forces the sum so that just one binary variable is
equal to 1.

The EWH has been considered as a special SA due to its thermal inertia and therefore has its own
power balance equation as it is apparent from (11). From left to right, this balance involves the energy
stored inside the EWH tank characterized by the current and previous average water temperature
Twh(t) and Twh(t− 1) (in ◦C, as the rest of temperatures hereafter), the tank capacity Cwh (in m3) and
the parameters that model essential features of the supply water like its density ρ (in kg/m3) and its
specific heat Cp (in kJ/kg·◦C). The following terms are the thermal losses taking place in the tank walls
given by the loss factor gwh (in kW/◦C) and the ambient temperature profile Tamb(t) besides the energy
provided by the water entering the tank as a consequence of the usage events and defined by means
of the hot water consumption Dwh(t) (in m3/s) and the temperature of this water, Tinlet. Finally, the
discrete energy due to the heater element can be found. Once the EWH dynamic has been well-defined,
the model for this appliance is fully completed with Equation (12) where the upper and lower limit of
Twh(t) are constrained according to the normal operation temperatures Tmin

wh and Tmax
wh .

Min f =
24
T

T∑
t=1

Pg(t)Pr(t) (1)

S.t:
Pg(t) + Ppv(t) + Pess(t) = Pns(t) + Ps(t) + xwh(t)Pnwh (2)
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0 ≤ Pg(t) ≤ Pmax
g (3)

0 ≤ Ppv(t) ≤ fpv
(
Ppk

pv, ηpv,λ,φ, t
)

(4)

− Pmax
ess ≤ Pess(t) ≤ Pmax

ess (5)

SoC(t) = SoC(t− 1) − 100
(24

T

)Pess(t)
Cess

(6)

SoCmin
≤ SoC(t) ≤ SoCmax (7)

− dPmax
ess ≤

Pess(t) − Pess(t− 1)
24
T

≤ dPmax
ess (8)

Ps(t) =
N j∑
j=1

N j
k∑

k j=1

x j
(
k j
)
Γ j

(
k j, t

)
(9)

N j
k∑

k j=1

x j
(
k j
)
= 1 (10)

CwhρCp
Twh(t)−Twh(t−1)

86400
T

=

gwh[Tamb(t) − Twh(t− 1)]+Dwh(t)ρCp[Tinlet − Twh(t− 1)] + xwh(t)Pnwh

(11)

Tmin
wh ≤ Twh(t) ≤ Tmax

wh (12)

5. Case Study

This section aims to evidence the effectiveness of the above-described DLC platform by testing
it under cases which consist of minimizing the cost of the energy imported from the grid over a
24-h time horizon, as was stated in the previous section, with a time resolution of 5 min, so that,
T = 288. Concretely, two case studies based on the available electricity tariffs in the Spanish market are
considered. One case is based on time discrimination in two periods (off-peak and peak) also known
as tariff DHA, and another is a case using the default tariff or tariff A (without time discrimination).

Both cases use the SA consumption models shown in Figure 4 and based on 120 min working
cycle divided into 8 slots of 15 min provided by [42].
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Figure 4. Smart appliances (SA) models employed in the optimization: (a) Washing machine demand,
(b) dishwasher demand, and (c) tumble drier demand.

Additionally, to give the case study a more realistic approach, the component of the non-shiftable
power that represents the standby consumption was obtained by acquiring the active power in one of
the laboratory circuits for a 24-h workday.
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Under this framework, a typical dwelling including a small scale ESS and PV installation has been
chosen as the topology of this case study. More in detail, the PV system is modeled by a nominal power
of 2 kW, an efficiency of 90% and mounted with a tilt angle of 30◦. With respect to the location, southern
Spain has been considered for both cases, concretely at 37.88◦ and −4.79◦ of latitude and longitude
respectively. On the other hand, the ESS has a capacity of 6 kWh, a maximum charge/discharge power
of 2 kW with a ratio of change limited to 0.5 kW/h and where the SoC can fluctuate in the range 35–65%,
the initial SoC was fixed to 50%. The EWH considered is the type which can be found in the residential
environment, vertically mounted and cylindrical, with a capacity of 0.1 m3 as well as a nominal power
of 2 kW. Its loss factor has been set to 2·10−3 kW/◦C and the inlet water temperature to 21 ◦C [43],
while the water temperature inside the tank has been constrained in the range 60–85 ◦C with an initial
condition of 65 ◦C. In addition, an example of hot water consumption considering the water drawn
from the EWH tank due to household use such as hand washing, showering, and dishwashing among
others and based on [44] has been used. Finally, the capacity of the main grid has been fixed to 4.6 kW
since it is a common value in Spain. Table 1 summarizes the main parameters of the model as well as
its values.

Table 1. Main parameters of the model.

Subsystem Parameter Value Subsystem Parameter Value

Main grid Pmax
g 4.6 kW

EWH

Cwh 0.1 m3

ESS

Pmax
ess 2 kW gwh 2·10−3 kW/◦C

Cess 6 kWh Tinlet 21 ◦C
dPmax

ess 0.5 kW/h Tmin
wh 60 ◦C

SoCmin 35% Tmax
wh 85 ◦C

SoCmax 65% Twh(0) 65 ◦C
SoC(0) 50% Pnwh 2 kW

PV

Ppk
pv 2 kW Cp 4.18 kJ/kg·◦C
ηpv 90% ρ 988 kg/m3

α 30◦

λ 37.88◦

φ −4.79◦

Figure 5 introduces the first case in which tariff A with both scheduling mode (variable and fixed)
have been used, depicting a 24-h horizon. Particularly, in this case, the scheduling configuration for the
SA has been set as follows: Washing machine scheduled from 09:00 to 14:00, tumble dryer scheduled
from 16:00 to 21:00 and dishwasher fixed at 14:00.

Note from Figure 5a the result of the scheduling process and the times at which the SA start their
operation cycles. As it is apparent from Psa(t), which is the decoupled consumption of all the SA
scheduled in either fixed or variable mode, the washing machine starts almost at midday (at 11:45),
around the peak of the prices although a large amount of this demand is covered by the PV system.
The dishwasher at 14:00 (as was stated) and tumble drier is shifted until 18:00 where the second valley
of the price can be found. This behavior shows a clear strategy of searching for the lowest price or the
highest PV production to launch these SA. In view of the results, all the initial constraints related to the
scheduling period are clearly satisfied.

The non-shiftable consumption is denoted by the red line of the same figure including the fixed
consumption of the dishwasher at 14:00 and the experimentally measured example in which the period
of highest activity falls in the range 09:00–18:00 according to the laboratory timetables. The green line
shows the power injected into the system from the PV panels, which represents 9.78 kWh, and has not
the same value that the PV production shown in orange (10.65 kWh) and provided by solcast. In this
case, the system does not use all the energy to achieve the most economical way, however, the amount
of this one taken from the main grid is greater than if the PV energy were fully employed.
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Figure 5b depicts the EWH behavior using the above-mentioned hot water demand (expressed in
L/h instead of m3/s for easier comprehension) and the hourly temperature profile provided by dark
sky (see purple and blue lines respectively). The EWH consumption shown in orange evolves in the
range 0–2 kW due to it’s on/off operation. Before 12:00, the water temperature is more or less constant
and the power consumption behaves in agreement to the water consumption so that a water demand
variation causes a proportional energy consumption, which means this energy is mainly used to warm
the inlet water. In fact, the highest energy consumption in this interval takes place at the peak of water
demand. On the contrary, at midday, the water consumption is not significative and thus, this energy
is intended to increase the water temperature inside the tank from 60 ◦C to 83 ◦C, considering multiple
favorable conditions such as the greater availability of energy coming from the PV system, the high
ambient temperature as well as the amount of charge already stored in the ESS. This temperature
increment enables to face the future water drawn acts, which is a desirable strategy in response to DR
events as it is the presence of high market prices in this interval. Later, the temperature slowly falls up
to 60 ◦C at 20:00 due to the water consumption and remains constant the rest of the day.
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Figure 5. Optimization results using tariff A: (a) Power injected by the photovoltaic (PV) system,
SA consumption, non-shiftable consumption, and PV production, (b) EWH performance: Consumption,
ambient and water temperature as well as hot water demand, (c) energy storage system (ESS)
performance: Power and state of charge (SoC), and (d) total consumption from the utility and
energy prices.

The ESS shows a clear policy based on the energy price (red line in Figure 5d) and PV production.
The initial SoC was set to 50% and quickly decreases to supply the non-shiftable power until 02:00
reaching almost 39% in a high-priced environment. Afterward, the off-peak of the prices can be found
and Pess(t) go up as fast as possible (due to the slope of Pess(t) matches to dPmax

ess ) to retrieve some
charge previously lost, which is equivalent to shift the amount of energy that belongs to Pns(t), from
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the beginning of the day to the off-peak interval. During this interval Pns(t) is supplied by means of
the main grid. At 04:30 the SoC drops again to repeat the same process with Pns(t) and reaches the
minimum value allowed (35%) at 08:00. Once here, the PV system begins to inject power that goes
directly to the ESS resulting in a charging process that carries the SoC from 35% to 65% to address the
SA consumption with the help of Ppv(t) during the most expensive interval (12:00–15:00). The rest
of time follows the same principle as explained above: Charge process in presence of the second
off-peak of the price (15:00–17:30) and subsequent discharge to supply both the tumble drier and the
non-shiftable power (17:30–00:00). The total energy exported and imported by the system was 3.89 and
3.00 kWh respectively. Another important detail is the effect of dPmax

ess over Pg(t): Previous tests were
done with a more relaxed value prove that a larger amount of the EWH energy can be absorbed by ESS
as this would enable better tracking of demands with higher ratios of change. Finally, in Figure 5d
the hourly prices and the main grid consumption can be found. The foregoing description of this
case is also reflected in Pg(t) and makes it possible the main objective of avoiding and capitalizing the
peak and off-peak of Pr(t) respectively. The daily price for this case was 1.80 € with a total demand of
energy that almost achieves 16.10 kWh.

For the following case, the configuration for the SA has been set as follows: Washing machine fixed
at 10:00, tumble dryer scheduled from 12:00 to 20:00 and dishwasher scheduled from 14:00 to 19:00.

Figure 6a (blue line) shows how the model has decided to launch the dishwasher and tumble drier
at the lower limit of the scheduling period which allows the system benefits from the PV production
(depicted in orange and kept constant from the previous case) and the ESS that also supplies part of
this consumption, especially after 13:00, where the prices are much higher than in the previous half.
The washing machine operates at 10:00 as expected. The PV production is not fully intended to be
injected into the system (just 9.96 of 10.65 kWh) as is evidenced by Ppv(t), in green, and which also took
place in the case above. With respect to the non-shiftable demand, the previous part corresponding to
the stand-by consumption has been used, including the demand of the washing machine at 10:00.

Both the ESS and EWH have similar behaviors with respect to the previous case but with some
exceptions. Figure 6b shows the performance of the EWH under the same assumptions as of the
first case (water demand, ambient temperature, water temperature limits, and initial conditions)
although the temperature increment begins one hour earlier and is more progressive. Furthermore, the
temperature rises at one of the peaks of the water demand while the water was warmed up before
this maximum in the first case. The ESS also performs similar, which evidences the PV production
has a higher weight in its behavior than the energy price. Moreover, with respect to Pr(t), it is more
important the shape of the function, concretely the maxima and minima location, than the absolute
values. The energy exported and imported in this case reaches 3.45 and 2.55 kWh. Finally, Figure 6d
introduces the prices, that splits the day in two well-defined half, and the consumption from the main
grid where the most consumption is located in the cheapest region as desired and entails an amount
of 15.75 kWh (11.8 kWh from 23:00 to 13:00 compared to 3.95 kWh the rest of time). The daily price
was 1.30 €.

Once these previous cases have been presented, Table 2 summarizes the results. Obviously, case 2
achieves a better performance with respect to the objective function and thus, tariff DHA enables to
more efficient utilization of elements such as DER and ESS in presence of thermal loads that contribute
to the flexibility of the system as in this case the EWH.
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Table 2. Result summary.

ESS PV Main Grid

Case
Imported

Energy
(kWh)

Exported
Energy
(kWh)

Injected
Energy
(kWh)

Energy
Production

(kWh)

Energy
Imported

(kWh)

Objective
Function:
Price (€)

Case 1: Tariff A 3.00 3.89 9.78 10.65 16.10 1.80
Case 2: Tariff DHA 2.55 3.45 9.96 10.65 15.75 1.30

6. Conclusions and Future Work

In the current context of increasing energy use in the residential environment, where most
consumption comes from the SA use, the employment of DR policies is essential to deal with this type
of loads through a DLC paradigm with the goal of reaching higher efficient management of the energy
resources. This paper has proposed an original architecture that supports research and development,
and integrates tools that are very diverse and complementary aiming to develop a platform that
brings together the best features of all of them, such as the high mathematical performance of GAMS,
the accuracy of the weather forecasting applications as well as the flexibility of LabVIEW as the linking
tool. Later both cases studies have been carried out to prove the high capabilities of the testbed with
successful results, placing the adopted solution as an attractive alternative towards a higher energy
performance dwelling ambient.
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Finally, as future work, the authors leave the real-time control of the DER, ESS, and loads in the
primary and secondary control of a real MG. In this context, the developed platform would perform as
a day-ahead demand scheduler in the tertiary control although additional communication channels
would need to be deployed to enable the interface with the lower hierarchical level. Furthermore, the
mathematical model written in GAMS and thus the developed DLL would also have to be adapted to
the MG needs, however, due to the reconfigurable nature of the system, this would not take more than
a few minutes. Hence, this platform could be migrated to be used in a real microgrid expecting the
same performance, but these considerations must be considered.
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